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The SNP-set analysis is a powerful tool for dissecting the genetics of
complex human diseases. There are three fundamental genetic association ap-
proaches to SNR-set analysis: the marginal model fitting approach, the joint
model fitting approach, and the decorrelation approach. A problem of pri-
mary interest is how these approaches compare with each other. To address
this problem, we develop a theoretical platform to compare the signal-to-
noise ratio (SNR) of these approaches under the generalized linear model.
We elaborate how causal genetic effects give rise to statistically detectable
association signals, and show that when causal effects spread over blocks of
strong linkage disequilibrium (LD), the SNR of the marginal model fitting is
usually higher than that of the decorrelation approach, which in turn is higher
than that of the unbiased joint model fitting approach. We also scrutinize
dense effects and LDs by a bivariate model and extensive simulations using
the 1000 Genome Project data. Last, we compare the statistical power of two
generic types of SNP-set tests (summation-based and supremum-based) by
simulations and an osteoporosis study using large data from UK Biobank.
Our results help develop powerful tools for SNP-set analysis and understand
the signal detection problem in the presence of colored noise.

1. Introduction. The SNP-set analysis is a powerful method in genome-wide associ-
ation studies (GWAS) for dissecting the genetics of complex human diseases (Hoh, Wille
and Ott, 2001; Wu et al., 2014; Kwak and Pan, 2016; Pasaniuc and Price, 2017; Guo and
Wu, 2019). It combines genetic associations of multiple SNPs in a set to test the genetic
association of the whole group. There are three fundamental genetic association approaches
in GWAS (Marchini, Donnelly and Cardon, 2005; Wu and Zhao, 2009). The first approach
follows the single-SNP analysis, which applies marginal regression or logit model to obtain
SNP’s Z-scores or p-values. It is commonly used due to computational simplicity. Mean-
while, its genetic effect estimation is biased because of correlations – non-causal SNPs in
LD with causal SNPs often show statistical associations too. The second approach is to fit
the joint regression or logit model to obtain the multiple SNP’s Z-scores or p-values si-
multaneously. It is computationally more intensive but provides unbiased estimation. As a
method jointly analyzing multiple SNPs together, it is often considered as being beneficial
to revealing "joint associations" of multiple SNPs (Yang et al., 2012). The third approach
is to decorrelate SNPs’ Z-scores. It is often applied before combining the Z-scores for the
global hypothesis test of the SNP-set. A classic example is Hotelling’s t-squared statistic
and other similar variance-component statistics (Hotelling, 1931; Luo et al., 2010). This ap-
proach is convenient for calculating the SNP-set’s p-value because the test statistic’s null
distribution is often easier to derive when the Z-scores are transformed to independent and
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identical distributed (i.i.d.) components. The three genetic association approaches have been
routinely applied in practice, sometimes with intuitive justifications from computational or
genetic prospectives. However, it remains unclear how these approaches compare with each
other. The problem is of primary interest in statistical genetics. Our paper aims to address
this problem through a rigorous study that directly compares the three approaches’ statistical
signals emerged from causal genetic effects and LDs.

In a seemingly different setting, Hall and Jin (2010) studied the problem of detecting Rare-
and-Weak signals in a Gaussian Means Models (GMM): given a high dimensional normal
vector T = N(µ,Σ), the question is how to test whether µ = 0 or µ 6= 0. They assumed
that only a few entries of µ may be nonzero, and each nonzero entry is relatively small
(so the signals are both rare and weak). The correlation matrix Σ is assumed available. They
considered three data transformations, which we may call identical transformation, whitening
(i.e., decorrelation) transformation, and innovated transformation, and studied the (approach-
dependent) signal-to-noise ratios (SNRs) associated with each transformation. As noted in
the literature, there are some interesting connections between signal detection and genetic
association study. For example, He and Wu (2011) adapted the innovated transformation
by Hall and Jin (2010) to the SNP-set analysis; see also Barnett, Mukherjee and Lin (2017).
Motivated by such connections, we develop a theoretical framework by extending some ideas
of Hall and Jin (2010) and use the framework to compare the three SNR-set approaches
aforementioned.

To do so, we face several challenges. First, Hall and Jin (2010) only considered a very ide-
alized model, and it is unclear how to extend the ideas there to our setting, where we must use
a linear regression model or a generalized linear model (GLM) to characterize genetic archi-
tecture meaningfully. The extension is non-trivial. For example, the GMM assumes that sig-
nals and correlations are independent parameters. In contrast, under the GLM, the Z-scores’
means and correlations are interconnected by causal effects and the correlations among the
SNPs and other covariates. Moreover, the Z-scores under the GLM have different types to
consider (e.g., various likelihood-based estimators). Second, the relationship between a sig-
nal detection approach for GMM and a genetic association approach is usually not apparent.
Sometimes, it is hard to translate an approach for GMM to our setting correctly. For exam-
ple, under the GMM, a signal detection approach based on the innovated transformation has
been shown to increase the statistical power of the Higher Criticism (HC) test (i.e., the iHC
test) (Hall and Jin, 2010). However, in an important study of the SNP-set analysis, the iHC
was reported as "subject to considerable loss of power" (Barnett, Mukherjee and Lin, 2017).
We explain that the reason why we have such contradicting conclusions on the innovated
transformation is due to an inaccurate translation of the innovated transformation in GMM to
the setting of SNP-set analysis. Third, further study is also needed to compare the SNRs in
the genetic association approaches based on typical patterns of causal genetic effects and the
LDs in the human genome.

Our contribution is three-fold. First, we extend the platform of Hall and Jin (2010) for
GMM to the more practical GLM setting and develop a new framework by which we are
able to answer the above genetic questions carefully. In particular, using this framework, we
found in-depth relationships between genetic association approaches and the three transfor-
mations studied in Hall and Jin (2010). For example, we find that both the Z-scores from the
marginal fitting and those from the joint fitting approach can be viewed as the direct results
of innovated transformation approach in Hall and Jin (2010).

Second, we compare the SNRs of the three genetic association approaches aforementioned
theoretically, and so are able to spell out their advantages and disadvantages. In particular,
we prove that when causal effects are dispersed over blocks of strong LDs among SNPs,
the SNRs of the marginal fitting approach are always higher than those of the decorrelation
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approach, which are, in turn, higher than those of the joint fitting approach. We also address
the case where the causal effects and correlations are both "dense" by an analytical study of a
bivariate model as well as a simulation study based on the genotype data of the 1000 Genome
Project (Siva, 2008). Bivariate model is a great setting to study complex statistical problems
(Arias-Castro, Huang and Verzelen, 2020). Using it, we explain the principal mechanisms of
signal boosting and cancellation depending on the relative magnitude and directionality of
causal effects and LDs. The simulation study surveys how genetic effects and LD patterns in
the human genome influence the SNRs. The numerical results support the theory well.

Last, we carefully studied the statistical power of two primary SNP-set tests: the
summation-based combination (represented by Fisher’s combination (Fisher, 1934) and the
Sequence Kernel Association Test (SKAT) (Wu et al., 2011)) and the supremum-based com-
bination (represented by the minimal p-value method and the HC Donoho and Jin (2004);
Arias-Castro and Wang (2017)). Based on systematic simulations and the analysis of osteo-
porosis data from UK Biobank (Sudlow et al., 2015), the empirical results confirmed that the
marginal fitting is often more powerful, although the joint fitting and the decorrelation could
have complementary merits for detecting extra disease genes. Moreover, the supremum-
based tests have an advantage when causal effects are strong in the common-variant analysis,
whereas the summation-based tests are particularly beneficial for detecting weak and dense
effects in the rare-variant analysis.

The remainder of the paper is organized as follows. Section 2 formulates the genetic ar-
chitecture and the SNP-set test, and provides the definitions and properties of the SNR and
related transformations. Section 3 presents theoretical studies on the SNRs of genetic associ-
ation approaches. SNR simulations based on the 1000 Genome Project are given in Section
4. The statistical power study for the SNP-set tests is given in Section 5. Section 6 provides a
GWAS of osteoporosis using UK Biobank data. Section 7 summarizes the study and briefly
discusses the limitations and future research plans.

2. Entry-wise SNR and Transformations under GLM. Under the GMM, Hall and Jin
(2010) considered an n-dimensional Gaussian vector T = µ + ε, where the vector of means
µ = (µ1, ..., µn)′, the vector of noise variables ε ∼ N(0,Σ), and Σ = (Σij)1≤i,j≤n is the
correlation matrix assumed as known. In contrast to the null µ = 0, we say we have a signal
at entry j if µj 6= 0, and the SNR is |µj |/

√
Σjj = |µj | since Σjj = 1. Suppose A is an

n× n matrix (which is non-random and may depend on Σ) and consider the transformation

T 7→AT. The SNR for entry j of AT is |µ̃j |/
√

Σ̃jj , where µ̃ = Aµ and Σ̃ = AΣA′. Hall
and Jin (2010) showed that under some settings (e.g., the signals satisfy a so-called rare-weak
model), we can find a proper matrix A such that for all j where µj 6= 0 the post-transform

SNR at entry j is always larger than the pre-transform SNR at entry j: |µ̃j |/
√

Σ̃jj ≥ |µj |.
That is, the transformation of T 7→AT simultaneously boosts the SNR at all signal entries.

The comparison among the genetic association approaches can be viewed (at least asymp-
totically) as a problem related to the above. In the SNP-set analysis, we first compute summa-
rizing Z-scores, each for a SNP; then, we stack the Z-scores into a Z-vector as the input for
testing the SNP-set’s association. One crucial problem is how to compare the Z-scores ob-
tained from different genetic association approaches. A nice idea from the discussion above
is to connect these approaches by transformations and compare their entry-wise SNRs. How-
ever, we need to start from the GLM that defines a meaningful genetic architecture:

(1) g(E(Yk|Xk·,Zk·)) = X′k·β + Z′k·γ,

where Yk quantifies the phenotypic trait of the kth subject, k = 1, . . . ,N , with the sample
size N . Xk· = (Xk1, . . . ,Xkn)′ is the genotype vector of n SNPs, Zk· = (Zk1, . . . ,Zkm)′ is
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the vector of m controlling covariates. This paper focuses on SNPs, including rare variants,
but the model applies to other genetic markers as well. The controlling covariates could
include the intercept, environmental factors, other genetic variants, or potential confounders
to be controlled upon. The link function g characterizes the genotype-phenotype relationship
depending on the distribution of Yk. The constant coefficient vectors β = (β1, · · · , βn)′ and
γ = (γ1, · · · , γm)′ are unknown. The nonzero elements of β are referred to as the causal
genetic effects of the corresponding SNPs. The SNP-set analysis concerns whether at least
one SNP is causal by testing the global hypotheses

(2) H0 : β = 0 versus H1 : β 6= 0.

Different genetic association approaches lead to different estimators β̂ = (β̂1, ..., β̂n)′. For
a given estimator, the non-zero expectation E(β̂i) of the ith SNP reflects its genetic associa-
tion signal. The signal could come from its own causality βi 6= 0 or its linkage to other causal
SNP(s). The SNR definition involves two scenarios. In the scenario of finite sample size N ,
the SNR is defined as SNR(β̂i) = |E(β̂i)|/SD(β̂i). In the scenario of the asymptotics with√
N(β̂i − θi)

D→N(0, d2i ) as N →∞ (here, D→ denotes the convergence in distribution), we
define SNR(β̂i) = |θi|/di. For the convenience of calculation by linear algebra, we unify the
two scenarios by one notation in vector and matrix format:

(3) SNR(β̂) = (diag(Σ))−
1

2 |θ|,

where under the finite-sample scenario, the mean vector θ = (θ1, ..., θn)′ = E(β̂) and the
variance-covariance matrix Σ = (Σij)1≤i,j≤n = Var(β̂). Under the asymptotics

√
N(β̂ −

θ)
D→ N(0,Σ), θ and Σ are the asymptotic mean vector and the asymptotic variance-

covariance matrix, respectively. Denote the diagonal matrix of Σ as diag(Σ) = diag{Σii; i=

1, ..., n}, and (diag(Σ))−
1

2 = diag{1/
√

Σii; i= 1, ..., n}.
The Z-score statistics of β̂ are denoted by T = (T1, ..., Tn)′, where Ti = β̂i/SD(β̂i) has

unit variance. When SD(β̂i) is unknown, we can estimate the standard deviation and define

Ti = β̂i/ŜD(β̂i), or in vector format, T =
(

diag(Σ̂)
)− 1

2

β̂. Obviously, SNR(β̂) = SNR(T)

(assuming convergence in probability: Σ̂
P→Σ under the asymptotics). In general, the SNR

vector is invariant to component-wise scaling by any nonzero constants.
We define transformations for β̂ similar as Hall and Jin (2010). However, we consider

two scenarios in line with realistic problems: 1) Σ is known; 2) it is unknown so that the
transformations in real data analysis need to rely on its estimator Σ̂. Let U be the inverse of
the Cholesky factorization of Σ, i.e., U is the lower triangular matrix such that UΣU′ = I.
The decorrelation transformation (DT) of β̂ is defined as

(4) β̂DT = Uβ̂.

Let diagonal matrix D =
(
diag

(
Σ−1

))− 1

2 . The innovated transformation (IT) of β̂ is

(5) β̂IT = DΣ−1β̂.

Based on Σ̂ and correspondingly Û and D̂, we define the "estimated DT" (referred to as
eDT) as β̂eDT = Ûβ̂. The "estimated IT" (eIT) is defined as β̂eIT = D̂Σ̂−1β̂.

These transformations have several properties important for studying the SNR. First, it is
trivial to see that both the DT and the IT rescale the estimators into unit variance since both
Var(β̂DT) = I and Var(β̂IT) = DΣ−1D have a unit diagonal. Second, the transformations
for β̂ and its Z-score vector T are equal, i.e., β̂DT = TDT and β̂IT = TIT. In general, the DT
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Fig 1: An illustrative case that the IT increases the SNRs. The dots represent nonzero ele-
ments of the matrix or vector (a larger size indicates a larger magnitude); empty cells repre-
sent negligible elements (i.e., zero or close-to-zero). The segments represent the band width
of non-negligible correlations. Because diagonal elements of DΣ−1 are larger than 1, if the
signals are sparser than the correlations (i.e., the distances between original signals in µ are
wider than the correlation band in DΣ−1), both the magnitude and the quantity of nonzero
elements in DΣ−1µ are increased over µ.

and the IT are invariant to any component-wise scaling by nonzero constants. Third, the DT of
β̂ equals the DT of β̂IT: (β̂IT)DT = β̂DT. Fourth, T and TIT are mutually IT, i.e., (TIT)IT = T.
Furthermore, these equations remain true for the eDT and the eIT, and if Σ̂

P→Σ, we have
Var(TeDT)→ I and Var(TeIT)→DΣ−1D. See Lemma 1.1 and the proof given in Section
1 of the Supplementary Material (Zhang et al., 2022).

In the following, we briefly discuss the essence for the DT and the IT to increase or de-
crease the SNR. That is, if Σ is a symmetric positive definite matrix with unit diagonal, then
1≤ Uii ≤

√
(Σ−1)ii for all i= 1, · · · , n. The inequalities are strict for at least some i unless

Σ is the identity matrix. See Lemma 1.2 and the proof in Section 1 of the Supplementary
Material (Zhang et al., 2022). Based on these inequalities, we can show that the DT and the
IT increase the SNR as long as the causal effects are "sparser" than their correlations (e.g.,
when the distances between causal SNPs are wider than LD blocks). Consider the one-effect
case for example. Let µ = E(T) with µj = c > 0 at an arbitrary location j and µi = 0 for
all i 6= j. The SNR at the jth element is increased by the DT because (Uµ)j = cUjj ≥ c.
The SNR after the IT is further increased because (DΣ−1µ)j = c

√
(Σ−1)jj ≥ cUjj . Fur-

thermore, the stronger the correlations, the larger the increases are. On the other hand, if we
start from TIT, by Lemma 1.1, its DT and IT will reversely transform DΣ−1µ back to Uµ
and µ, respectively, and thus reduce SNRs. In this case, the nonzero elements in DΣ−1µ
does not have a sparse pattern as µ does. That is, the DT and the IT could reduce signals
under some dense signals. As for multiple causal effects, Figure 1 provides a schematic idea;
rigorous studies are given in the next section.

3. Model fittings and SNR. This section connects the three genetic association ap-
proaches to the transformations and provides theoretical comparisons among their SNRs.
For technical convenience, we first consider the linear model (LM) with known error vari-
ance under the finite sample scenario, then we study the GLM under asymptotics.

3.1. Under the LM. Consider the LM for modeling continuous traits:

(6) Y = Xβ + Zγ + ε,
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where XN×n and ZN×n are given design matrices with the kth row vector being X′k· and
Z′k· in (1), respectively. The error term ε∼N(0N×1, σ

2IN×N ). We assume σ2 is known and
N is finite. Estimated σ2 is to be discussed in the GLM setting under asymptotics.

For simple notations and meaningful interpretations, we can standardize genotype data X
conditional on Z. Specifically, let H = Z(Z′Z)−1Z′ be the projection matrix onto the column
space of Z. Define diagonal matrix Ω = (diag (X′(I−H)X))−

1

2 with the diagonal elements
Ωii = 1/

√
X′i(I−H)Xi, where Xi is the ith column of X. We can rewrite equation (6) as

(7) Y∗ = X∗β∗ + ε∗,

where Y∗ = (I−H)Y/σ, X∗ = (I−H)XΩ, β∗ = Ω−1β/σ, and ε∗ = (I−H)ε/σ. The
columns of X∗ have unit norm, i.e., X∗′i X∗i = 1. The matrix

(8) M = X∗′X∗ = ΩX′(I−H)XΩ

is a correlation matrix because it is symmetric positive definite with the unit diagonal (assum-
ing X′(I−H)X has full rank). M measures the correlations among genotype data condi-
tional on Z. For example, when Z = 1 being the intercept vector, M is the matrix of Pearson’s
correlation coefficients among genotypes, a typical estimate of the LD r values among SNPs.

The interpretations of the causal genetic effects by β and β∗ are different. A nonzero βi
measures a subject’s trait value change per unit change of genotype. It is the allelic effect
when the genotype is typically defined as the copy number of minor allele. In contrast, β∗i is
a population-level genetic effect that involves both genetic and environmental variations:

(9) β∗i =
√

X′i(I−H)Xiβi/σ, i= 1, ..., n,

where X′i(I −H)Xi measures the genetic variation conditional on Z, and σ measures the
variation of environmental factors. In the case of Z = 1 and the genotype being the copy
number of minor allele, X′i(I −H)Xi/N = 2q̂i(1 − q̂i), where q̂i is the estimated minor
allele frequency (MAF) of the ith SNP. Therefore, a rare SNP with a small MAF has a
weak effect β∗i at the population level, unless its allelic effect βi is high under the "Common
Disease, Rare Variant" hypothesis (Schork et al., 2009). Moreover, β∗ is directly related to
the genetic heritability (i.e., the proportion of total trait variation due to genetic variation):
h=

∑n
i β

∗2
i /N

1+
∑n

i β
∗2
i /N when causal SNPs are independent (Wu et al., 2014).

Note that β∗ is a component-wise scaling of β, which implies two properties. First, their
least-squares estimators (equivalent to the maximum likelihood estimators (MLE) under the
LM) keep the same functional relationship: β̂∗ = Ω−1β̂/σ. Second, β̂∗ and β̂ have the same
SNRs.

In the approach of studying genetic associations by the joint model fitting, we fit Y to the
full data X∗ (or equivalently, (X,Z)). The estimators of the genetic effects are unbiased:

(10) β̂∗J =
(
X∗′X∗

)−1
X∗′Y∗ = Ω−1β̂J/σ ∼N

(
β∗,M−1) .

Denote diagonal matrix Λ =
(
diag

(
M−1))− 1

2 with diagonal elements Λii = 1/
√

(M−1)ii.
Standardizing the estimated coefficients by Λ gives the Z-score statistics:

(11) TJ = Λβ̂∗J ∼N
(
Λβ∗,ΛM−1Λ

)
.

The SNRs are |E(TJ)|= |Λβ∗|. Note that the SNRs are smaller than the genetic effects, i.e.,
|Λβ∗| ≤ |β∗|, because 0 ≤ Λii ≤ 1 (by Lemma 1.2). The equal sign holds only if M = I,
i.e., when genotypes are completely independent (conditional on Z). That is, for given genetic
effects, the LDs reduce the SNRs obtained from the joint fitting.
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In the approach of studying genetic associations by the marginal model fitting between Y
and X∗i (or equivalently, (Xi,Z)), i= 1, ..., n, the estimators are

(12) β̂∗M = TM = X∗′Y∗ = Ω−1β̂M/σ ∼N(Mβ∗,M).

β̂∗M is readily the Z-scores TM because M already is a correlation matrix. Note that the corre-
lations among input statistics in TM is consistent with the correlations among the genotypes,
while the correlations of TJ is the inverse. For example, if SNPs are positively correlated, TJ
has negative correlations. Furthermore, the means and the correlations of TJ (similarly for
TM) are interconnected through data X and Z when β 6= 0. It is different from the GMM,
which assumes signals and correlations are independent parameters (Hall and Jin, 2010).

Deduction shows that TJ in (11) and TM in (12) are mutually IT, i.e., TIT
J = TM and TIT

M =
TJ. Furthermore, the decorrelation transformations for TJ and TM give the same statistics.
Let U be the inverse of the Cholesky factorization of M−1, i.e., UM−1U′ = I. We have

(13) TDT = TDT
J = TDT

M = (U′)−1X∗′Y∗ ∼N(Uβ∗, I).

See Lemma 1.3 with deduction in Section 1 of the Supplementary Material (Zhang et al.,
2022).

The following theorem provides sufficient conditions that guarantee an increasing order of
the SNRs of TJ, TDT and TM. Specifically, the SNRs of TJ are component-wisely less than
those of TDT and TM, and the maximum SNR of TDT is less than some SNR of TM. The
proof is given in Section 1 of the Supplementary Material (Zhang et al., 2022).

THEOREM 3.1. Consider the LM in (6) with coefficients βi 6= 0 for i ∈ M∗ =
{i1, . . . , iK} ⊂ {1, . . . , n} and βi = 0 otherwise. Consider either of the following conditions:

1. K = 1 (i.e., single causal effect).
2. K > 1 (i.e., multiple causal effects). Assume X′i(I−H)Xj = 0 for all i and j such that
|i− j| ≥ b, where b= minik,il∈M∗ |ik − il|.

For TJ in (11), TM in (12), and TDT in (13), we have that

|E(TJi)| ≤min{|E(TDT
i )|, |E(TMi)|}, for each i= 1, · · · , n, and

max
i∈{1,...,n}

|E(TDT
i )| ≤ |E(TMik)|, for some ik ∈M∗.

The theorem indicates that if there is only one causal SNP in the SNP-set to be tested,
these signal relationships hold whenever correlations (primarily the LDs) exist. In the case of
multiple causal SNPs, the result holds as long as they locate more separately than strong cor-
relations (i.e., dispersed over blocks of strong LDs). In either case, other properties regarding
the effects and correlations, such as their magnitudes and directions, do not change the order.

A good property of the joint fitting is that it gives an unbiased estimator of β. However,
SNP-set analysis aims to detect the existence of causal effects within the set, not to differenti-
ate them. The joint fitting’ SNRs are smaller because of the larger variances of M−1 in (10).
Moreover, the joint fitting is computationally more intensive because of the need for matrix
inversion. Therefore, under sparse causal effects, the joint fitting has a disadvantage in signal
strength even if the SNP-set analysis is conceptually a joint analysis of multiple SNPs.

Theorem 3.1 clarifies how the iHC procedure should be interpreted under linear models.
It is meant to apply the DT or the IT to TJ, instead of TM that was suggested in (Barnett,
Mukherjee and Lin, 2017). The reason lies in the condition of effect sparsity for guaranteeing
the IT to increase the SNR. If the causal genetic effects represented by nonzero βi’s are
sparse, the signals of the joint fitting TJ remain sparse. On the other hand, the signals of the
marginal fitting are often no longer sparse because of the transformation E(TM) = Mβ∗.
Therefore, for sparse causal effects, applying the IT to TM would reverse back to TJ and
thus reduce signals (recall that TJ and TM are mutually IT by Lemma 1.3).
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3.2. Under the GLM. This section extends the SNR framework to the GLM, which in-
volves various types of Z-score statistics from different likelihood-based estimations. Corre-
lations often need to be estimated. The normality of the Z-scores often requires asymptotics
under N →∞ and regularity conditions carefully checked for mathematical rigor.

The GLM considers that the responses Yk in (1) have the density function in the exponen-
tial family (McCullagh and Nelder, 1989):

(14) f(yk|θk, φ) = exp{(ykθk − b(θk))/ak(φ) + c(yk, φ)},
where ak, b and c are parameter functions determined by specific distributions. For example,
for continuous traits, the normal distribution Yk ∼ N(µk, σ

2) corresponds to ak(φ) = σ2,
b(θk) = θ2k/2, and θk = µk. For binary traits, Yk ∼ Bernoulli(pk), which has ak(φ) = 1,
b(θk) = log(1 + eθk), and θk = log(pk/(1− pk)). In general, E(Yk) = b′(θk) and Var(Yk) =
ak(φ)b′′(θk) under regularity conditions such as the exchangeability of the differentiation
and the integration of the log density function (Shao, 2010). Therefore, the covariates in (1)
are linked to θk through g(b′(θk)) = X′k·β + Z′k·γ. In this paper, we consider the commonly
used canonical link, i.e., g = (b′)−1, such that θk = X′k·β + Z′k·γ. Canonical link is used in
both the LM and the logit model. φ is called the dispersion parameter, which is a nuisance
parameter regarding the coefficient parameters α′ = (β′,γ ′). Following the typical GLM
inference, we assume ak(φ) = φ/ak with known positive ak, so that the MLE of α does not
depend on φ (Shao, 2010). Most commonly used GLM-modeling distributions satisfy this
assumption, including the LM and the logit model.

For the joint model fitting, we consider the MLE and the one-step MLE of β. The one-step
MLE is the first iteration in computing the MLE using Fisher-scoring method (Shao, 2010).
It can be considered an approximation of MLE, and it has a closed form that can be used to
establish the transformational relationship with the score statistics to be discussed below.

Specifically, with n fixed and N →∞, as a classic result, the MLE β̂ has an asymptotic
normal distribution (see Lemma 1.4 in the Supplementary Material (Zhang et al., 2022) for
the deduction under regularity conditions):

(15)
√
N(β̂−β)

D→N(0, φV(α)).

The asymptotic variance-covariance matrix V(α) = limN→∞NVN (α) with

(16) VN (α) = (X̃′(I− H̃)X̃)−1,

where the regressors are weighted: X̃ = W
1

2 X, Z̃ = W
1

2 Z, and H̃ = Z̃(Z̃′Z̃)−1Z̃′, and the
weighting diagonal matrix is W(α) = diag{akb′′(X′k·β + Z′k·γ);k = 1, ...,N}.

Component-wise standardization of β̂ gives the Z-score statistics:

(17) T =
√
Nφ̂−

1

2 Λ̂β̂,

where φ̂ is the MLE of φ, the diagonal matrix Λ̂ = (diag(NVN (α̂)))−
1

2 , and VN (α̂) is the
matrix (16) evaluated at the MLE α̂ of α. Let Λ = (diag(V(α)))−

1

2 . The distribution is

(18) T−
√
Nφ−

1

2 Λβ
D→N(0,ΛV(α)Λ).

The one-step MLE is the first iteration in computing the MLEs by Fisher-scoring method,
where the initial value is estimated under H0 : β = 0. Let α̂(0) = (0′, γ̂(0)′)′ under the re-
straint of H0, where γ̂(0) is the maximum quasi-likelihood estimator of γ using the con-
trolling covariates Z only. Denote U(α) = ∂

∂α logL(α, φ|y) the score function regard-
ing α, and I(α) = Var(U(α)) the Fisher information matrix. The one-step MLE of α is
α̂(1) =

(β̂(1)

γ̂(1)

)
= α̂(0) +

(
I(α̂(0))

)−1U(α̂(0)). Accordingly, the one-step MLE of β is

(19) β̂(1) = VN (α̂(0))X′A(Y− µ̂(0)),
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where VN (α̂(0)) is the matrix (16) evaluated at α̂(0), A = diag{ak;k = 1, ...,N}, and
µ̂
(0)
k = g−1

(
Z′k·γ̂

(0)
)
. For example, in the logit model, when Z = 1 for the intercept, we have

µ̂
(0)
k = ȳ, γ̂(0) = log (ȳ/(1− ȳ)). Under proper conditions, especially ‖ (I(α))1/2 (α̂(0) −

α)‖=Op(1), we have

(20)
√
N(β̂(1) −β)

D→N(0, φV(α)).

The Z-score statistics can be based on either α̂(0) or α̂(1):

(21) T
(1)
l =

√
Nφ̂−

1

2 Λ̂lβ̂
(1), l= 0,1,

where Λ̂l =
(
diag

(
NVN (α̂(l))

))− 1

2 , l = 0 or 1, is an estimator based on α̂(0) or α̂(1). In

either case, T
(1)
l has the same asymptotic distribution as (18). These results are given by

Lemma 1.5 in Section 1 of the Supplementary Material (Zhang et al., 2022).
Similarly, for the marginal model fitting, the marginal estimator of β can be obtained

from the maximum marginal likelihood estimator (MMLE) (Fan et al., 2010) or the one-step
MMLE. The MMLE relies on an iterative algorithm to maximize the marginal likelihood,
similar to that for the MLE. The one-step MMLE of the ith coefficient βi, i = 1, ..., n,
follows equation (19) except using data (Xi,Z), where Xi is the ith column of X. Let

Ω̂0 =
(
diag

(
[NVN (α̂(0))]−1

))− 1

2 . The vector format of all one-step MMLEs is

(22) β̂
(1)
M =

1

N
Ω̂2

0X
′A(Y− µ̂(0)).

The marginal score statistics broadly used in genetical studies (Barnett, Mukherjee and
Lin, 2017) are actually the Z-scores of the one-step MMLEs:

(23) TM =
1√
N
φ̂−

1

2 Ω̂0X
′A(Y− µ̂(0)) =

√
Nφ̂−

1

2 Ω̂−10 β̂
(1)
M .

Moreover, it can be shown that TM is the eIT of β̂(1) in (19) based on the estimated variance-
covariance matrix Σ̂ = V̂ar(β̂(1)) = φ̂VN (α̂(0)). Following that, we have

(24) TM −
√
Nφ−

1

2 ΩV−1(α)β
D→N(0,ΩV−1(α)Ω),

where Ω =
(
diag

(
V−1(α)

))− 1

2 . The above results are given by Lemma 1.6 in Section 1 of
the Supplementary Material (Zhang et al., 2022).

We can also apply the eIT to the MLE β̂ (or equivalently, its Z-score T in (17)), or adjust
TM, to get the following two statistics,

TeIT =
√
Nφ̂−

1

2 Ω̂(NVN (α̂))−1β̂,

T
(1)
M =

1√
N
φ̂−

1

2 Ω̂1X
′A(Y− µ̂(0)),

(25)

where Ω̂ and Ω̂1 have the same formula as Ω̂0 except using α̂ and α̂(1) instead of α̂(0). TeIT

and T
(1)
M have the same asymptotic distribution as (24).

Regarding the decorrelation transformations, we can apply the eDT to the joint and
marginal estimators too. Specifically, applying the eDT to the MLE in (17), the one-step
MLE in (21), and the marginal score statistics in (23), respectively, we get

TD =
(
φ̂VN (α̂)

)− 1

2

β̂,

T(1)D
l =

(
φ̂VN (α̂(l))

)− 1

2

β̂(1), l= 0,1,

TD
M =

(
Ω̂0NVN (α̂(0))Ω̂0

)− 1

2

TM.

(26)
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Under the same conditions that lead to the same asymptotic distribution for the MLE and the
one-step MLE, these statistics have the same asymptotic distribution:

(27) TD −
√
N (φV(α))−

1

2 β
D→N(0, I).

Some classic global hypothesis testing statistics are actually functions of the decorrelation-
based Z-scores. In particular, through the L2 norm (i.e., the sum of quadratic terms), the
classic Wald and score statistics (Fahrmeir and Kaufmann, 1985) are, respectively,

(28) WN = ‖TD‖2, SN = ‖T(1)D
0 ‖2.

It has been shown that under proper conditions both statistics are asymptotically equivalent
to the log likelihood ratio statistic (Fahrmeir, 1987)

(29) λN =−2 log(L(α̂(0))/L(α̂)).

Note that under the LM, the MLE is obtained in one step. Both β̂ and β̂(1) reduce to (10),
where φ= σ2, W = I, A = I, and µ̂(0) = HY. Similarly, TM, TeIT, and T

(1)
M reduce to (12).

σ2 is replaced by its MLE when it is unknown.
Similar to Theorem 3.1, under the GLM and proper conditions, if the causal effects in β

are sparser than the correlations among covariates, the SNRs of the marginal estimators are
larger than the SNRs of the joint estimators, and the SNRs of the decorrelated estimators are
in-between. The following theorem gives the rigorous statement.

THEOREM 3.2. Consider the GLM defined by (1) and (14). Let V(α) = limN→∞NVN (α)

with VN (α) in (16), Λ = (diag(V(α)))−
1

2 , and Ω =
(
diag

(
V−1(α)

))− 1

2 . Follow the con-
ditions in Lemmas 1.4 – 1.6. The estimators and Z-score statistics involve three SNR vectors:

• µ = φ−
1

2 Λβ for the joint-fitting β̂ and β̂(1) and their Z-scores in (17) and (21).
• µM = φ−

1

2 ΩV−1(α)β for the marginal-fitting β̂
(1)
M and the Z-scores in (23) and (25).

• µD = φ−
1

2 (V(α))−
1

2β for the decorrelation Z-scores in (26).

Assume coefficients βi 6= 0 for i ∈M∗ = {i1, . . . , iK} ⊂ {1, . . . , n} and βi = 0 otherwise.
Consider either of the following two cases:

1. K = 1 (i.e., single causal effect).
2. K > 1 (i.e., multiple causal effects) and X′i(I− H̃)Xj/N → 0 for all i and j such that
|i− j| ≥ b, where b= minik,il∈M∗ |ik − il|.

Then,

|µi| ≤min{|µDi|, |µMi|}, for each i= 1, ..., n, and max
i∈{1,...,n}

|µDi| ≤ |µMik |, for some ik ∈M∗.

3.3. Under Bivariate Model. The assumption of sparse causal effects may not always be
satisfied. Here, we exhaust possible SNRs under the bivariate model of n = 2 SNPs. This
case study helps understand in principle how the advantages of different genetic association
approaches are influenced by the patterns of causal effects and the correlations (LDs).

Under the LM, we set the scaled effects in (7) as β∗ =
(
a
b

)
and the correlation matrix

in (8) as M =

(
1 ρ
ρ 1

)
. Under the GLM, they correspond to β∗ = φ−

1

2 Ω−1β and M =

ΩV−1(α)Ω based on the analogous connection between equations (12) and (24). Therefore,
the following SNR comparisons are valid for both models.

Direct calculation gives M−1 = 1
1−ρ2

(
1 −ρ
−ρ 1

)
and U = 1√

1−ρ2

(√
1− ρ2 0
−ρ 1

)
. Under

the marginal fitting, the Z-score statistics in (12) are TM =
(
TM1

TM2

)
∼ N(

(
a+ρb
ρa+b

)
,

(
1 ρ
ρ 1

)
).
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Based on TM, we can also consider Stouffer’s statistic, which is simply the standardized

summation of the Z-scores (Stouffer et al., 1949): TMS = TM1+TM2√
2(1+ρ)

∼N((a+ b)
√

1+ρ
2 , 1).

For the joint model fitting, by (11) and the fact that TJ is the IT of TM, the statistics

are TJ =
(
TJ1
TJ2

)
∼ N(

√
1− ρ2

(
a
b

)
,

(
1 −ρ
−ρ 1

)
). Based on TJ, Stouffer’s statistic is TJS =

TJ1+TJ2√
2(1−ρ)

∼N((a+ b)
√

1+ρ
2 , 1). Clearly, TJS and TMS have the same distribution.

The decorrelated Z-scores are TDT = UTM ∼N(
( a+ρb
b
√
1−ρ2

)
, I). Note that TDT

1 = TM1 and

TDT
2 = TJ2. Accordingly, Stouffer’s statistic is TDT

S = TDT
1 +TDT

2√
2
∼N(a+b(ρ+

√
1−ρ2)√

2
, 1).

These six statistics involve nine SNR values. We can simplify the comparisons based on
their formulas to understand the essential differences. First, due to the symmetry of the ex-
pressions we can assume 0≤ |a| ≤ b without loss of generality. Second, for TM, TJ and TDT,
we consider their maximal SNR (i.e., the second elements) because large SNRs help detect
the effects’ existence. Therefore, we simplify the comparisons to be among four SNRs:

|E(TM2)|= ρa+ b;

|E(TJ2)|= |E(TDT
2 )|= b

√
1− ρ2;

|E(TMS)|= |E(TJS)|= (a+ b)

√
1 + ρ

2
;

|E(TDT
S )|= |a+ b(ρ+

√
1− ρ2)|√

2
.

(30)

The direction and magnitude of a, b, and ρ together characterize the effect and correlation
patterns and decide the SNRs. Figure 2 shows the pair-wise contrasts among these SNRs in
(30) over the area of a ∈ [−1,1] and ρ ∈ [−1,1] at b= 1 (Figure S1 in Section 2 of the Sup-
plementary Material (Zhang et al., 2022) gives the 3-D surfaces of these SNRs). The positive
and negative differences are red- and green-colored, respectively. Overall, |E(TM2)| is larger
in a majority of the areas than the rest (as shown by the first row of the panels). It indicates
a general advantage of the marginal fitting. For example, |E(TM2)| ≥ |E(TJ2)| except in two
relatively small regions, where a and ρ are both large but with opposite directions, causing
effect cancellation under |E(TM2)|.

The analytical formulas in (30) help us understand the mechanism of how causal ef-
fects and the correlation determine the SNRs. For example, in case of sparse effect (i.e.,
a = 0), the marginal fitting’s SNR, |E(TM2)| = b, is always the largest, a result consistent
with Theorems 3.1 and 3.2. In case of dense effects (i.e., 0 < |a| ≤ b), the relative advan-
tages depend on a and ρ. First, under independence with ρ= 0, |E(TM2)|= |E(TJ2)|= b and
|E(TMS)|= |E(TDT

S )|= (a+ b)/
√

2. These equations indicate that the marginal and joint fit-
tings are equivalent (as expected), and Stouffer’s combination is better when a > (

√
2− 1)b.

Second, in the equal-effect case (i.e., a = b, which is often assumed in theoretical studies
(Hall and Jin, 2010)), it is straightforward to show that |E(TMS)| by Stouffer’s combination
without decorrelation is always the largest for all ρ. At the same time, |E(TJ2)|= |E(TDT

2 )|
by the joint fitting or the decorrelation is always the smallest if ρ > 0, while |E(TM2)| by the
marginal fitting is always the smallest if ρ < 0. Third, in the case that a and b have the same
direction (i.e., a > 0) and positive correlation (i.e., ρ > 0), |E(TJ2)| is always the smallest.

It is interesting to see how the correlation ρ and the effect directions (i.e., the signs of a and
b) could strengthen or weaken signals. First, for the joint fitting, |E(TJ2)| = b

√
1− ρ2 < b

for all a and ρ. That is, correlation always weakens signal under the joint fitting. Second,
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Fig 2: Contrasts of SNRs for marginal fitting, joint fitting, decorrelation, and summational
statistics in (30). X-axis: a ∈ [−1,1]; y-axis: ρ ∈ [−1,1]; fixing b = 1. Red: Positive differ-
ence; Green: Negative difference.

|E(TM2)| depends on the product aρ. If aρ is in the same direction as b, the signal is strength-
ened; otherwise, the signal is weakened due to effect cancellation. Third, |E(TMS)| in (30)
is monotone in ρ. Therefore, the signal is weakened when ρ < 0, and is strengthened when
ρ > 0. Also, the signal is always weakened due to cancellation whenever a and b have oppo-
site signs. Moreover, if effects have different directions, |E(TMS)| suffers more cancellation
than |E(TM2)|. For example, when a=−b, we always have |E(TMS)|= 0, whereas |E(TM2)|
still is nonzero for all ρ < 1. Lastly, the influence of ρ to |E(TDT

S )| is more complicated.
When a and b have the same direction, the largest signal is obtained at ρ= 0.71.

Based on the above comparisons we can conclude a few general rules. First, the marginal
fitting has the advantage when effects are sparser than the correlation, or when effects and
data correlations are in the same direction (e.g., a, b, and ρ have the same sign). Second, joint
fitting could be the best in case of heavy effect-cancellations. For example, when a and b
have the same direction but are negatively correlated, or when they have opposite directions
but are positively correlated (e.g., ρ= 0.5, a=−1, b= 1 give |E(TJ2)|= 0.87> |E(TM2)|=
0.5> |E(TDT

S )|= 0.26> |E(TMS)|= 0). Third, when correlation is negative and strong, i.e.,
ρ→−1, E(TJ2) = E(TMS) = 0. In this case, |E(TM2)|= b− a and |E(TDT

S )|= (b− a)/
√

2
are nonzero (unless a= b) and could even reach the largest value when effects a and b have
opposite directions (i.e., a < 0).

4. SNRs Under Typical LDs of Human Genome. This section surveys how typical
LDs among human SNPs influence the signal strengths by different genetic association ap-
proaches. SNP-sets were grouped by SNPs located in the regions of 20kbps length from the
transcription start sites (TSSs) of genes. For each SNP-set, the genotype data X in (6) were
retrieved from the 1000 Genomes Project Phase 3 (sample size N = 2504). The controlling
covariates’ data Z were generated by simulation, containing two independent variables Z1 ∼
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Fig 3: SNR comparisons based on common SNPs grouped by regions from gene TSSs. X-
axis: the ratio of the SNR-norms from the decorrelation versus the joint fitting; Y-axis: ratio
of the SNR-norms from the marginal fitting versus the joint fitting. Rows: L2-norm and L∞-
norm of the SNR vectors; columns: four scenarios of causal effects.

Bernoulli(0.5) and Z2 ∼N(0,1). SNP-sets were discarded if their M matrices in (8) could
not be stably inverted. We considered common SNPs (MAF ≥ 0.01) and rare SNPs (MAF
< 0.01 but minor allele count (MAC) ≥ 10). In total, 770,014 common SNPs in 19,163 sets
and 676,858 rare SNPs in 17,656 sets were studied; the median set size was 37 common (or
41 rare) SNPs.

For each SNP set of size n, causal effects were simulated by setting coefficients βi = 1, or
βi ∼ Uniform(0, 2), i ∈M∗ = {i1, . . . , iK} ⊆ {1, . . . , n}. Seven scenarios were considered:
a) K = 1 and M∗ is random. This scenario mimics sparse causal effects. b) K = 4 and
M∗ is random. The effects could be sparse or dense depending on n. c) K = 4 and M∗
is clustered at two random locations (each with two adjacent causal SNPs). It mimics the
locally clustered dense effects, which are of practical and theoretical interests (Ke, Fan and
Wu, 2015). d)K = n, i.e., all SNPs were causal – a case of surely dense effects. The rest three
scenarios e) – g) are correspondingly similar to b) – d) except the effect sizes are random
βi ∼Uniform(0, 2). For the K = 1 scenario, the random magnitude of the single effect does
not influence the ordering of the SNRs of joint fitting, marginal fitting, and decorrelation. The
property has been guaranteed by Theorems 3.1 and 3.2, no matter whether this single effect
is fixed or random.

We compare the SNR vectors of TJ in (11), TM in (12), and TDT in (13). The comparisons
are analogously valid under the GLM. Two types of SNR-norms were applied to summarize
the overall signal strengths of the SNR vectors: the Euclidean norm (L2) and the maximum
(L∞-norm). Figure 3 shows the comparisons based on common SNPs in scenarios a) – d).
Each dot represents a SNP set. The x-axis is the ratio of the SNR-norm from the decorrelation
versus that from the joint fitting; the y-axis is the ratio between the marginal fitting and the
joint fitting. A dot with x > 1 (or y > 1) indicates that the signal from the decorrelation (or
the marginal fitting) is stronger than the signal from the joint fitting. A dot above the y = x
diagonal line indicates that the signal from the marginal fitting is stronger than that from
the decorrelation (see Figure S3 for a direct comparison between the marginal fitting vs. the
decorrelation).

A few interesting observations can be made. First, in the scenario of single causal SNP
(K = 1) represented by the first column of the figure, all dots satisfy y ≥ x ≥ 1. It means
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that for all SNP sets, the marginal fitting is uniformly better than the decorrelation, and the
decorrelation is uniformly better than the joint fitting. This observation directly evidenced
the conclusions of Theorems 3.1 and 3.2.

Second, in the other three scenarios with multiple causal SNPs, similar relationships still
remain true for most SNP sets. The joint fitting outperformed the marginal fitting (or the
decorrelation) in only about 5.4% (or 4.4%) sets. Most of such sets are relatively small: 83%
of them have n≤ 10, which means that the causal effects are relatively dense – at least 40%
SNPs were causal. Meanwhile, dense effects are a necessary but not sufficient condition for
the advantage of the joint fitting. In the scenario that all SNPs are causal (K = n, represented
by the last column of the figure), the joint fitting still gave weaker signals for most SNP sets.
We found that joint fitting could provide stronger signals than the marginal fitting if the latter
is suffered from signal cancellation, e.g., by negative LDs (an example of SNP set in gene
TUBG2 was examined; see Figure S2 in Section 2 of the Supplementary Material (Zhang
et al., 2022)).

Third, the dots in the first row (L2-norm) arise above the diagonal line slightly further
than those in the second row (L∞-norm). That is, the advantage of the marginal fitting over
the decorrelation is more noticeable when summarizing the SNRs by L2-norm (the sum of
the squared SNRs) than by L∞-norm (the maximum). Therefore, the marginal fitting could
be more prominent to the summation-based SNP-set tests than to the supremum-based tests.
This phenomenon was also supported by power comparisons in the next section.

The SNR comparisons for rare SNPs and scenarios e) – g) are summarized by Figures
S4 and S5 in Section 2 of the Supplementary Material (Zhang et al., 2022). The patterns of
relative advantages are similar. Meanwhile, the SNR-norm ratios have smaller values because
the LDs among rare variants are weaker so that the three genetic association approaches are
closer to each other.

5. Statistical Power of SNP-set Tests. This section applies systematic simulations to
reveal how the genetic association approaches influence different SNP-set tests’ power at
various causal effects and LD patterns. We consider two primary types of SNP-set tests. First,
the summation-based test statistics utilize additive functions to combine SNPs’ Z-scores or
p-values. The SKAT (Wu et al., 2011) and Fisher’s combination test are two representatives.
Second, the supremum-based test statistics apply supremum functions to the ordered SNP p-
values P(1) ≤ ...≤ P(n) (Zhang and Wu, 2022). Two representatives are the minimal p-value
test (minP) and the HC test. Furthermore, we use the LRT in (29) as a benchmark. Details of
the testing procedures, including test statistics and p-value computation (by the empirical and
analytical methods well-established in the literature as the best practice available to control
the type I error rates), are described in Section 3 of the Supplementary Material (Zhang et al.,
2022).

We simulated continuous and binary traits by the LM and the logit model, respectively:

Yk = X′k·β + 0.5Z1k + 0.75Z2k + εk, where εk
i.i.d.∼ N(0,1),

logit(P(Yk = 1)) = X′k·β− 1.25 + 0.5Z1k + 0.1Z2k, k = 1, ...,N,

where Z1k ∼ Bernoulli(0.5) and Z2k ∼N(0,1) are independent. We focused on three well-
known osteoporosis genes: LRP5, MEPE and SOX6, which have typical gene sizes and vari-
ous LD patterns. Their genotype data X were from the 1000 Genome Project. The numbers
of common/rare SNPs are LRP5: 64/64; MEPE: 87/63; SOX6: 49/59. The LD matrices are
shown by Figure S6 in Section 3 of the Supplementary Material (Zhang et al., 2022). The LDs
among common SNPs are more substantial than those among rare SNPs. We assumed various
causal effects: the numbers of causal SNPsK ∈ {1,2,3,4,6,8,10,12} with the causal SNPs’
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coefficients βi = β = 0,0.1,0.2, ... (the zero effect is used to evidence that the type I error
rates are well-controlled). The causal SNPs were either randomly allocated or grouped into
two clusters at random locations; each cluster contained half of the causal SNPs, i.e., a sce-
nario of locally clustered effects. The empirical statistical power was obtained based on 2500
simulations at the type I error rate α= 0.05 (also empirically controlled) and α= 2.5×10−6

(by analytical calculation methods).
Depending on the LM or the logit model, SNP Z-scores by joint model fitting (denoted by

_J in the following) were based on (11) or (17) (where σ was treated as unknown and esti-
mated by the MLE). Similarly, Z-scores under the marginal fitting (_M) were based on (12)
or (23). The Z-scores could be transformed by the estimated innovated transformation (_I)
or by the estimated decorrelation transformation (_D). Figure 4 illustrates the power compar-
isons (α = 0.05) for binary traits under various genetic effects β and causal SNP numbers
K . The three genes are arranged in rows; the two signal patterns (random or clustered causal
loci) are in columns. Results for binary traits under more settings and for continuous traits are
given by Figures S7– S19 in Section 3 of the Supplementary Material (Zhang et al., 2022).

Comparison patterns are summarized in the following. Regarding the genetic association
approaches, all three p-value combination tests (minP, HC, and Fisher) show that the marginal
fitting (represented by the tests’ dotted lines) leads to higher power than the decorrelation
(dashed lines), which in turn has an advantage over the joint fitting. With the increase of
effect size β or causal SNP number K , decorrelation-based tests catch up the power of the
marginal-fitting based tests in a much faster pace than the joint-fitting based tests do.

Regarding the types of SNP-set tests, the supremum-based minP and HC are similar; both
show advantages when causal SNPs are fewer. Meanwhile, minP is slightly better when K =
1 and HC is sightly better when K is larger. This observation is consistent with the literature
that HC is more robust to denser signals (Zhang, Jin and Wu, 2020; Zhang and Wu, 2022).
As a summation-based test, Fisher’s combination test has been shown suitable for detecting
dense signals under independence (Littell and Folks, 1973; Zhang et al., 2020). With the
correlated data of our sittings, Fisher shows a slight advantage over minP and HC when
effects are dense and weak (e.g., β = 0.1,0.2) under the marginal fitting or decorrelation. This
result is consistent with a theoretical study of the HC (Donoho and Kipnis, 2021). However,
minP and HC are often more powerful than Fisher under the joint fitting. Fisher has a larger
power increase from the joint fitting to the marginal fitting than minP and HC. It echos the
observation in Section 4 that the advantage of the marginal fitting is more noticeable when
the signal strength is measured by the L2-norm (i.e., the sum-squared SNRs) than by the
L∞-norm (i.e., the maximum). That is, the marginal fitting could be more prominent to the
summation-based combination (Fisher) than the supremum-based tests (minP and HC).

The SKAT is defined based on the marginal fitting. When genetic effects are weak, it
has similar power as other marginal-fitting-based tests (minP_M, HC_M, and Fisher_M).
However, with the effect size increase, SKAT’s power becomes relatively lower than these
tests (sometimes even lower than the decorrelation-based tests). The LRT is reasonably close
to the decorrelation-based minP/HC/Fisher; the observation is consistent with its asymptotic
equivalence to the decorrelation-based Wald and score tests in (28) (Fahrmeir, 1987). The
above comparison patterns remain stable whether the causal SNPs are randomly allocated
or locally clustered (as shown by the two columns of the panels). They also well agree for
continuous traits.

The comparisons for the rare SNPs are given by S11– S14 , S16, S17, and S19 in Section
3 of the Supplementary Material (Zhang et al., 2022). The comparison patterns are similar
to those for common SNPs. However, there are several noticeable differences based on the
features of rare SNPs. First, at the same β value (i.e., the allelic effect), the genetic association
signals of rare variances are weaker at the population level due to smaller variations of rare
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(a) Genetic effect β = 0.2.

(b) Causal SNP number K = 3.

Fig 4: Power comparisons (α= 0.05) under binary trait and common SNPs. Upper: Fix ge-
netic effect β = 0.2 and vary causal SNP number K over x-axis; Lower: fix causal SNP
number K = 3 and vary β. Three genes (LD patterns) are in rows; two signal patterns (ran-
dom or clustered causal loci) are in columns. _J: the MLE (solid line); _M: the marginal score
statistics (dotted line); _D: decorrelation (dashed line).



SNR AND POWER OF SNP-SET TESTS 17

SNPs, as was revealed by equation (9). Therefore, at the same β value, the power curves
for rare SNPs are lower than those for common SNPs. Second, the LDs among rare SNPs
are also weaker. Therefore, the differences among the genetic association approaches are
less significant. Third, when causal effects are weak and dense, the advantages of SKAT and
Fisher over minP and HC are more noticeable for rare SNPs than for common SNPs. A strong
signal is more important for minP and HC to reach high power. The power comparisons at
α = 2.5 × 10−6 are in Supplementary Figures S15 – S19 for binary and continuous traits
under common and rare SNPs. The comparative observations are similar to those at α= 0.05
in principle, although the advantage could slightly drop for the SKAT and rise for the LRT.
We also applied power comparisons to verify the relationships among various Z-scores. The
results well supported our theoretical study. See Figures S20 – S29 and discussions in Section
3 of the Supplementary Material (Zhang et al., 2022) for details.

6. GWAS Analysis of Osteoporosis. This section demonstrates the influences of ge-
netic association approaches on the SNP-set tests by analyzing a large data of Osteoporosis
from UK Biobank. The study participants are primarily Caucasians between 40 and 69 years
old (Sudlow et al., 2015). We included osteoporosis cases with no pathological fractures ac-
cording to the primary and secondary diagnosis fields of their hospital records. The SNP
data is from genotyping by UK Biobank Axiom Array. As a typical quality control (QC),
we excluded SNPs with missing rate > 5% or Hardy-Weinberg equilibrium testing p-value
< 10−6. We also removed subjects who had genotype missing rate > 5% or were estimated
to be genetically related. After the QC, 14,469 cases (12,016 females and 2,453 males) and
409,205 controls (218,491 females and 190,714 males) were included in our analysis.

We grouped SNPs by genes and combined SNP p-values for testing genetic associations
between genes and osteoporosis susceptibility. Specifically, for each gene, we applied a logit
model that contained SNP genotypes and controlling covariates: age, sex, and the first five
ancestry principal components (Abraham, Qiu and Inouye, 2017). Two-sided SNP p-values
were calculated using the MLE-based Z-scores in (17), the marginal score statistics in (23),
and the decorrelated Z-scores in (27). Each gene with more than one SNP was tested by the
minP, the HC, and Fisher’s combination test. We analyzed common SNPs (MAF≥ 0.05), rare
SNPs (MAF≤ 0.01), and combined SNPs (with MAC≥ 2,000 (Dey et al., 2017)), for which
the number of involved SNPs (and genes) are 253,473 (16,526), 88,516 (16,563), and 467,948
(19,113), respectively. To put the results into context, we extensively searched literature and
obtained a list of 679 genes with reported genetic associations with osteoporosis or bone
mineral density (BMD) related traits (see Section 4 of the Supplementary Material (Zhang
et al., 2022)).

6.1. The analysis of common SNPs. Figure 5 row 1 provides the Q-Q plots for all genes
based on common SNPs. The genome-wide inflation is reasonably controlled. The top-hit
genes at the genome-wide significance level of 0.05 are listed in Tables S1 – S3 in Section
4 of the Supplementary Material (Zhang et al., 2022). Most of them are in our known-gene
list, indicating a reliable study.

Compared with the MLE by the joint fitting (denoted by J for simplicity), the marginal
score statistics (M) and their decorrelated Z-scores (M_D) give smaller gene p-values over-
all. To see this point, first, in the Q-Q plots, the dots by M and M_D are higher than those
by J. Second, M and M_D also lead to more gene hits than J does – the numbers of hits by
M/M_D/J are 14/12/5 for the minP, 15/12/5 for the HC, and 11/13/4 for Fisher’s combination
test. Third, we studied 513 known genes mapped by common SNPs, considering that they
possess enriched causal genetic effects. The second row of Figure 5 summarizes the compar-
isons of these genes’ p-values. A dot represents a gene. The y-axis is the − log10 of the ratio
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Fig 5: Gene-based SNP-set tests by common SNPs. Row 1: Q-Q plots for all genes. Three
tests: the minP, the HC, and Fisher’s combination. Three association approaches to get SNP
p-values: the marginal score statistics (M), their decorrelated Z-scores (M_D), and the MLE-
based Z-scores (J). Row 2: The − log10 ratio between gene p-values of the 513 known genes.
The y-axis: gene p-value calculated by M versus that by J; x-axis: M_D versus J.

between the M-based p-value versus the J-based p-value; the x-axis is the log-ratio for M_D
versus J. The plots show that if significant differences exist (represented by dots far away
from the origin or the diagonal line), the marginal fitting is more likely to give smaller gene
p-values.

Meanwhile, the MLE and the decorrelation procedure could still complement the marginal
score statistics for detecting disease genes. For example, gene HOXC9 is a known gene de-
tected based on the MLE and the decorrelation procedure, but not by the marginal score
statistics. Gene ZBED4 is another known gene detected based on the decorrelation proce-
dure, but not by the MLE or the marginal score statistics.

The top-hits contain two putative novel genes: PRRC2A and UBA7, which are likely rel-
evant to osteoporosis. Gene PRRC2A has been shown to interact with genes C1QBP and
EIF3S6 (Lehner et al., 2004). C1QBP was connect to hip-BMD via enhancer SNP rs1806269
(Stelzer et al., 2016), and EIF3S6 was connected to heel-BMD (Morris et al., 2019). Gene
UBA7’s mRNA expression has been shown significant in hematopoietic stem cells and bone
marrow (Stelzer et al., 2016). We suggest follow-up validations for these two genes.

Our results also demonstrate that the SNP-set tests often detect disease genes where single-
SNP analysis could fail. For example, the minimum SNP p-values in gene PRRC2A (3.76×
10−5, 1.5 × 10−3, and 9.01 × 10−4 corresponding to M, J, and M_D, respectively) are all
larger than 1.97×10−7, the genome-wide significance threshold for the SNP p-values. Other
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examples include top-hit known genes SUPT3H, HOXC9, ZBED4, MARK3, and TCIRG1
(see their minimum SNP p-values in Table S4 in Section 4 of the Supplementary Material
(Zhang et al., 2022)).

6.2. The analysis of rare and combined SNPs. To analyze rare SNPs (MAF ≤ 0.01),
we first overcame genome-wide inflation by using the saddle-point approximation to correct
the SNP p-values obtained from the marginal score statistics (Dey et al., 2017). Correlation-
based transformations are less influential for rare variants than common ones because the
LDs among rare SNPs are weaker. Moreover, it is interesting to see that Fisher’s combination
test could detect more known genes than the minP and the HC (all three methods controlled
genomic inflation excellently; see the Q-Q plot in Supplementary Figure S31). Specifically,
the minP and the HC detected only one gene LRP5, which is in our known gene list. Fisher’s
combination test detected this gene and other 13 genes, including known genes SLC12A3,
MYBPC3, and LMNA (see Table S5 for the full list of top hits). The extra power of Fisher’s
combination test for rare-variant analysis echoes the power study results in Section 5.

The single-SNP analysis could not detect all top-hit genes except LRP5. Some of these
putative novel genes have been reported in the literature as being relevant functionally or in
model organisms. For example, gene GCK was shown associated with osteoarthritis through
a close SNP rs3757837 (Evangelou et al., 2014). Its activity reduction was also related to
osteoporosis in Drosophila (Mascolo et al., 2021). Gene KCNH2 was shown associated with
osteosarcoma and other bone diseases (Zeng et al., 2016). For gene KCNQ1, a study has
shown that knockdown of KCNQ1OT1 suppresses cell invasion and sensitizes osteosarcoma
cells to cisplatin (Qi et al., 2019). Gene RET variants have been reported to be associated with
a drug target for osteosarcoma (Kovac et al., 2021). Gene INSR is a receptor tyrosine kinase
gene that mediates the pleiotropic actions of insulin. It has been considered connected with
osteosarcoma because the insulin receptor on bone cells modulates the synthesis of collagen,
and this role may be important in bone homeostasis (Pun, Lau and Ho, 1989). INSR has also
been shown differentially expressed in human osteoarthritis chondrocytes (Rosa et al., 2011).
A more detailed discussion is given in the Supplementary Material. We suggest follow-up
validations for these genes.

We also carried out gene-set enrichment analyses based on the top genes’ gene ontol-
ogy (GO) terms and KEGG pathways. Table S6 lists four GO terms and two biochemical
pathways related to osteoporosis, which are significantly enriched by top-hit genes. The GO
terms are related to the bone-forming process (including "heart development", "regulation
of secretion", and "tissue morphogenesis") and the bone regulation process (including "re-
sponse to peptide") (Guo et al., 2019). The two enriched biochemical pathways are ovarian
steroidogenesis and the mTOR signaling pathway. More details are given in Section 4 of the
Supplementary Material (Zhang et al., 2022). Due to the limited space of the manuscript, we
present the analysis results for the combined SNPs in Section 4 of the Supplementary Ma-
terial (Zhang et al., 2022). The combined SNPs led to very consistent results with those of
common SNPs.

7. Discussion. This work extended the SNR framework from the theoretical GMM set-
ting to the applicational GLM setting. Based on that, we rigorously studied an important
genetical problem on how causal genetic effects and LD patterns coherently influence the
signal strengths of genetic association approaches and thus the power of the SNP-set test.
The SNP-set test aims at determining the existence of causal SNPs rather than differenti-
ating them. Therefore, even though the marginal model fitting based approach is biased in
estimating individual causal SNPs, it could provide higher signal strength for the SNP set.
Computationally expensive joint model fitting (even if it is an unbiased estimation) and the
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decorrelation procedure (even if it is convenient for calculating p-values) are often less pow-
erful, especially when the causal effects are dispersed over blocks of strong LDs. The study
is meaningful to general applications; the results are valid for the global hypothesis testing
problems that are based on the GLM with correlated covariates.

There are a few limitations of this work, which will be addressed in our future research.
First, the current study on the influences of dense correlations is limited to the bivariate
model or empirical methods. Analytical study for addressing more general correlations is
interesting. Second, the current study assumes no gene-gene interactions, which could be an
important factor in genetics. Further research could add such terms into the GLM and esti-
mate the correlations among the cross-product terms. Third, the joint fitting and the decorre-
lation could still be critical complements to the marginal fitting for detecting novel disease
genes. We are designing a testing procedure that automatically adapts to a proper transfor-
mation suitable for given correlation patterns and unknown causal effects. Fourth, although
Cholesky decomposition is commonly used for decorrelation, other methods (such as eigen-
value decomposition) could lead to different SNRs (He and Wu, 2011). A further analytical
study is interesting.

Funding. Liu and Wu were supported in part by NSF grants DMS-2113570 and DMS-
1812082.

SUPPLEMENTARY MATERIAL

Supplement to "On signal-noise ratio of genetic effects and statistical power of SNP-
set tests"
The Supplementary Material contains the lemmas, proofs of lemmas and theorems, extra
numerical studies, and extra results of the GWAS of osteoporosis.

The codes.zip file
This supplementary file contains R codes for the computation of this paper.

The Known_genes_osteoporosis_BMD.xls file
This supplementary file contains a list of 679 genes with reported associations with os-
teoporosis or BMD-related phenotypes. The gene information, associated phenotypes, re-
sources, and references are included.
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