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Abstract

Given an n⇥ n non-negative rank-K matrix ⌦ where m eigenvalues are negative,
when can we write ⌦ = ZPZ

0 for non-negative matrices Z 2 Rn,K and P 2
RK,K? While most existing works focused on the case of m = 0, our primary
interest is on the case of general m. With new proof ideas, we present sharp results
on when the NMF problem is solvable, which significantly extend existing results
on this topic. The NMF problem is partially motivated by applications in network
modeling. For a network with K communities, rank-K models are especially
popular. The Degree-Corrected Mixed-Membership (DCMM) model is a recent
rank-K model which is especially useful and interpretable in practice. To enjoy
such properties, it is of interest to study when a rank-K model can be rewritten as
a DCMM model. Using our NMF results, we show that for a rank-K model in the
most interesting parameter ranges, we can always rewrite it as a DCMM model.

1 Introduction

Fix (n,K,m) where n � K � 2 and 0  m  K � 1. We are interested in the following
Non-negative Matrix Factorization (NMF) problem.

The NMF problem: given an n⇥ n symmetric non-negative irreducible matrix ⌦ with
rank K where exactly m of the K nonzero eigenvalues are negative, when can we find
non-negative matrices Z 2 Rn,K and P 2 RK,K such that ⌦ = ZPZ

0?

(1.1)

Definition 1.1 We say a matrix ⌦ non-negative if all of its entries are non-negative, and we say it
positive if all of its entries are (strictly) positive. We say the NMF problem is solvable for ⌦ is we can
find non-negative matrices (Z,P ) as above such that ⌦ = ZPZ

0.

We assume K � 2 for the case of K = 1 is trivial, and we assume m  K � 1 for an irreducible
non-negative matrix has at least one positive eigenvalue (e.g., by Perron’s theorem [9]).

NMF is a fundamental problem and has applications in areas such as image processing [5, 23], text
learning [21], hyper-spectral unmixing, and social network analysis [13]. Our setting is a special
case of NMF where both ⌦ and P are symmetric, so we may call it symmetric NMF. In the literature,
symmetric NMF was widely used in clustering of nonlinearly separable data from a similarity matrix
[7], where for a non-negative symmetric matrix ⌦, it aims to find a non-negative matrix Z such that

⌦ = ZZ
0
, where Z 2 Rn,N and N � K. (1.2)

Note that, first, this implicitly requires that ⌦ is positive semi-definite. Second, it is understood
that for many non-negative and positive semi-definite matrices ⌦, the smallest N we can find in the
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factorization of (1.2) is strictly larger than K (the rank of ⌦). See the 2021 book by Shaked-Monderer
and Berman [26]. The book is 551 pages and summarizes nicely most existing results on NMF.

Unfortunately, our setting in (1.1) is significantly different from that in (1.2), so existing results on
NMF do not directly apply. Especially, our NMF setting is motivated applications of social network
modeling, where we must (a) allow ⌦ to have negative eigenvalues, (b) require that Z has exactly K

columns (K = rank(⌦)), and (c) have a factorization of ⌦ = ZPZ
0 instead of ⌦ = ZZ

0 (we will
soon see that both (P,Z) have practical meanings in our setting).

Below, in Section 1.1, we introduce several recent network models. In Section 1.2, we explain why
the NMF problem (1.1) is important and relevant in social network modeling.

1.1 Several recent rank-K network models, and especially the DCMM model

Consider a symmetric connected network with n nodes and let A be the adjacency matrix, where
A(i, j) = 1 if there is an edge connecting nodes i and j and A(i, j) = 0 otherwise. As a convention,
we do not allow self edges, so all diagonal entries of A are 0. We assume the network has K

perceivable communities (communities are scientifically meaningful but mathematically hard to
define; intuitively, they are clusters of nodes that have more edges “within" than “across" [12, 30]):
C1, C2, . . . , CK . In many network models, we assume that the upper triangular entries of A are
independent Bernoulli random variables, and that there is an n⇥ n non-negative matrix ⌦ such that
⌦(i, j) = P(A(i, j) = 1) for all 1  i 6= j  n. Let diag(⌦) 2 Rn,n be the diagonal matrix where
the i-th diagonal entry is ⌦(i, i) and let W 2 Rn,n be the matrix where W (i, j) = A(i, j)� ⌦(i, j)
if i 6= j and W (i, j) = 0 otherwise. The matrix W is known as the generalized Wigner matrix. With
these notations,

A = ⌦� diag(⌦) +W. (1.3)
We call ⌦ the Bernoulli probability matrix. Frequently, we assume a rank-K model for ⌦:

⌦ is an irreducible non-negative matrix where the rank is K. (1.4)

Note that K is the number of communities and has important practical meanings. Also, irreducibility
is a natural assumption as we assume the network is connected (otherwise, we can study each
connected component of the network separately). Below are some examples of rank-K models.

Example 1 (RDPG Model). In a Random Dot Product Graph (RDPG) model [28], we fix a K-
dimensional distribution F , generate yi

iid⇠ F , and let ⌦(i, j) = (yi, yj) (inner product), 1  i, j  n.
If we write Y = [y1, y2, . . . , yn]0 (which is an n ⇥K matrix), then ⌦ = Y Y

0. The model is well-
known in network and graph modeling. However, a noteworthy issue is that, the matrix ⌦ defined in
this way is always positive semi-definite. This makes the model relatively restrictive (e.g., [25]).

Example 2 (GRDPG Model). To address the issue above, Rubin-Delanchy et al [25] proposed the
generalized RDPG (GRDPG). Fix K and 0  m < K. Let JK,m = diag(1, 1, . . . ,�1, . . . ,�1)
be the K ⇥K diagonal matrix where the first (K �m) diagonal entries are 1 and the remaining
diagonal entries are �1. With a similar Y matrix as in RDPG, GRDPG assumes ⌦ = Y JK,mY

0. An
⌦ defined in this way has negative eigenvalues, but we have to choose (Y, JK,m) carefully to make
sure that ⌦ is non-negative; this problem is not immediately clear.

Example 3. It was argued (e.g., [4]) that the Bernoulli probability matrix ⌦ in a graphon model can
be well-approximated by a low-rank matrix provided with some regularity conditions.

In all these examples above, the parameters do not have explicit practical meanings (at least not
directly or not sufficiently), so in a real application example, it remains unclear how to interpret the
estimates of these parameters. Therefore, it is desirable to have models where the parameters have
more explicit meanings in practice and so are easier to interpret.

The Degree-Corrected Mixed-Membership (DCMM) model is one of such models. Proposed by
[15] (see also [29]), the model is motivated by the observation that natural networks usually have
severe degree heterogeneity and mixed-memberships. To accommodate both features, for each node
i, 1  i  n, we use a (strictly positive) parameter ✓i to model the degree heterogeneity and a weight
vector ⇡i 2 RK to model the memberships, where ⇡i(k) = weight node i puts in Ck, 1  k  K.
We call node i pure if ⇡i is degenerate (i.e., only one entry is nonzero) and mixed otherwise. We also
model the community structure by a symmetric and non-negative matrix P 2 RK,K :

P (k, `) = baseline probability where a node in Ck and a node in C` have an edge, 1  k, `  K.
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DCMM assumes that for all 1  i, j  n, ⌦(i, j) = ✓i✓j⇡
0
iP⇡j . If we let ✓ = (✓1, . . . , ✓n)0,

⇧ = [⇡1, . . . ,⇡n]0, and ⇥ be the n⇥ n diagonal matrix where ⇥(i, i) = ✓i, 1  i  n, then we have

⌦ = ⇥⇧P⇧0⇥, (1.5)

Conventionally, we assume rank(⇧) = rank(P ) = K, so DCMM is also a rank-K model.

Remark 1. The DCMM model can be viewed as the extension of several models, including the
classical block model. In fact, (a) DCMM reduces to Degree-Corrected Block Model (DCBM) [20] if
all nodes are pure, (b) DCMM reduces to the Mixed-Membership Stochastic Block Model (MMSBM)
[1, 2, 24] if all ✓i are equal, and (c) DCMM reduces to the classical Stochastic Block Model (SBM)
[8] if all nodes are pure and all ✓i are equal (as above, node i is pure if ⇡i is degenerate).

1.2 When is a rank-K network model also a DCMM model?

A DCMM model is a rank-K model, but compared to other rank-K models, all parameter matrices
(⇥,⇧, P ) in the DCMM model have practical meanings and are easy to interpret. These make the
DCMM model especially appealing in practice, and motivate the following problem:

When is a rank-K network model also a DCMM model? (1.6)

To explain why this is important, we use the dynamic co-citation networks in [11] (see also [10]) as
an example. The paper presented 21 co-citation networks for the same set of nodes (i.e., authors)
in statistics, each for a different time window. We are interested in (a) how many research areas in
statistics, (b) what are baseline citation exchanges between different research areas, and (c) how the
research interests of individual authors evolve over time. Here, a co-citation network is a symmetrized
citation network where each node is an author, and two nodes have an edge if they have been
co-cited for at least N times (for an N they picked) in the corresponding time window. The paper
suggested that there are 3 primary research areas in statistics (which was interpreted as “Bayes",
“Biostatistics", and “Non-parametric") and a handful of sub-areas, and that it is convenient to model
each co-citation network by a DCMM model with K = 3. In detail, for each author i and time
window t, 1  i  n, 1  t  T , they used a K ⇥K matrix P

(t) to model the baseline citation
exchanges between the primary research areas, a positive number ✓it to model the relative influence
(in citations) of author i, and a weight vector ⇡it to model the research interest of author i. If
we similarly let ⇥(t) = diag(✓1t, ✓2t, . . . , ✓nt) and ⇧(t) = [⇡1t,⇡2t, . . . ,⇡nt]0, then the Bernoulli
probability matrix of the DCMM model at time t is ⌦(t) = ⇥(t)⇧(t)

P
(t)(⇧(t))0⇥(t). Using the

DCMM model, they discovered a research triangle of statisticians (reminiscent of Efron’s triangle for
statistical philosophy [6]), and used it to visualize the trajectories of research interests of a handful of
individual authors.

Imagine that, if we use a different rank-K model (e.g., GRDPG) to model these networks, say, with
⌦(t) = Y

(t)
J
(t)(Y (t))0 for some matrices (Y (t)

, J
(t)). It is unclear how to relate Y

(t) to baseline
citation exchanges, research interests and relative influence of individual authors. This explains why
(1.6) is of interest: given a rank-K network model, we wish to know when we can rewrite it as
DCMM model, and so we can enjoy the properties and interpretability of the DCMM model.

We now come back to (1.6). Seemingly, NMF is to key to answer this question. Consider a
positive matrix ⌦ with rank K and suppose that it has an NMF as in (1.1) for two non-negative
matrices Z 2 Rn,K and P 2 RK,K : ⌦ = ZPZ

0. Write Z = [z1, z2, . . . , zn]0 so z
0
i is the i-

th row. Without loss of generality, assume all zi are nonzero vectors. Let ⇥(i, i) = kzik1 and
⇡i = zi/kzik1, 1  i  n. It is seen that ⇥(i, i) > 0, that each ⇡i is a weight vector, and that
⌦ = ZPZ

0 = ⇥⇧P⇧0⇥. Therefore, we can always rewrite a rank-K model as a DCMM model if
⌦ has an NMF as in (1.1). This explains our motivation underline the NMF problem (1.1).

Note that to answer the question in (1.1), a study on the NMF problem in (1.2) would be not be
relevant. For example, in a DCMM model, K is the number of communities, so an NMF in (1.2)
with an N > K would not be useful. For this reason, we have to focus on the NMF problem in (1.1).

1.3 Results and contributions

Write ⌦ = Y JK,mY
0 as in Example 2, where JK,m = diag(1, . . . , 1,�1, . . . ,�1) is a K ⇥ K

diagonal matrix and Y = [y1, y2, . . . , yn]0 2 Rn,K . Let �k be the k-th eigenvalue of ⌦ and let ⇠k
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be the corresponding eigenvector. For 1  i  n, define ri 2 RK�1 by ri(k) = ⇠k+1(i)/⇠1(i),
1  k  K � 1. For any unit-norm vector y0 2 RK , let c(y0) = max{1in}{|(yi, y0)|/kyik}. In
Section 2, we show that the NMF problem for ⌦ is solvable if m  K/2 and c(y0) �

p
1� 1/K

for some y0; let us call this the main condition. We show that, in order for the NMF problem to be
solvable, the constant

p
1� 1/K can not be further reduced. Therefore, in this sense, our results

are sharp. Using this, we deduce several other results. Especially, we show that the NMF problem
is solvable for ⌦ if

PK�1
k=1 (|�k+1| · r2i (k))  |�1|/(K � 1) for all 1  i  n. We also extend our

results to the case of m > K/2, and explain why we need a different proof in this case.

In Section 3, we apply our results on NMF to network modeling. We argue that for parameters in
the most interesting range, we have (A) all krik are bounded, and (B) max2kK{|�k/�1|} ! 0,
and so the condition just mentioned holds. This implies that we can alway rewrite a rank-K network
model as a DCMM model if the parameters are in the most interesting range. We also discuss how to
check the main condition in practice where ⌦ is unknown. We tackle this by proposing an approach
to estimating ⌦, and support our results by some real networks.

Our contributions are two fold. First, we develop several new results on symmetric NMF (a problem
of interest in many applications [5]). Existing works on symmetric NMF have been focused on the
case of m = 0 (so ⌦ is positive semi-definite; m is the number of negative eigenvalues of ⌦). In this
case, the best result is seen to be [26, Theorem 3.137], which can be viewed as a special case of our
results; see Remark 2. This suggests that our results are sharp, for they are hard to improve even in
the special case of m = 0. Note that our case allows m to take any possible values, so it is clearly
harder to study. For example, to show the results for the case of m = 0, it suffices if we can find a
K ⇥K orthogonal matrix Q such that Y Q

0 is non-negative, since JK,m is the identity matrix in this
case. For our case, we must find a Q such that Y Q

0 and QJK,mQ
0 are simultaneously non-negative.

Clearly, this requires new ideas. We tackle this by constructing a special class of matrices Q; see our
proofs for details. Our approach is quite different from that of [26, Theorem 3.137] and is new.

Second, we shed interesting new light on different rank-K network models. In the literature, it is not
unusual that many similar models are proposed for the same type of data sets. But in the end, we
need to understand the advantages and disadvantages of different models, and pick the most suitable
one. Our study recommends DCMM model, for it offers desired practical interpretability which other
rank-K models do not have, and points out that a general rank-K model is also a DCMM model
if the parameters are in the most interesting range. Such findings are valuable for they can help us
identify the most suitable models in real applications.

Notations. We denote e1, e2, . . . , eK by the standard basis vectors of K-dimensional Euclidean
space and e0 = K

�1/2(e1 + e2 + . . .+ eK). For any q > 0 and vector x, kxkq denotes the `q-norm
(when q = 2, we drop the subscript and write kxk). For any two vectors x and y of the same
dimension, (x, y) denotes the inner product. For a vector a 2 Rn, diag(a) denotes the n⇥n diagonal
matrix where the i-th diagonal entry is ai, 1  i  n. When ⌦ is an n⇥ n matrix, diag(⌦) denotes
the n⇥ n diagonal matrix where the i-th entry is ⌦(i, i), 1  i  n.

2 Main results on NMF

This section presents our results on NMF. Results on network modeling are in Section 3. Consider an
n⇥ n irreducible non-negative matrix ⌦ with rank K, where n is usually much larger than K. By
Perron’s theorem [9], at least one eigenvalue of ⌦ is positive. Fix 0  m  K � 1 and suppose ⌦
has m negative eigenvalues. Let JK,m = diag(1, . . . , 1,�1, . . . ,�1) be the K ⇥K diagonal matrix
as in Example 2. By basic algebra, we can always write

⌦ = Y JK,mY
0
, for a full rank matrix Y 2 Rn,K

. (2.7)

We can also show (e.g., an exercise with the Weyl’s theorem [9]) that for any matrix as in (2.7), the
numbers of positive and negative eigenvalues are (K �m) and m, respectively. Write

Y = [y1, y2, . . . , yn]
0
, so that y0i is row i of Y , 1  i  n. (2.8)

Define the subset of K-dimensional vectors that live on the unit-sphere where the last m entries are 0:

SK,m = {x = (x1, . . . , xK)0 2 RK
, kxk = 1, xK�m+1 = . . . = xK = 0}.

When m = 0, Sm is the unit sphere of RK . The following theorem is proved in the supplement.
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Theorem 2.1 Fix K � 2, n � K, and 0  m  K/2. Consider the NMF problem (1.1) where
⌦ = Y JK,mY

0 and Y are as in (2.7). Suppose there is a vector y0 2 SK,m such that

|(y0, yi)|/kyik �
p
1� 1/K, for all 1  i  n. (2.9)

There exists a K ⇥K orthogonal matrix Q such that both Y Q
0 and QJK,mQ

0 are non-negative. As
a result, the NMF problem for ⌦ is solvable: ⌦ = ZPZ

0 with Z = Y Q
0 and P = QJK,mQ

0.

We have several comments. First, Theorem 2.1 assumes two conditions: m  K/2 and (2.9). When
K  2, both conditions hold automatically, so the NMF problem is always solvable in this case; see
Section 2.1. As far as we know, our proof is different from existing approaches. Second, in Theorem
2.1, we require y0 2 Sm. This may seem restrictive, but is not. This is because y0 is a vector we
choose for our own convenience. In fact, one of the most interesting settings for NMF seems to be
that in Section 2.3, where we choose y0 = (1, 0, . . . , 0)0, so the requirement is satisfied automatically.
Also, when the last m entries of y0 are nonzero but sufficiently small, Theorem 2.1 continues to
hold if we modify the term

p
1� 1/K slightly. Third, from a practical view point, the condition

of m  K/2 is mild: we rarely see a rank-K network model with m > K/2 (note here m can be
estimated using the eigenvalues of the adjacency matrix A). For theoretical completeness, the case of
m > K/2 is also interesting, but there does not exist an orthogonal matrix Q such that QJK,mQ

0

is non-negative. This is because for any such Q, trace(QJK,mQ
0) = K � 2m < 0. Therefore, we

must find a different way to solve the NMF problem in this case. We discuss this in Section 2.4. Last,
an interesting question is whether our idea is extendable to asymmetric NMF or complex NMF [19].
As a simple extension to asymmetric NMF, consider an n⇥ p positive matrix ⌦ of rank-K. By SVD,
⌦ = Y Z

0 for an n⇥K matrix Y and a p⇥K matrix Z. Let y0i be i-th row of Y and z
0
j be the j-th

row of Z, respectively. If there is a y0 2 SK,m such that for all i and j, |(yi, y0)|/kyik �
p
1� 1/K

and |(zj , y0)|/kzjk �
p
1� 1/K, then we can find a K ⇥K orthogonal matrix Q which rotates all

rows of Y and Z to the first orthant simultaneously. In this case, the asymmetric NMF problem is
solvable for ⌦. For reasons of space, we leave further study along this line to the future.

Our result is sharp for the constant
p
1� 1/K in (2.9) can not be further reduced. While we can

show this for general K, we illustrate with the case of K = 2 for instruction purpose. In this case,
we can rotate n unit-norm vectors y1, y2, . . . yn in R2 simultaneously to the first orthant if and only
if there is a unit-norm vector y0 such that |(y0, yi)| �

p
1� 1/2 (i.e., the angle between them is

 ⇡/4) for all 1  i  n. See Section 2.1 and Remark 3 for more discussion. Another way to see
the sharpness is to consider the case of m = 0 (so ⌦ is positive semi-definite). In this case, condition
(2.9) is hard to improve and is the weakest we have so far in the literature; see Remark 2.

2.1 The case of K = 2

In this case, the NMF problem is always solvable, as the two conditions of Theorem 2.1, m  K/2
and (2.9), hold automatically. In fact, first, since ⌦ has at least one positive eigenvalues and K = 2,
we have either m = 0 or m = 1, and so m  K/2. Second, we can always find a y0 2 Sm such that
(2.9) is satisfied. In detail, let 0  ✓i < 2⇡ be the angle from e1 (e1 = (1, 0)) to yi counterclockwise,
and let ✓min and ✓max be the smallest and largest values of all ✓i. Now, when m = 0, let y0 be the
unit vector where the angle from e1 to y0 is (✓max + ✓min)/2, counterclockwise. When m = 1, take
y0 = (1, 0). The following theorem is proved in the supplement.

Theorem 2.2 Fix K = 2, 0  m  K � 1, n � K, and let y0 be as above. In this case, m  K/2
and (2.9) holds for the y0 above, so the NMF problem is always solvable for ⌦.

2.2 When y0 is a scaled weighted average of yi’s

For the y0 in (2.9), an interesting choice is to let it be proportional to a weighted average of yi’s.
Call w 2 Rn a weight vector if all of its entries are non-negative with a sum of 1. Recall that
⌦ = Y JK,mY

0. Define a proxy of ⌦ by e⌦ = Y Y
0. Note that e⌦ = ⌦ if m = 0. Introduce

y
(w) 2 RK and �

(w) 2 Rn by y
(w) =

Pn
i=1 wiyi = Y

0
w and �

(w) = e⌦w. Since Y is full rank,
y
(w) 6= 0. Take y0 = y

(w)
/ky(w)k. Condition (2.9) reduces to

|�(w)
i |/

q
e⌦(i, i)(w0e⌦w) �

p
1� 1/K, for all 1  i  n. (2.10)
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Theorem 2.3 Fix K � 3, 0  m  K/2, and n � K. The NMF problem (1.1) is solvable for ⌦ if
the last m entries of y(w) are 0 and (2.10) holds.

Theorem 2.3 follows from Theorem 2.1 by direct calculations, so the proof is omitted. We require
that the last m entries of y(w) are 0, for we need y0 2 Sm in Theorem 2.1. As explained before, this
may seem restrictive, but it is not, as in the most interesting case to be discussed in Section 2.3, we
take y

(w) = (1, 0, . . . , 0), so the requirement is satisfied automatically. See details therein.

When m = 0, e⌦ = ⌦, and �
(w) = ⌦w. In this case, condition (2.10) reduces to

|�(w)
i |/

p
⌦(i, i)(w0⌦w) �

p
1� 1/K. (2.11)

We have the following corollary, the proof of which is straightforwards so is omitted.

Corollary 2.1 Fix n � K � 3. The NMF problem (1.1) is solvable for ⌦ if m = 0 and (2.11) holds.

Remark 2. If we take w = n
�11n, then (2.10) reduces to |�i|/

p
⌦(i, i)(10

n⌦1n) �
p
1� 1/K

with � = ⌦1n, and Corollary 2.1 reduces to [26, Theorem 3.137], where m = 0 and ⌦ is positive
semi-definite. Our setting is more general as ⌦ may have m negative eigenvalues for any m  K/2.
For the case of m = 0, [26, Theorem 3.137] (see also [27]) is by far the best results we can have. The
book [26] presents several other results on this topic, but they need some conditions which are less
intuitive or harder to check. Recall that the constant

p
1� 1/K in (2.9) can not be further reduced.

These suggest that Theorem 2.1 is hard to improve and our results are sharp.

Remark 3. (When can we rotate n vectors to the first orthant?) As a stylized application, con-
sider the following problem. Let x1, x2, . . . , xn be n unit-norm vectors in RK , n � K, and let
↵K(x1, x2, . . . , xn) = min1i,jn{(xi, xj)}. For what values of ↵K(x1, x2, . . . , xn) can we rotate
all n points simultaneously to the first orthant? Let X = [x1, x2, . . . , xn]0 and assume X is full
rank without loss of generality. The matrix ⌦ = XX

0 is symmetric and positive semi-definite. Let
↵
⇤
K = 0 if K = 2 and ↵

⇤
K =

p
1� 1/K if K � 3. Applying Theorem 2.1 with m = 0, it follows

that when ↵K(x1, x2, . . . , xn) � ↵
⇤
K , we can rotate all n points to the first orthant. Note that we can

not do so if ↵K(x1, x2, . . . , xn) < 0.

2.3 When Y is constructed by the spectral decomposition of ⌦

So far, we have tried to keep our results as general as we can, and Y can be any matrix satisfying
⌦ = Y JK,mY

0. An interesting special case is when Y is constructed using the spectral decomposition
of ⌦, which we now discuss. For 1  k  K, let �k be the k-th largest eigenvalue of ⌦, and let ⇠k
be the corresponding (unit-norm) eigenvector. In the literature �1 and ⇠1 are called the Perron root
and Perron vector, respectively, where we can always assume all entries of ⇠1 are positive since ⌦
is irreducible and non-negative (e.g., [26]). Write ⌅ = [⇠1, ⇠2, . . . , ⇠K ] and define the n⇥ (K � 1)
so-called matrix of entry-wise ratio R by R(i, k) = ⇠k+1(i)/⇠1(k), 1  k  K � 1, 1  i  n

[12, 16]. Introduce

D = diag(|�1|, |�2|, . . . , |�K |), D0 = diag(|�2|, . . . , |�K |), (2.12)

and write
R = [r1, r2, . . . , rn]

0
, Y = ⌅D1/2 = [y1, y2, . . . , yn]

0
. (2.13)

By spectral decomposition, ⌦ = ⌅D1/2
JK,mD

1/2⌅0 = Y JK,mY
0. Now, in Section 2.2, if we take

w = c⇠1 where c = 1/k⇠1k1, then by basic algebra and definitions, it is seen y
(w) = c

p
�1e1 and so

y0 = e1 and especially y0 2 Sm. Moreover, �(w)
i = c�1⇠1(i), w0e⌦w = c

2
�1, and e⌦(i, i) = y

0
iDyi.

Combining these, condition (2.10) reduces to

r
0
iD0ri ⌘

K�1X

k=1

(|�k+1| · r2i (k))  |�1|/(K � 1), for all 1  i  n. (2.14)

The following theorem is proved in the supplement.

Theorem 2.4 Fix K � 3, m  K
2 , and n � K. The NMF problem (1.1) is solvable if (2.14) holds.

Note that as in most works on NMF (e.g., [26]), the main goal is to find easy-to-check conditions
under which the NMF is solvable. Such conditions are sufficient but are not necessary.
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2.4 The case of m > K/2

So far, we have been focused on the case of m  K/2, which is the case that is most frequently
found in real networks. For completeness, we now consider the case where m > K/2. Since
0  m  K�1, such a case only exists when K � 3. In Theorem 2.1, we show that when m  K/2,
we can find an orthogonal matrix Q such that QJK,mQ

0 is non-negative. When m > K/2, we can not
do this, as for any such Q, trace(QJK,mQ

0) = (K � 2m) < 0. Therefore, we need a new approach.
A convenient approach is to redefine JK,m where we select a subset of the positive diagonal entries of
JK,m and add a positive number for each of them. Success has been shown in a related setting (e.g.,
[3]). Using such a trick, we can extend all our main results to the case of m > K/2. For reasons of
space, we only consider an extension of Theorem 2.4, as the claim of the theorem is probably the
most explicit. Also for reasons of space, we only consider the case where we add a number to the
first diagonal entry of JK,m. Note that the idea is readily extendable to more general cases.

Let Q be the set of all orthogonal matrices where the first column is K
�1/2(1, 1, . . . , 1)0. Fix

1  m  K � 1. For any Q 2 Q, write Q = [Q(K�m)
, Q

(m)], where Q
(K�m) and Q

(m) are
the sub-matrix of Q consisting the first (K �m) columns and the other m columns, respectively.
Introduce a constant by am = 1+K infQ2Q max1i,jK{H(i, j) : H = 2Q(m)(Q(m))0�IK}(IK :
K ⇥K identity matrix). Theorem 2.5 extends Theorem 2.4 and is proved in the supplement.

Theorem 2.5 Fix K � 3, 0  m  (K � 1), and n � K. We have am = 1 if m  K/2
and am = (K � 1) if m = K � 1. Also, the NMF problem is solvable for ⌦ if r0iD0ri ⌘PK�1

k=1 |�k+1|r2i (k)  1/[am(K � 1)] for all 1  i  n.

When m  K/2, am = 1. In this case, the claim here is the same as that in Theorem 2.4.

Remark 4. When the NMF problem for ⌦ is solvable, the solution is usually not unique without a
proper regularity condition (e.g., [5]). In our setting, once we can write ⌦ = ⇥⇧P⇧0⇥ for some
non-negative matrices (⇥,⇧, P ) as in (1.5), the factorization is unique if (a) for each 1  k  K,
there is at least one i such that ⇡j = ek, where ek is the k-th standard Euclidean basis vector of RK ,
and (b) all diagonal entries of P are 1 (see [15, 16] for a proof).

Remark 5. When condition (2.9) of Theorem 2.1 holds for some vectors y0, how to find such a y0

and the orthogonal matrix Q in Theorem 2.1 numerically? This is an interesting question and we
discuss it in Section F of the supplement.

3 When is a rank-K network model also a DCMM model

So far, we focus on general NMF settings where we show that the NMF problem (1.1) is solvable
when, for example, (2.14) holds. We now apply the results to networks and study when we can
rewrite a rank-K network model as a DCMM model. Network analysis (e.g., community detection,
membership estimation, link prediction) is a well-studied area, where we have a lot of knowledge
on what is the regime of major interest and what conditions are reasonable [16, 15, 18, 29]. In fact,
in network analysis, we usually use an asymptotic framework where n ! 1, K is fixed, and other
parameters may vary with n, where it is quite acceptable to assume

(A) all krik are bounded and (B) max2kK{|�k/�1|} ! 0;

the notations are the same as those in Theorem 2.4. In fact, (A)-(B) model the most interesting regime
in network analysis. In Theorem 2.4, the main condition (e.g., (2.14)) is r0iD0ri  |�1|/(K � 1) for
all 1  i  n. Once (A)-(B) hold, (1/|�1|)D0 ! 0 and (2.14) holds, so we can always rewrite a
rank-K network model as a DCMM model when (A)-(B) hold.

The remaining question is then, why (A)-(B) are reasonable assumptions in network analysis, and
why they model the most interesting regime in network analysis. We now explain these in details.

Let ⌦ be the Bernoulli probability matrix as in (1.3). Suppose ⌦ = Y PY
0, where Y 2 Rn,K and is

full rank, P 2 RK,K , and (Y, P ) are not necessarily non-negative. Denote G = Y
0
Y . Note that G is

a K ⇥K symmetric and positive definite matrix. Let G1/2 be the (unique) square root of Y 0
Y . We

usually assume Y is balanced in that (a) the `
2-norm of all K columns are in the same order, and (b)

no severe linearity between the K columns [15, 18]. As a result, all eigenvalues of G are at the same
order. By basic algebra, there is a K⇥K orthogonal matrix Q such that ⌅ = [⇠1, ⇠2, . . . , ⇠K ] = Y B,
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where B = G
�1/2

Q. Write B = [b1, b2, . . . , bK ] and let 0  ↵i < 2⇡ be the angle between b1 and
yi (counterclockwise). Let M(⌦) = max{1in}{1/| cos(↵i)|} and define matrix V 2 RK,K�1 by

V (i, k) = bk+1(i)/b1(i), 1  i  K, 1  k  K � 1. (3.15)
Write V = [v1, v2, . . . , vK ]0 so v

0
k is row-k of V , 1  k  K. For any symmetrical matrix P , �k(P )

denotes the k-th largest eigenvalue; to be consistent with earlier notations, we simply write �k(⌦) as
�k. Lemma 3.1 is proved in the supplement.

Lemma 3.1 We have B = diag(b1)[1K , V ], P = Bdiag(�1, . . . ,�K)B0, b1 is an eigenvec-
tor of PG, and P (k, k) = b

2
1(k)[�1 + v

0
kdiag(�2, . . . ,�K)vk], 1  k  K. Moreover, if as

n ! 1, �1(G)  c0�K(G) for a constant c0 > 0, then condition (B) holds if and only if
max2kK{|�k(P )/�1(P )|} ! 0, and max{1in}{krik}  CM(⌦).

It is seen that conditions (A)-(B) hold if M(⌦)  C and max2kK{|�k(P )/�1(P )|} ! 0. The
first one is mild: it only requires that no yi is nearly orthogonal to b1. To boil these conditions down
to a more explicit and vivid form, we consider the DCMM model. It is fine to consider the DCMM
model here for (a) we only use the model to explain why conditions (A)-(B) are reasonable, and (b)
the argument below is extendable beyond the DCMM model. In the DCMM model, ⌦ = ⇥⇧P⇧0⇥.
Therefore, we can write ⌦ = Y PY

0 if we let Y = ⇥⇧, where we note that (Y, P ) are non-negative.
Recall that G = Y

0
Y (a positive definite K ⇥K matrix). Lemma 3.2 is proved in the supplement.

Lemma 3.2 If (Y, P ) are non-negative, then first, PG is an irreducible non-negative matrix and
b1 is the Perron vector, so all entries of b1 are strictly positive. Second, all rows of ri lives with a
simplex with v1, v2, . . . , vK being the vertices, so max{1in}{krik}  max{1kK}{kvkk}. Last,
if �1(G)  c0�K(G), then max{1in}{krik}  CM(⌦)  Cmax1kK{kb1k/b1(k)}.

Now, first, in a DCMM model, the matrix P (k, `) measures the baseline probability where there is
an edge between a node in community k and a node in community `. Therefore, the most difficult
or most interesting case is where all P (k, `) have similar values. In this case, P is close to rank-1,
or in other words, max2kK{|�k(P )/�1(P )|} ! 0, and so max2kK{|�k/�1|} ! 0. See for
example [15, 18], where it was further pointed out that the most difficult case for network analysis
is when max{2kK}{|�k|}  Ln ·

p
�1 for a multi-log(n) factor Ln. Therefore, condition (A)

models the most difficult case of network analysis and so is of major interest. Moreover, by Lemma
3.2, max{1in}{krik}  C if all entries of b1 are at the same order. This is only a mild condition
for b1 is the Perron vector of PG. Last, by Lemma 3.2, we also have max{1in}{krik}  C if
we alternatively assume max{1kK}{kvkk}  C. Recall that B = G

�1/2
Q = [b1, b2, . . . , bK ]

and v
0
1, v

0
2, . . . , v

0
K are rows of V formed by dividing b2, b3, . . . , bK by b1 entry-wise, where b1 is

the Perron vector. Since G is positive definite where all eigenvalues are at the same order, Q is
orthogonal, and V is properly scaled (and all of them have small-sizes), it is only a mild condition to
assume max{1kK}{kvkk}  C. These explain why conditions (A)-(B) are mild condition and
they model the most challenging regime for network analysis.

4 Real data examples, and especially how to check condition (2.14)

Let ai = (1/|�1|)r0iD0ri, 1  i  n. Condition (2.14) can be rewritten as ai  1/(K � 1), for
all 1  i  n. In applications, ⌦ is unknown, so it is unclear how to obtain ai. A straightforward
approach is to estimate ai with the eigenvalues and eigenvectors of the adjacency matrix A, but the
estimates may be too noisy. We propose the following approach, which is inspired by Lemmas 3.1-3.2
and the recent Mixed-SCORE approach [16]. Let (Y, V ) be as above. Mixed-SCORE suggests
an interesting idea for estimating V and (a normalized version of) Y , denoted by ⇧; see details
therein. Let �̂k be the k-th eigenvalue of A and let ⇠̂k be the corresponding eigenvector. Write
b⌅ = [⇠̂1, ⇠̂2, . . . , ⇠̂K ] = [ẑ1, ẑ2, . . . , ẑn]0, so ẑ

0
i is row-i of b⌅. Our approach runs as follows.

• Apply Mixed-SCORE and obtain an estimate (bV , b⇧) for (V,⇧). Let v̂0k be row k or bV and
let ⇡̂0

i be row i of b⇧, 1  k  K, 1  i  n.
• Estimate b1 by b̂1 where b̂1(k) = [�̂1 +

PK
k=2 �̂kv̂

0
kdiag(�̂2, . . . , �̂K)v̂k]�1/2. Let

bB = diag(b̂1)[1K , bV ], and estimate P by bP = bBdiag(�̂1, �̂2, . . . , �̂K) bB0. Let ŷi =
(kzik1/k bB0

⇡̂ik1)⇡̂i, 1  i  n, and let bY = [ŷ1, ŷ2, . . . , ŷn]0.
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• Let µ̂k be the k-th eigenvalue of the matrix b⌦ = bY bP bY 0, and let ⌘̂k be the corresponding
eigenvector. In the definition of ai (see above and (2.14)), replace (�k, ⇠k) by (µ̂k, ⌘̂k) and
denote the resultant quantity âi, 1  i  n. These are our estimates for ai.

The approach can be shown to be consistent for ⌦ under some regularity conditions. We skip the study
for it is beyond the scope of this paper. In this algorithm, (bY , bP ) are not automatically non-negative,
and to check whether NMF is solvable for b⌦, we can check if

âi  1/(K � 1), for all 1  i  n. (4.16)

Remark 6. Condition (2.14) of Theorem 2.4 is only a sufficient condition for NMF; they are not
necessary conditions. It could happen that an NMF is solvable for an ⌦ but (2.14) does not hold.

We now consider some real examples. The weblog is a well-known data set [22], where with some
light preprocessing, the network has 1, 222 node (each is a blog) and 16, 714 edges (each is a two-way
hyperlink). The network has two communities: democratic and republican. For this data set, a rank-2
model is appropriate, so we have (n,K) = (1, 222, 2) (e.g., [30, 12, 18]). Let ⌦ be the Bernoulli
probability matrix as in (1.3). By Theorem 2.2, when K = 2, we can always decompose ⌦ as
⌦ = Y PY

0 for a non-negative n ⇥ 2 matrix Y and a 2 ⇥ 2 non-negative matrix P . Now, by the
paragraph right above Remark 1, we can rewrite ⌦ = ⇥⇧P⇧⇥ as in (1.3), so ⌦ satisfies a DCMM
model. Same claim can be drawn for the karate data set [30, 12], where we similarly have K = 2.

As another example, we consider the UKFaculty network (e.g., see [17, Table 1]). It is reasonable
to model the network with a rank-K model with (n,K) = (81, 3) and m  K/2. By Theorem
2.4, the model can be rewritten as a DCMM model if (4.16) holds. Following the discussion
above, we first obtain an estimate b⌦ for ⌦. We then use b⌦ to obtain âi and check if (4.16) holds.
The results are in Figure 1 (left) below, where the maximum of â1, â2, . . . , ân is slightly smaller
than 0.5 (1/(K � 1) = 0.5 as K = 3), suggesting that (4.16) holds. Moreover, let µ̂k be the
k-th eigenvector of b⌦ and let ⌘̂k be the corresponding eigenvector. Let bD = diag(µ̂1, . . . , µ̂K)
and bY = [⌘̂1, . . . , ⌘̂K ] bD1/2. We have b⌦ = bY JK,m

bY 0. Let Q be the 3 ⇥ 3 matrix where the
three rows are (1/

p
3, 1/

p
6, 1/

p
2), (1/

p
3, 1/

p
6,�1/

p
2), and (1/

p
3,�2/

p
6, 0), respectively.

Define bZ = bY Q
0. It is seen b⌦ = bY JK,m

bY 0 = bZ[QJK,mQ
0]Ẑ 0, where QJK,mQ

0 is seen to be
non-negative. Moreover, for 1  i  n, let ẑi be the smallest entry in row-i of bZ. Figure 1 (right)
plots the histogram for {ẑi}ni=1. The results suggest that all ẑi are non-negative, so the matrix bY Q

0

is non-negative. Therefore, b⌦ has an NFM by b⌦ = bZ[QJK,mQ
0]Ẑ 0. These suggest that for the

UKFaculty data set, (4.16) holds and it is reasonable to model the UKFaculty with a DCMM model.
In summary, in many recent works on network analysis, we frequently assume that a DCMM model
holds for the settings at hand, but we rarely checked if such an assumption is valid. Our NMF results
provide an approach to checking whether the network satisfies DCMM model.

0.0 0.1 0.2 0.3 0.4 0.5

0
5

10
15

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
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10
15

Figure 1: Histograms of {âi}ni=1 (left) and {ẑi}ni=1 (right). The results suggest that all âi are smaller
than 0.5 (note that 1/(K � 1) = .5 as K = 3) so condition (4.16) is satisfied, and that all ẑi are
non-negative so the matrix bZ is non-negative. See above for definitions of âi and ẑi.

9



5 Discussion

We derive a sharp NMF result and apply it to network modeling. Both NMF and network analysis are
important areas in machine learning, with applications in image processing, social media, NLP, and
cancer study [5, 23, 21]. In comparison, NMF is more theoretically oriented and network analysis is
more application oriented. Our paper makes an interesting connection of the two areas. On one hand,
we find a new application of NMF theory. This may open the door for a line of research where we
find new applications of NMF in areas such as text learning [21] and tensor analysis [14]. On the
other hand, we gain valuable insight on what are the most suitable network models in applications.
This is crucial, for a suitable model is the starting point for methods and theory. Our study may help
researchers identify the right network models and so can channel their strengths to the right direction.
Our work may also help develop new methods. For example, compared to the general rank-K model,
the DCMM model has more structures which we can exploit (see [16, 18] where they discovered a
simplex structure in the spectral domain, using some specific features which the DCMM model has
but a general rank-K model does not). Our approach is useful for it ensures us that in certain settings,
we can use a more specific model and exploit the structures the model provides.

Another point is that, existing NMF theory usually requires some crucial conditions. However,
whether such conditions are reasonable in real applications remains unclear, especially when the
conditions are on matrices that are not directly observable. In Section 3-4, we tackle this problem
by providing (a) a detailed explanation for why our NMF assumptions are reasonable in network
analysis and (b) new ideas for checking the NMF conditions in real applications when the NMF
conditions are on matrices that are not directly observable. We hope our efforts many spark some
new research along this line.
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In this supplement file, we prove the presented results. Note that Theorem 2.3 and Corollary 2.1
follow directly from Theorem 2.1 by basic algebra, so the proof are omitted. In this paper, C is a
generic constant that may vary from occurrence to occurrence.

A Proof of Theorem 2.1

The key is to prove the following lemma, which the conditions are similar to those of Theorem 2.1,
except for that we replace condition (2.9) in Theorem 2.1 by a slightly stronger condition:

(y0, yi)

kyik
�

p
1� 1/K, for all 1  i  n. (A.1)

Lemma A.1 Fix K � 2, n � K, and 0  m  K/2. Consider the NMF problem as in (1.1), where
JK,m and Y are as in (2.7). Suppose there is a vector y0 2 SK,m such that

(y0, yi)

kyik
�

p
1� 1/K, for all 1  i  n.

There is a K ⇥K orthogonal matrix Q such that simultaneously

• For all 1  i  n, Qyi falls in the first orthant of RK .

• QJK,mQ
0 is non-negative.

• The NMF problem for ⌦ is solvable by writing

Y JK,mY
0 = ZPZ

0 with Z = Y Q
0 and P = QJK,mQ

0
.

Lemma A.1 is proved below.

We now explain why Theorem 2.1 follows once Lemma A.1 is proved. In Theorem 2.1, ⌦ =
Y JK,mY

0, and Y = [y1, y2, . . . , yn]0. By the assumption of Theorem 2.1,

|(y0, yi)|
kyik

�
p
1� 1/K, 1  i  n.

Therefore, for each 1  i  n, there is a number si 2 {�1, 1} such that

(y0, siyi)

kyik
�

p
1� 1/K.

We have two cases.

• Case 1. si = �1 for all 1  i  n.
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• Case 2. si = 1 for at least one 1  i  n.

In case 1, let eY = �Y . Theorem (2.1) follows directly if we write ⌦ = eY JK,m
eY and then apply

Lemma A.1. In case 2, the key is to show that

if si = 1 for some 1  i  n, then si = 1 for all 1  i  n. (A.2)

Note that once (A.2) is proved, Theorem 2.1 follows by directly applying Lemma A.1 in this case.

It remains to show (A.2). Let eY = [ỹ1, ỹ2, . . . , ỹn]0 where ỹi = siyi and let

e⌦ = eY JK,m
eY 0
.

It is seen that e⌦ satisfies all conditions of Lemma A.1, so there is a K ⇥K orthogonal matrix Q such
that QJK,mQ

0 is non-negative, and that Qỹi is non-negative for all 1  i  n.

Now, let
S = {1  i  n : si = 1}.

If (A.2) is not true, Sc is non-empty. Since ⌦ is irreducible, we can find an i 2 S and j /2 S such that
⌦(i, j) > 0. Note that

⌦(i, j) = y
0
iJK,myj = sisj ỹiJK,mỹj = sisj(Qỹi)

0[QJK,mQ
0](Qyj). (A.3)

Therefore, on one hand, ⌦(i, j) > 0. On the other hand, since QJK,mQ
0, Qỹi, and Qỹj are all

non-negative, (Qỹi)0[QJK,mQ
0](Qyj) � 0. Note however sisj = �1. Comparing these with (A.3)

gives a contradiction. The contradiction shows that Sc is empty and completes the proof.

A.1 Proof of Lemma A.1

For 1  k  K/2, let hk be the vector where

hk(i) =

⇢
1/

p
2, i = 2k � 1,

�1/
p
2, i = 2k,

and let
Q

(m) = [h1, h2, . . . , hm].

Note that in the special case of m = 0, Q(m) is empty.

We need the following lemma. As before, let e0 be the K-dimensional vector K�1/2(1, . . . , 1)0.

Lemma A.2 Any K-dimensional unit-norm vector x with (x, e0) �
p
1� 1/K is non-negative.

Proof of Lemma A.2. Without of loss of generality, we assume the first k entries of x are non-
negative, and the remaining (K � k) entries are strictly negative. All we need to show is k = K. If
k < K, then by definition and Cauchy-Schwartz inequality,

(x, e0) < K
�1/2

kX

i=1

xi  K
�1/2

vuut
k

kX

k=1

x
2
i <

p
k/K,

where we have used
kX

k=1

x
2
i < kxk2 = 1.

This contradicts with (x, e0) �
p
1� 1/K, and so the claim follows.

We also need the following lemma.

Lemma A.3 Fix K � 2, 0  m  K/2, and a unit-norm vector y0 2 Sm. There exists a
K ⇥ (K �m) matrix B such that

B
0
B = IK�m, B

0
Q

(m) = 0, and [B,Q
(m)]0e0 = y0.
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Proof of Lemma A.3. The proof for the case of m = 0 is trivial, so we only consider the case of
1  m  K/2. It is seen that {h1, h2, . . . , hm} expands a m-dimensional sub-space of RK . By
basic algebra, we can always expand {h1, h2, . . . , hm} to a full set of orthogonal basis vectors of
RK , denoted by

{q1, q2, . . . , qK�m, h1, h2, . . . , hm}.
Note that since e0 ? span{h1, h2, . . . , hm} (i.e., the linear space spanned by h1, . . . , hm), there is a
(K �m) vector �1 such that

e0 =
K�mX

i=1

�iqi = Q0�, where Q0 = [q1, q2, . . . , qK�m].

Since Q
0
0Q

(m) = 0 and Q
0
0Q0 = IK�m,

k�k = kQ0�k = ke0k = 1.

At the same time, since y0 2 Sm, by definition, there is a unit-norm (K �m) dimensional vector a
such that

y0 = (a, 0, . . . , 0)0,

and there is a (K �m)⇥ (K �m) orthogonal matrix U such that
U

0
� = a.

Let
B = Q0U.

We have

• B
0
B = U

0
Q

0
0Q0U = IK�m.

• B
0
Q

(m) = U
0
Q0Q

(m) = 0.

• [B,Q
(m)]0e0 =


U

0
Q

0
0Q0�

(Q(m))0e0

�
=


a

0

�
= y0.

This proves Lemma A.3.

We now come back to prove Lemma A.1. Let B by any matrix in Lemma A.3, and let

Q = [B,Q
(m)].

By Lemma A.3,
Q

0
e0 = y0, and so Qy0 = e0.

At the same time, for all 1  i  n,
(yi, y0) = (Qyi, Qy0) = (Qyi, e0), kyik = kQyik.

Combining these with (A.1),
(Qyi, e0)

kQyik
=

(yi, y0)

kyik
�

p
1� 1/K.

It follows from Lemma A.2 that
for all 1  i  n, Qyi is a non-negative vector. (A.4)

At the same time, since [B,Q
(m)] is an orthogonal matrix, BB

0 +Q
(m)(Q(m))0 = IK , and so

QJK,mQ
0 = BB

0 �Q
(m)(Q(m))0 = IK � 2Q(m)(Q(m))0.

By direct calculations, 2Q(m)(Q(m))0 is a K ⇥ K block-wise diagonal matrix, where the first m
diagonal blocks are 

1 �1
�1 1

�
;

note that except for these m diagonal blocks, the matrix is 0 elsewhere. Therefore,

QJK,mQ
0 = IK � 2Q(m)(Q(m))0 and is non-negative. (A.5)

Combining this with (A.4)-(A.5) gives Lemma A.1.
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B Proof of Theorem 2.2

By Theorem 2.1, we only need to check when K = 2,

• we must have m  K/2.
• the condition (2.9) always holds without any extra conditions.

Since ⌦ has at least one positive eigenvalues, so we can only have m = 0 or m = 1. Therefore, we
must have 0  m  K/2. This checks the first bullet point above.

We now consider the second bullet point. In detail, let e1 = (1, 0)0 as before. Let 0  ✓i < 2⇡ be the
angle from e1 to yi counterclockwise, and let ✓min and ✓max be the smallest and largest values of all
✓i. Recall that we can only have m = 0 or m = 1. Also, we assume the following in the lemma.

• When m = 0, y0 is the unit vector where the angle from e1 to y0 is (✓max + ✓min)/2,
counterclockwise.

• When m = 1, y0 = (1, 0).

We now consider the case of m = 0 and m = 1 separately.

Consider the case of m = 0 first. Note that all yi fall in the sector (with the apex at 0) bounded by
two rays, where the angle from e1 to the two rays (counterclockwise) are ✓min and ✓max, respectively.
Recall that ⌦ = Y JK,mY

0. When m = 0, JK,m = IK and ⌦ = Y Y
0. Therefore, for 1  i, j  n,

(yi, yj) = ⌦(i, j) � 0.

This says the angle of the sector is no bigger than ⇡/2:
✓max � ✓min  ⇡/2.

If we take y0 as above (so the angle between e1 and y0 is (✓max + ✓min)/2), it follows that for each
1  i  n, the angle between y0 and yi is no bigger than ⇡/4. Therefore,

|(yi, y0)|
kyik

�
p

1/2,

and (2.9) holds.

Consider the case of m = 1. In this case,

JK,m =


1 0
0 �1

�
.

For each 1  i  n, write yi = (ai, bi)0. Since ⌦ = Y JK,mY
0 and ⌦(i, i) > 0,

0  ⌦(i, i) = y
0
iJK,myi = a

2
i � b

2
i ,

and so
|bi|  |ai|.

If we take y0 = e1 as above, then for all 1  i  n.
|(yi, y0)|
kyik

=
|ai|p
a
2
i + b

2
i

�
p
1/2,

and the claim follows directly.

C Proof of Theorem 2.4

It is sufficient to justify

• y0 = e1 (and so especially y0 2 Sm).
• condition (2.10) is equivalent to

K�1X

k=1

|�k+1| · r2i (k)  �1/(K � 1), (C.6)

where ri(k) = ⇠k+1(i)/⇠1(i), 1  k  K � 1, 1  i  n.
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We now justify both bullet points.

Consider the first bullet point first. Note that in this case,

⌦ = Y JK,mY
0
, Y = [⇠1, ⇠2, . . . , ⇠K ]D1/2

,

and
y
(w) = Y

0
w,

with
w = c⇠1,

where c = 1/k⇠1k1, and
D = diag(|�1|, |�2|, . . . , |�K |).

By Perron’s theorem [1], �1 > 0 and all entries of ⇠1 are positive. Also, note that ⇠1 ? ⇠k for all
2  k  K. It follows

y
(w) = cD

1/2[⇠1, ⇠2, . . . , ⇠K ]0⇠1 = c

p
�1e1,

so
y0 = y

(w)
/ky(w)k1 = e1.

This justifies the first bullet point.

Consider the second bullet point. By definition,

�
(w)
i = ⌦w = c[⇠1, ⇠2, . . . , ⇠K ]D1/2

JK,mD
1/2[⇠1, ⇠2, . . . , ⇠K ]0⇠1 = c�1⇠1,

It follows
w

0e⌦w = w
0
�
(w) = c

2
�1⇠

0
1⇠1 = c

2
�1.

At the same time, by definition,

e⌦ = Y Y
0 =

KX

k=1

|�k|⇠k⇠0k,

so

e⌦(i, i) =
KX

k=1

|�k|⇠2k(i).

Combining these,

|�(w)
i |q

(w0e⌦w)e⌦(i, i)
=

c�1⇠1(i)q
c2�1

PK
k=1 |�k|⇠2k(i))

=
1q

1 +
PK�1

k=1 (|�k+1|/�1)[⇠k+1(i)/⇠1(i)]2
.

Therefore, condition (2.10) of Theorem 2.3 reduces to

1q
1 +

PK�1
k=1 (|�k+1|/�1)[⇠k+1(i)/⇠1(i)]2

�
p
1� 1/K.

which is equivalent to (C.6). This completes the proof.

D Proof of Theorem 2.5

It is sufficient to show

• am = (K � 1) when m = K � 1.

• am = 1 when m  K/2.

• The NMF problem is solvable for ⌦ if r0iD0ri  1/[am(K � 1)] for all 1  i  n.
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Consider the first bullet point. By the definition of Q, for all Q 2 Q, the first column of Q is
K

�1/2
e1. Therefore, when m = (K � 1), for any such Q, we have

Q = [e0, Q
(m)].

By basic algebra,

2Q(m)(Q(m))0 � I = 2(IK � e0e
0
0)� IK = I � (2/K)1K10

K ,

where the maximum entry of the matrix is (K � 2)/K. By the definition, in this case, am =
1 +K · [(K � 2)/K] = (K � 1). This proves the first bullet point.

Consider the second bullet point. The goal is to show am = 1 for all 0  m  K/2. The case of
m = 0 is trivial, so we suppose m � 1. First, we show

am  1, if 1  m  K/2. (D.7)

For 1  k  K/2, let hk be the vector where

hk(i) =

⇢
1/

p
2, i = 2k � 1,

�1/
p
2, i = 2k.

Construct Q such that

• the first column is e0,
• the last m columns are h1, h2, . . . , hm, respectively.

For such a Q, by basic algebra, we have

• Q 2 Q.
• for the matrix 2Q(m)(Q(m))0 � IK , none of the entries is positive.

The second item is true because, by construction, 2Q(m)(Q(m))0 is a blockwise diagonal matrix,
where all nonzero entries appear in 2⇥ 2 diagonal blocks of


1 �1
�1 1

�
.

This can be either checked by direct calculations or quoted from the proof of Lemma A.1. Combining
these with the definition, am  1, and (D.7) follows.

Next, we show
am � 1, if 1  m  K/2. (D.8)

We claim that in m dimensional space, the maximum number of unit-norm vectors ri where the pair-
wise inner product are all (strictly) negative is no greater than m+ 1. We prove this by mathematical
induction. Note that this holds trivially when m = 1. Now, suppose this holds for m  m0, we show
the claim continues to hold for m = m0 + 1. If the claim is not true for m = m0 + 1, then there are
m0 + 3 different vectors

r1, r2, . . . , rm0+3

of (m0 + 1) dimension where the pairwise inner product is strictly negative. Since all the pairwise
inner products remain unchanged if we rotate these vectors by the same orthogonal matrix, we assume
rm0+3 = (1, 0, . . . , 0)0 without loss of generality. Write

rk = (ak, sk)
0
, 1  i  m0 + 3.

where ak is the first entry of rk and sk is m0-dimensional sub-vector of rk. Since for all 1  k 
m0 + 2,

(rk, rm0+3) < 0,

we must have
ak < 0, for all 1  k  m0 + 2.

Therefore, for all 1  k, `  K and k 6= `,

(sk, s`) = (rk, r`)� aka` < 0.
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It follows s1, s2, . . . , sm0+2 (after scaled by a positive number) are unit-norm vectors of m0-
dimension where the pairwise inner product is strictly negative. This contradicts with our claim for
the case of m = m0. This completes the proof of mathematical induction.

Now suppose am < 1 for an m  K/2. By definition, there is a matrix Q 2 Q such that

all entries of 2Q(m)(Q(m))0 � I are strictly negative, (D.9)

where Q
(m) is the sub-matrix of Q consisting of the last m columns. Write

Q
(m) = [r1, r2, . . . , rK ]0.

For each 1  k  K, r0k the row k of Q(m) and is m-dimensional. It follows from (D.9) that

(rk, r`) < 0, for all 1  k, `  K, k 6= `.

By the above claim, this is only possible when K  m+ 1. However, since K � 3 and m  K/2,
so it is impossible that K  m + 1. The contradiction proves (D.8). Combining (D.7) and (D.8),
am = 1 when m  K/2, which completes the proof of the second bullet point.

We now consider the last bullet point. Recall that �k is the k-th eigenvalue of ⌦, ⇠k is the correspond-
ing eigenvector, and ⌅ = [⇠1, ⇠2, . . . , ⇠K ]. Define

eY = ⌅ eD1/2 = [ỹ1, ỹ2, . . . , ỹn]
0
, (D.10)

where
eD = diag(�1/am, |�2|, . . . , |�K |).

Let eJK,m be the K ⇥K diagonal matrix

diag(am, 1, . . . , 1,�1, . . . ,�1). (D.11)

That is, the first diagonal entry is am, the next (K �m� 1) diagonal entries are �1, and all other
diagonal entries are �1. It follows from spectral decomposition that

⌦ = ⌅ · diag(�1, . . . ,�K) · ⌅0 = eY eJK,m
eY 0
.

Therefore, we need to show is that, there is an orthogonal matrix Q such that both matrix eY Q
0 and

Q eJK,mQ
0 are non-negative.

To show the claim, note that by definition, there is a matrix Q 2 Q such that

max
1i,jK

{H(i, j) : H = 2Q(m)(Q(m))0 � IK} = (am � 1)/K, (D.12)

Recall that by definition, the first column of any matrix Q 2 Q is e0. It follows

Q eJK,mQ
0 = (am � 1)e0e

0
0 + IK � 2Q(m)(Q(m))0, (D.13)

where since e0 = K
�11K , the right hand side is

(am � 1)

K
1K10

K � [2Q(m)(Q(m))0 � IK ]. (D.14)

Combining (D.12)-(D.14) shows that the matrix QJK,mQ
0 is non-negative.

At the same time, note that
Qe1 = e0,

where e1 = (1, 0, . . . , 0)0. Recall that ri 2 RK�1 and

ri(k) = ⇠k+1(i)/⇠1(i), 1  k  K � 1, 1  i  n.

Also, recall that D0 = diag(|�2|, . . . , |�K |). By (D.10),

ỹi / [1, r0i] eD1/2 = [
p
�1/am, r

0
iD

1/2
0 ].

By basic algebra, for any 1  i  n,

|(ỹi, e1)|
kỹik

=
1p

1 + (am/�1)r0iD0ri

,
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where by the condition of Theorem 2.5,

amr
0
iD0ri  �1/(K � 1). (D.15)

It follows that
|(ỹi, e1|
kỹik

�
p
1� 1/K.

Combining this with Qe1 = e0,

|(Qỹi, e0)|
kQỹik

=
|(Qỹi, Qe1)|

kQỹik
=

|(ỹi, e1)|
kỹik

�
p

1� 1/K.

By Lemma A.2, Qỹi falls in the first orthant. Since this holds for all 1  i  n, eY Q
0 is non-negative.

This finishes the proof of Theorem 2.4.

E Proof of Lemma 3.1 and Lemma 3.2

Recall that D = diag(|�1|, |�2|, . . . , |�K |) and D0 = diag(|�2|, . . . , |�K |). Similarly, define

H = diag(�1,�2, . . . ,�K), and H0 = diag(�2,�3, . . . ,�K).

It is sufficient to show

• If �1(G)  c0�K(G) for a constant c0 > 0, then as n ! 1, the two conditions of
max2kK{|�k/�1|} ! 0 and max2kK{|�k(P )/�1(P )|} ! 0 are equivalent.

• If �1(G)  c0�K(G), then for all 1  i  n, krik  CM(⌦).
• B = diag(b1)[1K , V ], P = BHB

0, P (k, k) = b
2
1(k)/[�1 + v

0
kH0vk], 1  k  K, and b1

is an eigenvector of PG with �1 being the corresponding eigenvalue.
• If (Y, P ) are non-negative, then first, PG is an irreducible non-negative matrix and b1 is

the Perron vector (so all entries of b1 are strictly positive). Second, all rows of ri lives
with a simplex with v1, v2, . . . , vK being the vertices. Last, if �1(G)  c0�K(G), then
M(⌦)  max1kK{kb1k/b1(k)}.

Consider the first bullet point. It is sufficient to show

• if max2kK{|�k/�1|} ! 0 then max2kK{|�k(P )/�1(P )|} ! 0,
• if max2kK{|�k(P )/�1(P )|} ! 0 then max2kK{|�k/�1|} ! 0.

Consider the first item. Recall that B = G
�1/2

Q for a K ⇥ K orthogonal matrix Q, and G is a
positive definite matrix satisfying

�1(G)  C�K(G). (E.16)
Recall that B = [b1, b2, . . . , bK ]. Write Q = [q1, q2, . . . , qK ] and let

G = UDU
0

be the spectral decomposition of G, where U 2 RK,K is orthogonal and

D = diag(�1(G),�2(G), . . . ,�K(G)).

It follows
B = G

�1/2
Q = UD

�1/2
U

0
Q, b1 = UD

�1/2
U

0
q1.

Therefore, by (E.16),

kBk = kG�1/2
Qk = kG�1/2k  1/

p
�K(G), (E.17)

and for 1  k  K,

kbkk2 = kUD
�1/2

U
0
qkk2 = q

0
kUD

�1
U

0
qk ⇣ (1/�K(G))kU 0

qkk = 1/�K(G). (E.18)

Now, using the first bullet point, we write

P = BHB
0 = B · diag(�1, . . . ,�K) ·B = P0 + P1,
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where
P0 = B · diag(�1, 0, . . . , 0) ·B0

, P1 = B · diag(0,�2, . . . ,�K) ·B0
.

Note that
P0 = �1b1b

0
1,

where �1 > 0. Therefore,

�k(P0) =

⇢
�1kb1k2, k = 1,
0, 2  k  K.

(E.19)

By Weyl’s theorem [1], for any 1  k  K,

|�k(P )� �k(P0)|  kP1k,

where by (E.18),
kP1k  kBk · max

{2kK}
{|�k|}.

Therefore,
|�k(P )� �k(P0)|  (1/�K(G)) · max

{2kK}
{|�k|}. (E.20)

Combining (E.19)-(E.20) with (E.18),

�1(P ) � �1kb1k2 � (1/�K(G)) · max
{2kK}

{|�k|} � (1/�K(G))[C�1 � max
{2kK}

{|�k|}],

and
|�k(P )|  (1/�K(G)) · max

{2kK}
{|�k|}], 2  k  K.

Therefore, if
(1/�1) max

{2kK}
{|�k|} ! 0,

then �1(P ) > 0 and
(1/�1(P )) max

{2kK}
{|�k(P )|} ! 0.

This proves the first item.

The proof of the second item is similar, so we keep it short. Let P = UDU
0 be the spectral

decomposition of P , where U is a K ⇥K orthogonal matrix, and

D = diag(�1(P ), . . . ,�2(P )).

Combining these with P = BHB
0 and B = G

�1/2
Q,

H = B
�1

U
0
DU

0(B�1)0 = (Q0
G

1/2
U

0)D(UG
1/2

Q).

Recall that
H = diag(�1, . . . ,�K).

It follows

diag(�1, . . . ,�K) = (Q0
G

1/2
U

0) · diag(�1(P ), . . . ,�K(P )) · (UG
1/2

Q).

The remaining part of the proof is similar, so we skip it. This completes the proof of the first bullet
point.

Consider the second bullet point. Recall that

⌅ = [⇠1, . . . , ⇠K ] = Y B, ri(k) = ⇠k+1(i)/⇠1(k), 1  k  K � 1, 1  i  n,

and that Y = [y1, y2, . . . , yn]0 and B = [b1, b2, . . . , bn]. We have

ri(k) = y
0
ibk+1/y

0
ib1.

By definition, y0ib1 = kyikkb1k cos(↵i), so

|ri(k)| 
kyikkbk+1k

kyikkb1k| cos(↵i)|
=

1

| cos(↵i)|
kbk+1k
kb1k

.
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By (E.18),
kbk+1k
kb1k

⇣ 1.

Therefore,
|ri(k)|  C/| cos(↵i)|  CM(⌦).

Since K is finite, the claim follows. This proves the second bullet point.

Consider the third bullet point. The first item follows directly by definition of V . For the second item,
recall that

⌦ = ⌅H⌅0 = Y PY
0
, and ⌅ = Y B.

Combining these gives
Y BHB

0
Y

0 = Y PY
0
,

and the claim follows since Y is full-rank by our assumption.

For the third item, we combine the first two items, and it follows that

P = BHB
0 = diag(b1)[1K , V ]H[1K , V ]0diag(b1) = diag(b1)[�11K10

K + V H0V
0]diag(b1).

Recall that
V = [v1, v2, . . . , vK ]0.

For any 1  k  K, comparing the k-th diagonal entry of the two matrices, P and �1b1b
0
1 +V H0V

0,
it follows that

P (k, k) = b
2
1(k)[�1 + v

0
kH0vk].

This proves the third item.

Consider the last item. By basic algebra, the set of all nonzero eigenvalues of the matrix Y PY
0

are the same as the set of all nonzeor eigenvalues of PY
0
Y or PG. Since PG is non-singular, the

eigenvalues are �1, . . . ,�K . By ⌅ = [⇠1, . . . , ⇠K ] = Y B and B = [b1, b2, . . . , bK ], we have

⇠k = Y bk.

Since ⇠1 is the eigenvector corresponding to �k, so on one hand,

�k⇠k = �kY bk,

and on the other hand,

�k⇠k = ⌦⇠1 = Y PY
0
⇠k = Y PY

0
Y bk = Y PGbk.

Combining these and noting that Y is full rank,

PGbk = �kbk.

Therefore, b1, b2, . . . , bK are singular vectors corresponding to �1, . . . ,�K . This proves the last item
and completes the proof of the second bullet point.

Consider the last bullet point. Consider the first item first. Since Y and P are non-negative, PG is
non-negative. Also, the matrix PG is also irreducible since ⌦ is irreducible. Since b1 is the Perron
vector of PG, all of entries are strictly positive.

Consider the second item. Fix 1  i  n. Since ⌦ is irreducible, yi 6= 0. Introduce a weigh
vector wi 2 RK by wi(k) = yi(k)b1(k)/(y0ib1), 1  k  K. Recall that V (j, k) = bk+1(j)/b1(j),
1  k  K � 1, 1  j  K. We have

ri(k) =
y
0
ibk+1

y
0
ib1

=
KX

j=1

wi(j)(bk+1(j)/b1(j)) =
KX

j=1

wi(j)V (j, k).

Therefore,
ri = w

0
iV,

and ri is a convex linear combination of the K rows of V . This says ri fall within the simplex with
v1, v2, . . . , vK being the vertices. This proves the second item.
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Consider the last item. Note that for any 1  i  n, yi 6= 0. Otherwise, if yi = 0 for some i, then
⌦(i, j) = ⌦(j, i) for all j, and ⌦ is reducible. Now,

cos(↵i) =
(yi, b1)

kyikkb1k
.

Without loss of generality, assume kyik1 = 1 since yi is non-negative vector. It follows

kyik =

vuut
KX

k=1

y
2
i (k) 

p
kyik1 = 1.

Therefore,

| cos(↵i)| � min
{1kK}

{b1(k)}kyik1/(kyikkb1k) � min
{1kK}

{b1(k)/kb1k}.

This proves the last item and completes the proof of the last bullet point.

F Comments on how to find (Q, y0) in Theorem 2.1 numerically

Given ⌦ = Y JK,mY
0 as in Theorem 2.1, an interesting question is how to construct a Q numerically

when condition (2.9) of Theorem 2.1 holds for some y0. The proof of Theorem 2.1 relies on a specific
construction of Q (see the proof of Theorem 2.1, especially Lemma A.3 for details) as follows.

• Let Q1 be the K ⇥K orthogonal matrix with the form of

Q1 =


Q0 0
0 Im

�
, the first row of Q0 is (y0(1), . . . , y0(K �m)).

• Let Q2 be the K ⇥K orthogonal matrix with the form of

Q1 = [e0, q1, . . . , qK�m�1, h1, h2, . . . , hm], e0 = (1/
p
K)(1, 1, . . . , 1)0,

where for k = 1, 2, . . . ,m,

hk(i) =

8
<

:

1/
p
2, i = 2k � 1,

�1/
p
2, i = 2k,

0, otherwise.

• Let Q = Q2Q1.

Therefore, numerically, all remains is to decide the remaining rows of Q0 and the remaining columns
of Q2, both can be solved quickly by basic algebra, since K is usually small.

A related question is how to check whether there is a vector y0 2 SK,m such that condition (2.9)
of Theorem 2.1 holds. Recalling that Y = [y1, y2, . . . , yn]0, possible candidate are y

⇤
i , 1  i  n,

where
y
⇤
i (k) =

⇢
yi(k), 1  k  K �m,

0, k > K �m.

The y
⇤
i constructed this way belong to SK,m. Now, without loss of generality, assume y

⇤
i 6= 0 for all

1  i  n. For each 1  s  n, let

Us = max
1in

{|(y⇤s , yi)|/(kyikky⇤sk).

If max1sn{Us} >

p
1� 1/K, then condition (2.9) does not hold and it is unclear if the NMF

problem is solvable for ⌦. If max1sn{Us} >

p
1� 1/K, then condition (2.9) holds with y0 = y

⇤
k̂

,
and the NMF problem is solvable.
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