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Abstract

In economics and social science, network data are regularly observed, and a thorough
understanding of the network community structure facilitates the comprehension of
economic patterns and activities. Consider an undirected network with n nodes and K
communities. We model the network using the Degree-Corrected Mixed-Membership
(DCMM) model, where for each node i = 1, 2, . . . , n, there exists a membership vector
⇡i = (⇡i(1),⇡i(2), . . . ,⇡i(K))0, where ⇡i(k) is the weight that node i puts in community
k, 1  k  K. In comparison to the well-known stochastic block model (SBM), the
DCMM permits both severe degree heterogeneity and mixed memberships, making
it considerably more realistic and general. We present an e�cient approach, Mixed-
SCORE, for estimating the mixed membership vectors of all nodes and the other DCMM
parameters. This approach is inspired by the discovery of a delicate simplex structure
in the spectral domain. We derive explicit error rates for the Mixed-SCORE algorithm
and demonstrate that it is rate-optimal over a broad parameter space. Our findings
provide a novel statistical tool for network community analysis, which can be used to
understand network formations, extract nodal features, identify unobserved covariates
in dyadic regressions, and estimate peer e↵ects. We applied Mixed-SCORE to a political
blog network, two trade networks, a co-authorship network, and a citee network, and
obtained interpretable results.

Keywords. Citee network, coauthorship network, communities, node embedding, po-
litical blogs, SCORE, simplex, spectral clustering, trade network.
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1 Introduction

Many economic activities happen on networks. Some examples of economic networks are

the international trade networks, high-school friendship networks, stock co-jump networks,

and job information networks. We denote a network with n nodes by its adjacency matrix

A 2 Rn⇥n, with Aij = 1 if there is an edge between nodes i and j and Aij = 0 otherwise.

In network econometrics, there is a surge of interests in understanding the interplay

between network topology and economic activities (Graham, 2020). The literature can be

divided into two categories, formation and consequence. Research in formation treats the

network itself as the object of interest and studies the mechanism of forming the network.

One popular model is the dyadic regression model, including the famous gravity model for

bilateral trade (Tinbergen, 1962) as a special example. In this model, E[Aij ] is a function of

the dyadic covariates Xij and nodal covariates Y i and Y j , and the main goal is estimation

and inference of parameters of this function. Another popular model is the strategic model

of network formation (Jackson and Wolinsky, 1996). In this model, each node has a utility

function ui(A) that depends on the whole network, so deletion/addition of an edge a↵ects

the utilities of all nodes. Given these utility functions {ui}ni=1
, the network is in equilibrium

if no node wishes to delete an edge and no pair of nodes wish to add an edge. The problems

of interest include estimation and inference of these utility functions, e.g., by using network

moment statistics (Miyauchi, 2016). Research in consequence treats the network as given

information and aims to study influence of network structure on economic outcomes. There

is a line of literature on estimation of the linear-in-means models (Manski, 1993; Bramoullé

et al., 2009). In the simplest case of no covariates, let yi be the response of node i and di be

the degree of node i; the linear-in-means model assumes yi = ↵+�
P

j(d
�1

i Aij)yj + ✏i, with

✏i’s being i.i.d. noise. The parameter � captures the ‘peer e↵ect’ and is of main interest.
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Independent of the econometric literature, there is also a body of statistical literature

on network data analysis, where the main interest is fitting a probabilistic, easy-to-interpret

model for an observed network. Pioneered by Bickel and Chen (2009), the stochastic block

model (SBM) has attracted much attention. SBM assumes that nodes are divided into a

few communities, and E[Aij ] is determined by community memberships of two nodes. Dif-

ferent from the formation literature of network econometrics, there are usually no observed

covariates and the adjacency matrix A is the only available data. Many methods have been

proposed for estimating the underlying community structure from A.

Recently, the two lines of literature have crossed. There are many interests in applying

statistical network models in econometrics. Auerbach (2022) proposed a joint regression and

network formation model, where the goal is learning latent nodal features from the network

and using these features in the regression. Chen et al. (2020) used network modeling to

estimate the Bernoulli probability matrix E[A]. They replaced A by dE[A] in fitting a network

auto-regression model, in hopes of improving the estimation of peer e↵ects. Graham (2015)

combined the dyadic regression in econometrics and the latent space model in statistics to

account for both observed and unobserved covariates in network formation.

Unfortunately, despite these encouraging progresses, we note two problems. First, both

the statistical literature and the econometric literature have been largely focused on some

classical and idealized network models, such as the stochastic block model (SBM) and the

graphon (Lovász and Szegedy, 2006). Second, recent developments in statistical network

analysis have suggested new ideas in network modeling, but such ideas are largely unknown

in the area of network econometrics. The SBM and graphon models are often too ideal-

ized for real networks. Many real networks have the so-called severe degree heterogeneity,

meaning that the degree of one node is higher than another by 10 or even 100 times (Jin

et al., 2021b, Table 1). Also, many networks have the so-called mixed-membership, meaning

that di↵erent network communities overlap with each, and a node may belong to multiple

communities (Airoldi et al., 2008); for such networks, the SBM is too idealized, which does

not model either mixed-membership or severe degree heterogeneity. The graphon model

is also too idealized. It does not model severe degree heterogeneity and requires that the

nodes are exchangeable (an assumption that is hard to check and is too strong for many real

networks). It is therefore desirable to (a) develop more realistic network models and new

algorithms, and (b) introduce the most recent developments in statistical network analysis

to the area of network econometrics.

We propose the Degree-Corrected Mixed-Membership (DCMM) model as a more suit-
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Figure 1: Community structure of political blogs (expanded set), shown using utilizing the GUESS visual-
ization and analysis tool[2]. The colors reflect political orientation, red for conservative, and blue for liberal.
Orange links go from liberal to conservative, and purple ones from conservative to liberal. The size of each
blog reflects the number of other blogs that link to it.

Because of bloggers’ ability to identify and frame break-

ing news, many mainstream media sources keep a close eye

on the best known political blogs. A number of mainstream

news sources have started to discuss and even to host blogs.

In an online survey asking editors, reporters, columnists and

publishers to each list the “top 3” blogs they read, Drezner

and Farrell [4] identified a short list of dominant “A-list”

blogs. Just 10 of the most popular blogs accounted for over

half the blogs on the journalists’ lists. They also found that,

besides capturing most of the attention of the mainstream

media, the most popular political blogs also get a dispro-

portionate number of links from other blogs. Shirky [12]

observed the same e↵ect for blogs in general and Hindman

et al. [7] found it to hold for political websites focusing on

various issues.

While these previous studies focused on the inequality of

citation links for political blogs overall, there has been com-

paratively little study of subcommunities of political blogs.

In the context of political websites, Hindman et al. [7] noted

that, for example, those dealing with the issue of abortion,

gun control, and the death penalties, contain subcommuni-

ties of opposing views. In the case of the pro-choice and

pro-life web communities, an earlier study [1] found pro-life

websites to be more densely linked than pro-choice ones. In

a study of a sample of the blogosphere, Herring et al.[6] dis-

covered densely interlinked (non-political) blog communities

focusing on the topics of Catholicism and homeschooling, as

well as a core network of A-list blogs, some of them political.

Recently, Butts and Cross [3] studied the response in the

structure of networks of political blogs to polling data and

election campaign events. In another political blog study,

Welsch [15] gathered a single-day snapshot of the network

neighborhoods of Atrios, a popular liberal blog, and In-

stapundit, a popular conservative blog. He found the In-

stapundit neighborhood to include many more blogs than

the Atrios one, and observed no overlap in the URLs cited

between the two neighborhoods. The lack of overlap in lib-

eral and conservative interests has previously been observed

in purchases of political books on Amazon.com [8]. This

brings about the question of whether we are witnessing a

cyberbalkanization [11, 13] of the Internet, where the prolif-

eration of specialized online news sources allows people with

di↵erent political leanings to be exposed only to information

in agreement with their previously held views. Yale law pro-

fessor Jack Balkin provides a counter-argument
7

by pointing

out that such segregation is unlikely in the blogosphere be-

cause bloggers systematically comment on each other, even

if only to voice disagreement.

In this paper we address both hypotheses by examining in

a systematic way the linking patterns and discussion topics

of political bloggers. In doing so, we not only measure the

degree of interaction between liberal and conservative blogs,

but also uncover di↵erences in the structure of the two com-

munities. Our data set includes the posts of 40 A-list blogs

over the period of two months preceding the U.S. Presiden-

tial Election of 2004. We also study a large network of over

1,000 political blogs based on a single day snapshot that in-

cludes blogrolls (the list of links to other blogs frequently

found in sidebars), and so presents a more static picture of

a broader blogosphere.

From both samples we find that liberal and conservative

blogs did indeed have di↵erent lists of favorite news sources,

7http://balkin.blogspot.com/2004 01 18 balkin
archive.html#107480769112109137
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Figure 1: The political blog network and the output of Mixed-SCORE. Left: A visualization
of the network (figure source: Adamic and Glance (2005)), where blue/red colors indicate
the manually assigned community labels by Adamic and Glance (2005), and yellow/purple
colors indicate the edges between two commmunities. Right: The estimated pi (x-axis) and
✓i (y-axis) by the Mixed-SCORE algorithm.

able network model. Compared with SBM, DCMM allows for both severe degree hetero-

geneity and mixed membership and it is much broader. Compared with graphon, DCMM

accommodates severe degree heterogeneity and does not require node exchangeability. Since

many real networks have strong mixed-membership, an interesting problem is how to esti-

mate the mixed-memberships of nodes. We propose a fast spectral method, Mixed-SCORE,

for estimating network mixed-memberships, and show that it is rate-optimal in a decision

theory framework. Given the interesting connections between the two areas (statistical net-

work analysis and network econometrics) we discuss above, our model and method not only

provide new contributions to the former but also provide new opportunities to the latter.

For example, for many existing works in network econometrics that used SBM or graphon as

the network model, we may improve the results by using the more realistic DCMM model.

Also, our method is useful in several problems of network econometrics. For example, one

can use the output of our method to understand network formation, create nodal features,

estimate the Bernoulli probability matrix, and learn the unobserved dyadic covariates.

In what follows, we first present a motivating example. In this example, DCMM has a

relatively simple form. We use this example to illustrate why DCMM is a reasonable model

and how to use the output of our method to answer real questions of interest.
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1.1 A motivating example: Political blog network

The 2004 U.S. Presidential Election was the first presidential election in the United States in

which blogging played an important role. Adamic and Glance (2005) recorded the linkages

of political blogs in a single day snapshot before the election. We use the data to construct

an undirected network, where each node is a blog and two blogs are connected by an edge if

they have links between them (one-way or reciprocal). The giant component of the network

has n = 1222 nodes. We assume each blog has a political orientation parameter pi 2 [�1, 1],

where pi > 0, pi = 0 and pi < 0 corresponds to liberal, neutral and conservative. A node

with pi = 1 is extremely conservative, while a node with pi = 0.2 is only mildly conservative.

We also assume each blog has a popularity score ✓i > 0. The larger ✓i, the more influence of

the blog. Suppose the edges are independently generated. We model the edge probability

between two nodes as a function of their political orientations and popularities: 1

P(Aij = 1) = ✓i✓j · (↵+ �pipj), 1  i < j  n. (1.1)

Here, ↵ > 0 is the baseline e↵ect, and � > 0 captures the e↵ect of political orientations on

linkage probabilities. When two blogs are both liberal or both conservative, �pipj > 0, so

they are more likely to be linked. When one blog is liberal and the other is conservative,

�pipj < 0, so they are less likely to be linked. The more extreme of political orientations of

two nodes, the larger |�pipj | and the stronger e↵ect on linkage probability. Besides political

orientations, the linkage probability is also a↵ected by the popularity of nodes. Suppose two

blogs i and j have exactly the same political orientation, but blog i has a larger influence

in the internet. It is more likely for other blogs to link to blog i than blog j.

We propose a fast spectral method, Mixed-SCORE, for estimating (pi, ✓i) of each node

and the global parameters (↵,�). The details of this method will be deferred to Section 2.

Figure 1 plots (p̂i, ✓̂i) of political blogs. The points in the top left regions correspond to

influential and liberal blogs, and those in the top right region are influential and conservative

blogs. Some of these influential blogs are more ‘extreme’ than others in political orientation,

such as the liberal blog atrios.blogspot.com and the conservative blog hughhewitt.com.

Blogs with large ✓̂i typically have clear political orientations and are far away from being

neutral, with some exceptions like truthprobe.blogspot.com.

When Adamic and Glance (2005) collected this data set, they assigned a manual label

`i 2 {liberal, conservative} to each blog i by checking the host website directory or reading

1
Model (1.1) is not identifiable, as we can multiple (↵,�) by a scalar c and divide each ✓i by

p
c to make

the edge probabilities invariant. For identifiability, we let ↵ + � = 1. This is the same as the identifiability

condition we use for a general DCMM model (see Section 2).
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blog posts. Our method does not need any manual e↵orts to label the blogs; using the sign

of p̂i, we can recover their manual labels with an accuracy of 95.5%. Meanwhile, people are

interested in not only the label of a blog but also the extremity of its political orientation,

as an extremely conservative blog and a mildly conservative blog can have di↵erent opinions

on issues such as abortion, gun control, and death penalties (Hindman et al., 2003). The

p̂i’s from our method help reveal such information that is not seen in manual labels.

We can use the output of Mixed-SCORE in several di↵erent ways. First, it is useful for

understanding the formation of links between blogs. Our method obtains �̂ = 1�↵̂ = 0.471.

It captures the e↵ect of political orientation on link formation.2 Second, our method creates

two covariates, p̂i (‘political orientation’) and ✓̂i (‘influence’), for each blog. These covariates

will be useful in other tasks such as predicting the opinion of a blogger on a given topic.

Third, we obtain \E[Aij ] = ✓̂i✓̂j(↵̂ + �̂p̂ip̂j), which can be plugged into the linear-in-means

model to improve the estimation of peer e↵ect. Let yi be an outcome of interest (e.g., the

frequency of a key word in blog posts). We fit a model yi = �+�q̂�1

i

P
j ✓̂j(↵̂+ �̂p̂ip̂j)yj+✏i,

where q̂i =
Pn

k=1
✓̂k(↵̂ + �̂p̂ip̂k). Compared with the standard linear-in-means model, this

one better deals with measurement errors on the network itself.

1.2 Main results and contributions

Model (1.1) is a special case of the Degree-Corrected Mixed Membership (DCMM) model to

be introduced in Section 2. In the DCMM model, the network has K perceivable communi-

ties. Each node has a mixed membership vector ⇡i 2 RK , where ⇡i(k) � 0 is the weight that

node i puts on community k, satisfying
PK

k=1
⇡i(k) = 1. When ⇡i is degenerate (i.e., ⇡i has

only one nonzero entry which is equal to 1, and the other entries are zero), we call node i a

pure node; otherwise, we call it a mixed node. In Model (1.1) for the political blog network,

K = 2, ⇡i = (1�pi
2

, 1+pi
2

)0, and a node is pure if and only if pi 2 {±1}. Each node also has a

degree heterogeneity parameter ✓i > 0. The probability of forming an edge between nodes

i and j is determined jointly by their mixed membership vectors and degree heterogeneity

parameters (see Section 2.1). Given the adjacency matrix A, we are interested in estimating

parameters of DCMM, especially the membership matrix ⇧ := [⇡1,⇡2, . . . ,⇡n]0. Estimation

of ⇧ is known as the problem of mixed membership estimation (Airoldi et al., 2008).

In the statistical literature of network data analysis, many works focused on community

detection, which clusters nodes into K non-overlapping communities. Overlapping commu-

2
We focus on estimation in this paper. In a companion paper Jin et al. (2021a), we also provide a test for

testing against the null hypothesis � = 0. The p-value is < 10
�7

for this political blog network, suggesting

a significant e↵ect of political orientation on link formation.
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nity detection (Gregory, 2010) allows the assignment of a node to more than one community.

It is equivalent to a community detection problem with 2K non-overlapping communities.

Community detection is a clustering problem, so the methods and theory do not apply to

mixed membership estimation. Airoldi et al. (2008) is a pioneer work on mixed membership

estimation. They considered a special setting of DCMM with ✓1 = ✓2 = . . . = ✓n (i.e., no de-

gree heterogeneity) and assumed that ⇡i’s are i.i.d. generated from a Dirichlet prior. They

proposed a variational Bayes approach to computing the posterior of ⇡1, . . . ,⇡n. However,

in many real networks, degree heterogeneity is severe (Newman, 2003), so we must assume

unequal ✓i’s. Zhang et al. (2020) proposed the OCCAM algorithm for mixed membership

estimation. OCCAM has the nice property of accommodating degree heterogeneity, but it

requires a condition that the fraction of mixed nodes must be properly small, and so it does

not work for networks with a large fraction of mixed nodes.

We propose a new method Mixed-SCORE for network mixed membership estimation.

It is inspired by our discovery of a low-dimensional simplex geometry associated with the

leading eigenvectors of A. Using linear algebra, we establish an explicit connection between

this simplex and the target quantity ⇧. It leads to a fast spectral algorithm for estimating ⇧.

Compared with the existing methods of mixed membership estimation (Airoldi et al., 2008;

Zhang et al., 2020), Mixed-SCORE successfully deals with degree heterogeneity and allows

for an arbitrary fraction of mixed nodes. Furthermore, we also give a characterization of the

error rate of Mixed-SCORE and show that it is rate-optimal for a wide range of settings.

In comparison, the competitors either have no theoretical guarantees (Airoldi et al., 2008)

or have non-optimal error rates (Zhang et al., 2020). Given ⇧̂ from Mixed-SCORE, we also

propose estimates of other parameters of DCMM.

1.3 Applications in network econometrics

We give a few examples of using our model and method in network econometrics.

Example 1: Economic outcomes are often a↵ected by social influence. For example, a

high school student’s academic performance might depend on the attitudes and expectations

of his/her friends and family. Such a social influence is not directly observed, and a popular

solution is to collect network data and hope the unobserved social influence is revealed by

linking behavior in the network (e.g., students with similar reported friendships may have

similar family expectations (Auerbach, 2022)). Let yi 2 R be the outcome (e.g., academic

performance of a student) and Xi 2 Rp the observed features (e.g., school rating, family

income, etc.). Consider an unobserved social influence such as the family expectation. We

8



assume there are K extreme types of family expectation and the family expectation of a

student is represented by a mixed membership vector ⇡i 2 RK . We model the network by

DCMM and the outcome by a regression yi = X 0
i�+f(⇡i)+ ✏i. This model is similar to the

model in Auerbach (2022), except that he models the network by graphon but we model it

by DCMM. We can apply Mixed-SCORE to obtain ⇡̂i and plug them into the regression.

Compared with the method in Auerbach (2022), our approach has some advantages: First,

we allow the social feature ⇡i to have an arbitrary dimension K, but in a graphon, ⇡i is a

scalar in [0, 1]. Second, our approach deals with severe degree heterogeneity and guarantees

that the estimated social feature is not biased by the student’s own friendship popularity.

Example 2: Understanding the social interactions or ‘peer e↵ects’ in decision making is

of great interest in economics. To estimate the peer e↵ect, we propose a new linear-in-means

model based on DCMM: Given a network generated from DCMM, let y = (y1, y2, . . . , yn)0

store the response at each node and X = [X1, X2, . . . , Xn]0 2 Rn⇥p store the feature vectors.

Define G 2 Rn⇥n by Gij = ⇡0
i⇡j/(

P
k:k 6=i ⇡

0
i⇡k), for i 6= j, and Gii = 0. For some parameters

↵,� 2 R and �, � 2 Rp, we model that y = ↵1n + �Gy + X� + GX� + ✏, where ✏ is the

noise vector. This model di↵ers from the standard linear-in-means model (Manski, 1993) in

the definition of G. In the standard form, G is chosen as the normalized adjacency matrix.

However, the adjacency matrix itself has stochastic errors. For example, two friends in real

life may or may not be each other’s Facebook friend. Our G allows for a possibly nonzero

peer e↵ect between two nodes even when they are not directly connected by an edge. Under

this model, we can apply Mixed-SCORE to obtain ⇡̂i’s and then plug them into the model

for yi. A similar idea has been considered by Chen et al. (2020) for vector autoregression.

They model the network with SBM, but we use the more general DCMM model.

Example 3: The dyadic regression model (Graham, 2020) is a popular network model.

When there are unobserved covariates, how to make accurate parameter estimation is not

fully understood. Inspired by Graham (2015), we assume that an unobserved dyadic co-

variate is a function of unobserved nodal covariates and propose a dyadic regression model

with a DCMM-like structure. Let X 2 Rn⇥n be the adjacency matrix of a weighted network

(e.g., in the international trade network, Xij is the trade flow from country i to country

j). Suppose Xij ⇠ Poisson(�ij), with ln(�ij) =
PM

m=1
�m ln(Zm,i,j) + � ln(⇡0

iP⇡j) + ci + cj .

Here Z1, . . . , ZM are the observed dyadic covariates, ci is the fixed e↵ect of node i, and

Uij := ⇡0
iP⇡j is an unobserved dyadic covariate, with (⇡i, P ) similar to those in DCMM (to

be introduced in Section 2.1). This model is connected to the model in Graham (2015): In

his model, Uij = g(⇠i, ⇠j ; �0), where ⇠i 2 R is an unobserved nodal covariate and g(·, ·; �0)

9



is a symmetric distance function; in our model, the latent covariate ⇡i can take an arbi-

trary dimension K. We introduce a practical algorithm in Section 5.1: We first construct a

network from the residuals of fitting a dyadic regression with only observed covariates; we

then apply Mixed-SCORE to obtain Ûij = ⇡̂0
iP̂ ⇡̂j ; last, we plug in Ûij and re-fit the dyadic

regression. Although this approach is mainly from a practical perspective, it points out a

new direction, that is, using spectral algorithms to learn unobserved covariates. Compared

with the existing approaches such as Markov Chain Monte Carlo and triad probit (Graham,

2020), the spectral approach is computationally fast and allows for multidimensional ⇡i’s.

Since the main focus of this paper is estimation of ⇡i, we leave a careful study of these

examples to future work. One of the key requirements for plugging ⇡̂i into a downstream

economic model is that the error on ⇡̂i can be well-controlled. In this paper, we provide

not only a method for estimating ⇡i but also the explicit error bounds. In the case that the

network is properly dense, the error bound reduces to E[n�1
Pn

i=1
k⇡̂i�⇡ik2] = O(n�1K3),

suggesting that the errors on ⇡̂i are negligible for downstream tasks (please see the discus-

sions following Theorem 3.2).

The remaining of this paper is organized as follows. In Section 2, we formally introduce

our model and method. In Section 3, we state the theoretical results. In Sections 4-5, we

present the simulations and real data, respectively. We conclude the paper with discussions

in Section 6. The technical proofs are relegated to the online supplementary material.

2 A spectral method for network membership estimation

2.1 The DCMM model

Consider an undirected network with n nodes. Suppose the network contains K communi-

ties. Each node has a mixed membership vector ⇡i = (⇡i(1),⇡i(2), . . . ,⇡i(K))0, where the

entries of ⇡i are nonnegative and sum to 1. We interpret ⇡i(k) as the fractional weight that

node i puts on community k. If node i puts 100% weight on community k, then ⇡i(k) = 1

and ⇡i(`) = 0 for all other ` 6= k; we say that ⇡i is degenerate and call node i a pure node

of community k. If node i is not a pure node of any community, we call it a mixed node.

Each node also has a degree heterogeneity parameter ✓i > 0. Let P 2 RK,K be a symmetric

nonnegative matrix. Recall that A 2 Rn⇥n is the adjacency matrix of the network. Since we

do not allow for self-edges, the diagonal entries of A are all zero. We assume that the upper

triangle of A (excluding the diagonal) contains independent Bernoulli variables, where for

10



any 1  i, j  n and i 6= j,

P(Aij = 1) = ✓i✓j ⇥
KX

k=1

KX

`=1

⇡i(k)⇡j(`)Pk` = ✓i✓j ⇥ ⇡0
iP⇡j . (2.2)

Take Model (1.1) for the political blog network for example. It is a special case with K = 2,

⇡i = (1�pi
2

, 1+pi
2

)0 and P being a 2⇥2 matrix whose diagonal entries are equal to ↵+� and

the o↵-diagonal entries are equal to ↵ � �. The parameters in (2.2) are not identifiable.

For identifiability, we assume that the diagonal entries of P are equal to 1 (see Section A.1

of the supplementary material for a proof of model identifiability).

We call (2.2) the degree-corrected mixed membership (DCMM) model. DCMM includes

several popular network models as special cases. The stochastic block model (SBM) is a

special DCMM where ✓i’s are equal to each other (i.e., no degree heterogeneity) and all ⇡i’s

are degenerate (i.e., no mixed membership). The MMSBM model (Airoldi et al., 2008) is

a special case with equal ✓i’s (but ⇡i’s can be non-degenerate). The DCBM model (Karrer

and Newman, 2011) is a special case where all ⇡i’s are degenerate (but ✓i’s can be unequal).

DCMM can also be viewed as an equivalence to the OCCAM model (Zhang et al., 2020),

except that ⇡i’s are re-normalized by their `2-norms in the OCCAM model.

It is convenient to express (2.2) in a matrix form. Write ⇥ = diag(✓1, ✓2, . . . , ✓n) 2 Rn,n

and ⇧ = [⇡1,⇡2, . . . ,⇡n]0 2 Rn,K . Introduce an n⇥ n matrix ⌦ = ⇥⇧P⇧0⇥. It is seen that

⌦ij = ✓i✓j · ⇡0
iP⇡j . By Model (2.2), E[Aij ] = ⌦ij for all 1  i 6= j  n. It follows that

A = ⌦� diag(⌦) +W, with W := A� E[A] and ⌦ := ⇥⇧P⇧0⇥. (2.3)

We call ⌦, diag(⌦), and W the “main signal”, “secondary signal” and “noise” respectively.

Remark 1: DCMM distinguishes from the latent space models (Handcock et al., 2007)

or graphons (Lovász and Szegedy, 2006; Pensky, 2019) by not requiring exchangeability of

nodes. In DCMM, we have no assumptions saying that ✓i’s and ⇡i’s are i.i.d. drawn from

some distributions. We treat all of them as unknown parameters.

Remark 2: DCMM has an interesting connection to the dyadic regression model. In

DCMM, we can view ✓i and ✓i as nodal covariates, and ⇡0
iP⇡j as a dyadic covariate, but a

major di↵erence is that these covariates are unobserved.

2.2 The simplex structure in the spectral domain

We first consider an oracle case where we observe the “main signal” matrix ⌦ in (2.3). We

would like to construct an estimate of ⇧ from ⌦. Note that ⌦ is a rank-K matrix. For

each 1  k  K, let �k be the kth largest eigenvalue of ⌦ in magnitude, and let ⇠k 2 Rn be
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the associated eigenvector. Write ⇤ = diag(�1, . . . ,�K) and ⌅ = [⇠1, ⇠2, . . . , ⇠K ]. Jin (2015)

proposed a normalization of eigenvectors called the SCORE normalization. It constructs a

matrix R 2 Rn⇥(K�1) containing the entry-wise ratios of eigenvectors, where

R(i, k) = ⇠k+1(i)/⇠1(i), 1  i  n, 1  k  K � 1. (2.4)

Let ri 2 RK�1 denote the i-th row of R. Viewing each ri as a point in the (K�1)-dimension

Euclidean space, there is a simplex structure for the point cloud {ri}1in: 3

Lemma 2.1 (The simplex geometry in R). Consider Model (2.2) and assume that P is

non-singular, P (⇧0⇥2⇧) is irreducible, and each community has at least one pure node. The

following statements are true: (1) All entries of ⇠1 are strictly positive, so that the matrix R

in (2.4) is well-defined. (2) There exists a K-vertex simplex S ⇢ RK�1, whose vertices are

denoted by v1, v2, . . . , vK , such that each ri is contained in S and that ri falls on one vertex of

S if and only if node i is a pure node. (3) Let wi 2 RK
+ contain the barycentric coordinates of

ri in S. The vector wi is connected to ⇡i through the equation wi = (⇡i�b1)/k⇡i�b1k1, where

b1 2 RK is the vector defined by b1(k) = [�1+v0kdiag(�2, . . . ,�K)vk]�1/2, �1,�2, . . . ,�K are

the nonzero eigenvalues of ⌦, and � denotes the entrywise product between two vectors.

We call S the Ideal Simplex. Lemma 2.1 inspires a method to recover ⇧ from ⌦. Step 1:

Obtain R from (2.4). Step 2: By the second claim of Lemma 2.1, we can retrieve the vertices

v1, . . . , vK by computing the convex hull of the point cloud {ri}1in. Step 3: Given the

vertices, we obtain the barycentric coordinate vector wi for each node i (by solving a simple

linear equation); we also compute the vector b1 using the definition in Lemma 2.1; by the

third claim of Lemma 2.1, we can recover ⇡i from wi / ⇡i � b1 and k⇡ik1 = 1.

Remark 3 (Why the simplex exists and the crucial role of the SCORE normalization).

In the proof of Lemma 2.1, we will see that the rows of ⌅ are contained in a simplicial cone

with K supporting rays, where all the pure nodes in one community are on one supporting

ray, and the mixed nodes are in the interior of the cone. The SCORE normalization (2.4)

transforms the simplicial cone to a simplex and provides a direct link between the simplex

and ⇧. Interestingly, other normalizations of eigenvectors (e.g., to normalize each row of ⌅

by its own `1-norm) fail to produce a simplex structure. See Figure 2.

3
By definition, the simplex S spanned by v1, v2, . . . , vK is the set of points r such that r =

PK
k=1 �kvk for

some nonnegative vector � with k�k1 = 1. If v1, v2, . . . , vK are a�nely independent, S is non-degenerate;

and we call v1, . . . , vK the vertices of S and � the barycentric coordinate vector of r.
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Figure 2: Illustration for why the simplex exists and the role of SCORE normalization (K = 3).
Left: rows of ⌅ (blue points). The point cloud is contained in a simplicial cone, and it is desirable
to normalize the cone to a simplex. Middle: rows of R (red: pure nodes; green: mixed nodes). It
shows that the SCORE normalization successfully produces a simplex. Right: rows of ⌅ normalized
by row-wise `1-norm (for visualization, we have projected these points to R2). This normalization
fails to produce a simplex.

2.3 The Mixed-SCORE algorithm for estimating ⇧

We extend the aforementioned method of recovering ⇧ to the real case where A, instead of ⌦,

is observed. For 1  k  K, let �̂k be the kth largest eigenvalue of A in magnitude, and let

⇠̂k 2 Rn be the associated eigenvectors. Write ⇤̂ = diag(�̂1, . . . , �̂K) and ⌅̂ = [⇠̂1, . . . , ⇠̂K ].

We propose the following algorithm:

Mixed-SCORE algorithm for estimating ⇧. Input: A,K. Output: ⇡̂i, 1  i  n.

• SCORE step. Fix a threshold T > 0 (T = log(n) by default). Obtain (�̂1, ⇠̂1), . . . , (�̂K , ⇠̂K)

and define R̂ = [r̂1, r̂2, . . . , r̂n]0 as the matrix where for 1  i  n and 1  k  K � 1,

R̂(i, k) = sign(⇠̂k+1(i)/⇠̂1(i)) ·min
�
|⇠̂k+1(i)/⇠̂1(i)|, T

 
. (2.5)

• VH (vertex hunting) step. Use the rows of R̂ to estimate the vertices of Ideal Simplex

(details below). Denote the estimated vertices by v̂1, v̂2, . . . , v̂K .

• MR (membership reconstruction) step. Obtain an estimate of b1 by

b̂1(k) = [�̂1 + v̂0kdiag(�̂2, . . . , �̂K)v̂k]
�1/2, 1  k  K. (2.6)

For each 1  i  n, solve ŵi 2 RK from the linear equations: r̂i =
PK

k=1
ŵi(k)v̂k,

PK
k=1

ŵi(k) = 1. Define a vector ⇡̂⇤
i 2 RK by ⇡̂⇤

i (k) = max{0, ŵi(k)/b̂1(k)}, 1  k 

K. Estimate ⇡i by ⇡̂i = ⇡̂⇤
i /k⇡̂

⇤
i k1, 1  i  n.

In Step 1, R̂ is an estimate of the matrix R in (2.4). In Step 3, b̂1 is an estimate of b1

in Lemma 2.1. These two steps are similar to those in the oracle case. Step 2 is however

very di↵erent from in the oracle case: The point cloud {r̂i}1in is noisy. It is no longer

possible to retrieve the vertices of the Ideal Simplex by simply computing the convex hull
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Figure 3: Left: rows of R (many rows are equal so a point may represent many rows). Middle:
each point is a row of R̂ (it is seen that we have strong noise and many outliers, so we may have
poor results if we hunt for vertices directly). Right: same as the middle panel except that a triangle
(solid blue) estimated by SVS is added. In all panels, dashed triangle is the Ideal Simplex, and
red/green points correspond to pure/mixed nodes respectively. The figure suggests (a) the rows of
R̂ are quite noisy, with many outliers, and (b) SVS works reasonably well.

Table 1: Comparison of four versions of SVS (for completeness, we analyze all versions theoretically.
Numerically, we recommend SVS and SVS* for they have better performances).

Using exhaustive search in 2nd stage Using SP in 2nd stage
L < n SVS SVS*
L = n CVS SP

of these points. We call the estimation of v1, v2, . . . , vK the vertex hunting (VH) problem.

We introduce several VH algorithms. A summary of these algorithms is in Table 1.

The first possible VH approach is to use Successive Projection (SP) (Araújo et al., 2001).

SP is a greedy algorithm. It starts by setting v̂1 as the data point r̂i that has the largest

Euclidean norm among r̂1, r̂2, . . . , r̂n. Then, for 2  k  K successively, it projects r̂i’s to

the orthogonal complement of Span(v̂1, . . . , v̂k�1) and finds the data point with the largest

Euclidean norm after projection; the estimated kth vertex v̂k is set as the corresponding r̂i.

However, the SP algorithm frequently underperforms numerically. The Ideal Simplex is

highly corrupted by noise and outliers (see Figure 3), but SP is well-known to be sensitive

to outliers. To overcome the challenge, we propose Sketched Vertex Search (SVS). SVS is a

two-stage algorithm. In the denoise stage, we cluster n points into L clusters by k-means,

for a tuning integer K ⌧ L ⌧ n. The center of each cluster (called a “local center”) is

the average of many nearby points and thus robust to outliers. In the second stage, we

estimate K vertices from these L “local centers”. The full algorithm is as follows:

Sketched Vertex Search (SVS) for vertex hunting. Input: K, a tuning integer L � K,

the point cloud r̂1, r̂2, . . . , r̂n. Output: vertices v̂1, v̂2, . . . , v̂K .

• Denoise. Apply the classical k-means algorithm to {r̂i}1in assuming there are L

clusters. Denote the centers of the clusters by m̂1, m̂2, . . . , m̂L 2 RK�1.
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• Vertex search. For any K distinct indices 1  j1 < . . . < jK  L, let H(m̂j1 , . . . , m̂jK )

be the convex hull of m̂j1 , . . . , m̂jK , and

dL(j1, · · · , jK) = max
1jL

distance
�
m̂j , H{m̂j1 , · · · , m̂jK}

�
.4 (2.7)

Find 1  ĵ1 < ĵ2 < . . . < ĵK  L that minimizes (2.7). Output v̂k = m̂ĵk
, 1  k  K.

The tuning integer L can be chosen in a data-driven fashion. For each L 2 [K +1, 3K], let

dL(R̂) = dL(ĵ1, · · · , ĵK) be the same as in (2.7) and �L(R̂) = min{j1,...,jK}
�
max1kK{kv̂(L)jk

�

v̂(L�1)

k k}
�
, where the minimum is taken over all permutations of {1, 2, . . . ,K}. The quan-

tity �L(R̂) tracks the change of estimated vertices when we increase the tuning parameter

from (L� 1) to L. We select L by (if there is a tie, pick the largest integer):

L̂⇤
n(A) = argminK+1L3K{�L(R̂)/(1 + dL(R̂))}. (2.8)

We also consider three variants of SVS. The first is SVS*, where in the second stage we

apply SP to the L “local centers”. The second is Combinatorial Vertex Search (CVS), where

we take L = n in SVS (i.e., the denoise stage is skipped, so in the second stage, each r̂i is

viewed as a local center). In the last variant, we take L = n in SVS*, so it reduces to SP.

For practical use, we recommend SVS and SVS*; they have the denoise step by k-means,

which is crucial for good numerical performance.

We view Mixed-SCORE a generic algorithm and treat VH as a “plug-in” step. For each

VH approach, we can plug it in and obtain a di↵erent version of Mixed-SCORE. We denote

them by Mixed-SCORE-X, e.g., for X 2 {SVS, SVS*, CVS, SP}. Mixed-SCORE can also

be used with other possible VH approaches.

The complexity of Mixed-SCORE mainly comes from obtaining the first K eigenvalues

and eigenvectors of A, which is O(nK2), and the VH step, which is O(nK2) if we use the SP

algorithm. Hence, Mixed-SCORE-SP is a polynomial-time algorithm. Mixed-SCORE-SVS

is also a polynomial-time algorithm if (K,L) are both finite.

Remark 4 (Comparison with the standard PCA). The standard PCA approach creates

a K-dimensional vector xi = ⌅̂0ei for each node i. These vectors do not have real meanings

and are hard to interpret; moreover, each xi is determined by all the parameters of DCMM

and cannot faithfully represent the community structure among nodes. In comparison, the

⇡̂i’s from Mixed-SCORE have clear interpretations.

4
For a point v and a set H, distance(v,H) is the Euclidean distance from v to H. When H is a simplex,

this distance can be easily computed via a standard quadratic programming.
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2.4 Estimation of ⇥ and P

We are also interested in estimating the other parameters of DCMM. Among all the param-

eters, ⇧ is the hardest to estimate. Once ⇧̂ is obtained, estimation of (⇥, P ) is comparably

easy. Therefore, as a byproduct, we use the output of Mixed-SCORE to construct estimates

of (⇥, P ). Recall that �1, . . . ,�K are the nonzero eigenvalues of ⌦ and ⇠1, . . . , ⇠K are the

associated eigenvectors. Let v1, v2, . . . , vK be the vertices of the Ideal Simplex and b1 be as

in Lemma 2.1. The next lemma is proved in the supplementary material.

Lemma 2.2. Let ⇤ = diag(�1, . . . ,�K), V = [v1, . . . , vK ], and B = diag(b1)[1K , V 0]. If the

conditions of Lemma 2.1 hold, then P = B⇤B0 and ✓i = ⇠1(i)/(⇡0
ib1), 1  i  n.

After running Mixed-SCORE, we collect the following quantities: (i) the leading eigen-

vector ⇠̂1; (ii) the estimated vertices V̂ = [v̂1, v̂2, . . . , v̂K ]; (iii) a vector b̂1; (v) the estimated

mixed membership vectors in ⇧̂ = [⇡̂1, ⇡̂2, . . . , ⇡̂n]0. Inspired by Lemma 2.2, we let

P̂ = B̂⇤̂B̂0, and ✓̂i = ⇠̂1(i)/(⇡̂
0
ib̂1), 1  i  n. (2.9)

3 Theoretical properties

We state some regularity conditions. Recall that ✓i’s are the degree parameters in Model (2.2).

Let ✓max = maxi ✓i, ✓min = mini ✓i, ✓̄ = n�1
Pn

i=1
✓i, and ✓̄⇤ =

q
n�1

Pn
i=1

✓2i . Define

errn = errn(⇥) = [(✓3/2max✓̄
3/2)/(✓min✓̄

2

⇤)] ·
q
log(n)/(n✓̄2). (3.10)

Assumption 1. ✓max  C, and errn ! 0.

Here, the interesting range for ✓i is from O(n�1/2) (up to a multi-log(n) term) to O(1),

so the first condition is mild. To appreciate the second condition, note that when ✓max 

C✓min, errn ⇣

p
log(n)/(n✓̄2), where n✓̄2 is the order of the expected average node degree.

Therefore, the condition of errn ! 0 is the same as that the average node degree grows to

1 faster than log(n), which is mild. Introduce a K ⇥K matrix G = Kk✓k�2(⇧0⇥2⇧).

Assumption 2. kPkmax  C, kGk  C, and kG�1
k  C.

The first one is seen to be mild. For the other two conditions, it is instructive to consider

a special case where all nodes are pure. In this case, G = Kk✓k�2
·diag(k✓(1)k2, . . . , k✓(K)

k
2),

where k✓(k)k2 =
P

i2Ck ✓
2

i . Therefore, the two conditions reduce to that of maxk k✓(k)k2 

Cmink k✓(k)k2, which is only mild. Denote by �k(PG) the k-th largest right eigenvalue of

PG, and by ⌘k 2 RK the associated right eigenvector, 1  k  K.
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Assumption 3. |�2(PG)|  (1� c1)�1(PG), and c1�n  |�K(PG)|  |�2(PG)|  c�1

1
�n,

where �n 2 (0, 1) and c1 2 (0, 1) is a constant.

The first item is a mild eigen-gap condition. In the second item, the quantity �n captures

the ‘distinction’ between communities and can be interpreted as the “signal strength” of

the DCMM model, where �n = O(1) is the case of “strong signal” and �n = o(1) is the

case of “weak signal” (�n is a component in the error rate to be introduced). We assume

�2, . . . ,�K are at the same order. This is only for convenience and can be relaxed (e.g.,

�2, . . . ,�K split into several groups and those in the same group are at the same order).

Assumption 4. min1kK ⌘1(k) > 0, and
max1kK ⌘1(k)
min1kK ⌘1(k)

 C.

In Section A.2 of the supplementary material, we show that this assumption is satisfied

in either of the following cases: As n ! 1, (a) all entries of PG are lower bounded by a

constant, (b) K is fixed and P tends to a fixed irreducible matrix P0, (c) K is fixed and G

tends to a fixed irreducible matrix G0, and (d) the maximum and minimum row sums of P

are at the same order and ⇡i’s are i.i.d. generated from a Dirichlet distribution.

3.1 Large-deviation bounds for R̂

The following entry-wise large-deviation bounds for matrix R̂ plays a key role in our anal-

ysis. Let R̂ = [r̂1, r̂2, . . . , r̂n]0 be as in (2.5). Let R = [r1, r2, . . . , rn]0 be as in (2.4).

Theorem 3.1 (Large-deviation bounds for R̂). Consider the DCMM model where Assump-

tions 1-4 hold. Suppose
p

K log(n)  T  1 for T in (2.5). Let errn be as in (3.10) and

�n as in Assumption 3. With probability 1� o(n�3), there exists an orthogonal matrix H 2

RK�1,K�1 such that max1in kHr̂i�rik  CK3/2��1
n errn. If, additionally, ✓max  C✓min,

then with probability 1� o(n�3), max1in kHr̂i � rik  CK3/2(n✓̄2�2
n)

�1/2
p
log(n).

In Theorem 3.1, (K,�n, ✓̄) may all vary with n. Among them, �n captures the “strength

of community signals”, where we either have �n = O(1) or �n ! 0 reasonably fast, so the

claims applies to both the cases of “strong signals” and “weak signals”.

The proof of Theorem 3.1 is based on a row-wise large deviation bound for the eigenvec-

tors of the adjacency matrix (Lemma D.2 in the supplement). In the literature, there were

few results about row-wise deviation bounds for eigenvectors of a network adjacency matrix

(Abbe et al., 2020; Fan et al., 2022, 2020). They focused on moderate degree heterogeneity

and assumed that the nonzero population eigenvalues are at the same order, so they do not

apply to our setting. We need non-trivial e↵orts to prove Lemma D.2 and Theorem 3.1.
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3.2 Rates of Mixed-SCORE with a generic but e�cient VH step

Mixed-SCORE has a plug-in VH step, and the goal of the VH step is to estimate the vertices

v1, . . . , vK of the ideal simplex. In this section, we present the rate of Mixed-SCORE for

a generic but e�cient VH step. Next in Section 3.3, we discuss the rate of Mixed-SCORE

for all 4 proposed VH step in Table 1 (where the rate can be much faster in some cases).

Definition 1 (E�cient VH). We call a VH step e�cient if it satisfies that max1kK kHv̂k�

vkk  Cmax1in kHr̂i � rik, where H is the orthogonal matrix in Theorem 3.1.

For our proposed VH methods in Table 1, CVS and SP are e�cient under Assumptions

1-4, and SVS and SVS* are e�cient if some additional conditions hold; see Section 3.3.

For any estimate ⇧̂ = [⇡̂1, ⇡̂2, . . . , ⇡̂n]0 for ⇧, we measure the error by the mean squared

error (MSE) E[ 1n
Pn

i=1
k⇡̂i � ⇡ik2]. Recall that errn is defined in (3.10).

Theorem 3.2 (Error of Mixed-SCORE). Consider the DCMM model where Assumptions

1-4 hold. Let ⇧̂ be the estimate of ⇧ by Mixed-SCORE with a generic but e�cient VH step.

Then, E[ 1n
Pn

i=1
k⇡̂i � ⇡ik2]  CK3��2

n err2n + o(n�2). If additionally ✓max  C✓min, then

E[ 1n
Pn

i=1
k⇡̂i � ⇡ik2]  CK3(n✓̄2�2

n)
�1 log(n) + o(n�2).

We now discuss the implication of Theorem 3.2 on economic applications. For simplicity,

we consider a case where ✓max ⇣ ✓min, K = O(1) and �n � C. By Theorem 3.2, the MSE is

O((n✓̄2)�1 log(n)). For a dense network, ✓̄ ⇣ 1, and the MSE becomes O(n�1 log(n)), which

is quite negligible. Suppose we have a downstream economic model yi = ↵ + ⇡0
i(�1)

� + ✏i,

where yi is an outcome of interest and ⇡i(�1) is the sub-vector of ⇡i by dropping the last

coordinate (to remove co-linearity). We plug in the ⇡̂i’s fromMixed-SCORE and let �̂ be the

least-squares coe�cient. It can be shown that |�̂��|2 = O
�
n�1

Pn
i=1

k⇡̂i�⇡ik2
�
+OP(n�1).

Therefore, as long as n✓̄2 � log(n), we have consistency on �̂. Furthermore, using the faster

rates in Section 3.3, we can further remove the log(n) factor in MSE; as a result, when the

network is dense, we also have root-n consistency of �̂.

Remark 5 (Rate optimality). Jin and Ke (2017) derived a minimax lower bound for

the case where K is finite and that ✓i’s are equal. They showed that for any estimate ⇧̂,

there is a constant c0 > 0 such that 1

n

Pn
i=1

k⇡̂i � ⇡ik2 � C/(n✓̄2�2
n) with probability � c0.

Comparing it with Theorem 3.2, the error rate of Mixed-SCORE is optimal (up to a log(n)

factor) for DCMM with ✓max  C✓min.

Remark 6 (Comparison with the rate of the OCCAM algorithm (Zhang et al., 2020)).

Since the theory of OCCAM does not allow �n = o(1) or K diverging with n, we compare

two methods only in the case that K  C and �n � C. The rate of Mixed-SCORE reduces
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to (n✓̄2)�1/2, but the rate of OCCAM cannot be faster than (n✓̄2)�1/5, which is strictly

slower. Also, OCCAM works only if the fraction of mixed nodes is properly small (hinged

in Assumption-B of Zhang et al. (2020)). For example, when K = 3, P = 0.9I3 + 0.113103,

and ⇡i =
1p
3
13 for all mixed nodes, the fraction of mixed nodes has to be < 1/4.

Remark 7 (Comparison with theory of community detection). Community detection is

a less challenging problem, where ⇡i’s are known to be degenerate. It has exponential rates

(Gao et al., 2018), but membership estimation only achieves polynomial rates (Jin and Ke,

2017). Consider an example with K = 2, ⇡i
iid
⇠ Dirichlet(↵0), and P (Aij = 1) = n�1⇡0

iP⇡j ,

where Pkm = a ·1{k = m}+b ·1{k 6= m}. As n ! 1, ↵0 is fixed but (a, b) can depend on n.

This is equivalent to a DCMM with ✓̄ ⇣ n�1/2pa and �n ⇣ (a�b)/a. Write I = (a�b)2/a.

The rate of Mixed-SCORE is O(I�1/2
p

log(n)), but when ⇡i’s are all degenerate, the rate

of community detection is exp(�O(I)).

Given the results for ⇧̂, we further study the estimates (⇥̂, P̂ ) defined in Section 2.4.

Theorem 3.3 (Estimation of (⇥, P ) in DCMM). Under the conditions of Theorem 3.2, with

probability 1�o(n�3), kP̂�Pk  C(K2+K3/2��1
n )errn and k⇥̂�⇥k

2

F  Ck✓k2K3��2
n err2n.

3.3 Rates for Mixed-SCORE with proposed VH steps, and faster rates

Section 3.2 analyzes a generic Mixed-SCORE algorithm with an e�cient VH step. In this

subsection, we discuss Mixed-SCORE with each specific VH approach in Table 1. First, we

consider CVS and SP. The following theorem shows that CVS and SP are both e�cient,

and Mixed-SCORE-CVS and Mixed-SCORE-SP attain the rate in Theorem 3.2.

Theorem 3.4. Consider the DCMM model where Assumptions 1-4 hold and each commu-

nity has at least one pure node. Let H be the orthogonal matrix in Theorem 3.1. If we apply

either CVS or SP to rows of R̂, then with probability 1� o(n�3), max1kK kHv̂k � vkk 

Cmax1in kHr̂i � rik, so both CVS and SP are e�cient. Moreover, for Mixed-SCORE-

CVS or Mixed-SCORE-SP, E[ 1n
Pn

i=1
k⇡̂i � ⇡ik2]  CK3��2

n err2n + o(n�2).

Next, we consider Mixed-SCORE-SVS and Mixed-SCORE-SVS*. SVS and SVS* use

a denoise stage, which provides a significant advantage in numerical performance, but also

makes them harder to analyze. For this reason, we only consider two settings. In the first

setting, we assume all ⇡i’s for mixed nodes are iid drawn from a continuous distribution. In

the second setting, ⇡i’s form several loose clusters. Owing to space limit, we only present

Setting 1 here. Setting 2 is in Section B of the supplementary material.
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Setting 1. Let S0 = S0(e1, e2, . . . , eK) be the standard simplex in RK , where the vertices

e1, e2, . . . , eK are the standard Euclidean basis vectors of RK . Fix a density g defined over

S0. Let R = {⇡ 2 S0 : g(⇡) > 0} be the support of g. Suppose there is a constant c0 > 0

such that R is an open subset of S0, and distance(ek,R) � c0, 1  k  K. Let �v(⇡) be the

point mass at ⇡ = v. Fixing constants ✏1, . . . , ✏K > 0 with
PK

k=1
✏k < 1, we invoke a random

design model where ⇡i’s are iid drawn from f(⇡) =
PK

k=1
✏k · �ek(⇡) +

�
1�

PK
k=1

✏k
�
· g(⇡).

The following is similar to errn in (3.10), and quantifies the “faster rate” aforementioned.

err⇤n = err⇤n(⇥) = [(✓1/2max✓̄
3/2)/(✓min✓̄⇤)] · (n✓̄

2)�1/2. (3.11)

Theorem 3.5. Consider the DCMM model where Assumptions 1-4 hold and ⇡i’s are as in

Setting 1. Let H be as in Theorem 3.1. There exists a constant L0(g, ✏1, . . . , ✏K) > 0 such

that, if we apply SVS or SVS* to rows of R̂ with L � L0, then with probability 1� o(n�3),

max1kK kHv̂k � vkk  C
�
n�1

Pn
i=1

kHr̂i � rik2
�1/2

. Moreover, for Mixed-SCORE-SVS

or Mixed-SCORE-SVS*, E[ 1n
Pn

i=1
k⇡̂i � ⇡ik2]  CK3��2

n (err⇤n)
2 + o(n�2).

By Theorem 3.5, the rates of Mixed-SCORE-SVS and Mixed-SCORE-SVS* are faster

than those of Mixed-SCORE-SP and Mixed-SCORE-CVS. In fact, by (3.10)-(3.11), we have

err⇤n/errn = [✓̄⇤/(✓max

p
log(n))]. Since ✓̄⇤/✓max  1 and ✓̄⇤/✓max may tend to 0 rapidly, we

have the following observations: 1) The rate here is faster than that of Theorem 3.2 by at

least a factor of log(n). 2) The rate here can be much faster than that of Theorem 3.2 if

✓̄⇤/✓max ! 0 rapidly. As an example, suppose ✓1 = . . . = ✓n�1 = ↵n and ✓n = n�↵n, where

0 < � < 1/2 is a constant; in this case, err⇤n/errn = ✓̄⇤/(✓max

p
log(n))  n��/

p
log(n),

and so the rate here is much faster than that of Theorem 3.2. Once we have a faster rate

for ⇧̂, we also enjoy a faster rate for the proposed (⇥̂, P̂ ) in Section 2.4 (proof is omitted).

Remark 8. The faster rates here are because SVS and SVS* use a denoise stage, which

improves the accuracy in vertex hunting and so in membership estimation. The improved

rate is not due to the more strict setting considered here (in fact, in Setting 1 and Setting

2, if we use SP and CVS for VH in Mixed-SCORE, then we do not have a much faster

rate). For more general settings, Mixed-SCORE-SVS or Mixed-SCORE-SVS* continue to

enjoy this faster rate, as supported by numerical experiments in Section 4.

4 Simulations

Experiment 1 (Comparison of VH approaches). We view Mixed-SCORE as a generic

algorithm, where we can plug in any VH approach. In Table 1, we list four VH approaches.
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Figure 4: Comparison of VH methods (black: truth; blue: SP; yellow: CVS; red: SVS). Left: The
case of weak noise. CVS and SVS perform well, but SP performs less satisfactorily (possible reason:
SP is a greedy algorithm). Middle: The case of strong noise. SVS performs well, but SP and CVS
perform unsatisfactorily. This is because SVS is much less sensitive to outliers. Right: Robustness
of SVS to the choice of L (y-axis is maxk kHv̂k � vkk2).

We now compare SP, CVS and SVS (the performance of SVS* is very similar to SVS, thus

omitted). Fix (n,K) = (500, 3). P is a matrix whose diagonals are 1 and o↵-diagonals are

0.3. Each community has 50 pure nodes. For ⇡i’s of the remaining 350 nodes, half of them

are iid drawn from Dirichlet(0.6, 0.2, 0.2), and half are iid drawn from Dirichlet(0.3, 0.4, 0.3).

We consider two cases: (a) Weak noise (✓i ⌘ 0.7, and the network is denser) (b) Strong noise

(✓i ⌘ 0.4, and the network is sparser). We choose L as in (2.8), but we also investigate SVS

for all L 2 {4, 5, 6, . . . , 15}. We report the average of maxk kHv̂k�vkk2 over 100 repetitions.

The results are in Figure 4. We observe the following: (i) In the strong signal case, three

methods perform similarly. (ii) In the weak signal case, CVS and SP are significantly worse

than SVS. (iii) The performance of SVS is insensitive to the choice of L. The results confirm

our claims in Section 2.3 and Section 3.3 that the de-noise stage in SVS plays a crucial role

in improving the numerical performance.

Experiments 2-4 (Performance of Mixed-SCORE-SVS). From now on, we fix the VH

approach as SVS. The tuning integer L is chosen from data using (2.8). In the literature,

other mixed membership estimation approaches only work for MMSBM. The only exception

is OCCAM Zhang et al. (2020). OCCAM assigns to each node a non-negative “membership”

vector with unit `2-norm; we renormalize them by their `1-norms and use them as the

estimated ⇡i. Fix n = 500 and K = 3. For 0  n0  160, let each community have

n0 number of pure nodes. Fixing x 2 (0, 1/2), let the mixed nodes have four di↵erent

memberships (x, x, 1�2x), (x, 1�2x, x), (1�2x, x, x) and (1/3, 1/3, 1/3), each with (500�

3n0)/4 number of nodes. Given ⇢ 2 (0, 1), P has diagonals 1 and o↵-diagonals ⇢. Fixing

z � 1, we generate the degree parameters such that 1/✓i
iid
⇠ U(1, z), where U(1, z) denotes

the uniform distribution on [1, z]. The tuning parameter L is selected as in (2.8). For each

parameter setting, we report n�1
Pn

i=1
k⇡̂i � ⇡ik2 averaged over 100 repetitions.
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Figure 5: Estimation errors of Mixed-SCORE and OCCAM (y-axis: n�1
Pn

i=1 k⇡̂i � ⇡ik
2).

Experiment 2 (fraction of pure nodes). Fix (x, ⇢, z) = (0.4, 0.1, 5) and let n0 range in

{40, 60, 80, 100, 120, 160}. As n0 increases, the fraction of pure nodes increases from around

25% to around 95%. See Figure 5 (left). When the fraction of pure nodes is < 70%, Mixed-

SCORE significantly outperforms OCCAM; when the fraction of pure nodes is > 70%, the

two methods have similar performance.

Experiment 3 (purity of mixed nodes). We call max1kK{⇡i(k)} the “purity” of node

i. Fix (n0, ⇢, z) = (80, 0.1, 5) and let x range in {0.05, 0.1, 0.15, · · · , 0.5}. In our settings,

there are four types of mixed nodes. For the first three types, their purity is (1� 2x)1{x 

1/3}+x1{x > 1/3}. Therefore, as x increases to 1/3, these nodes become less pure; then, as

x further increases, these nodes become more pure. See Figure 5 (middle). It suggests that

membership estimation is harder as the purity of mixed nodes decreases. Mixed-SCORE

outperforms OCCAM in almost all settings, especially when x is close to 1/3.

Experiment 4 (degree heterogeneity). Fix (x, n0, ⇢) = (0.4, 80, 0.1) and let z range in

{1, 2, · · · , 8}. Since 1/✓i
iid
⇠ U(1, z), a larger z means the lower average degree and more

severe degree heterogeneity (so the problem is harder). See Figure 5 (right). Mixed-SCORE

uniformly outperforms OCCAM. Interestingly, when z is small (so the problem is “easy”),

Mixed-SCORE is very accurate, but the performance of OCCAM is unsatisfactory.

Experiments 5-8. For space limit, we have relegated them to the supplement. Exper-

iment 5 studies settings where the matrix P varies. Experiment 6 studies settings where

⇡i’s drawn from a continuous distribution. Experiment 7 further investigates robustness of

Mixed-SCORE-SVS to the choice of L. Experiment 8 compares Mixed-SCORE with the

latent space modeling of networks Handcock et al. (2007).
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5 Real data applications

5.1 The international trade networks and the trade triangles

There are two lines of literature on the analysis of international trade networks. The first is

the gravity model (Anderson and Van Wincoop, 2003). It fits a generalized linear model for

trade flows using countrywise ‘size’ covariates and pairwise ‘trading cost’ covariates. The

second is in physics, which studies the topology of trade networks (Serrano and Boguná,

2003). Mixed-SCORE is useful in both approaches.

Combination of Mixed-SCORE and gravity models. LetX(i, j) be the trade flow

from country i to country j. The (general) gravity model assumesX(i, j) ⇠ Poisson(�(i, j)),

with ln(�(i, j)) =
PM

m=1
↵mGm(i) +

PM
m=1

�mGm(j) +
PS

s=1
�sDs(i, j) + ci + cj , where

G1, . . . , GM are the (log) ‘size’ covariates, D1, . . . , DS are the (log) ‘trading cost’ covariates,

and ci’s are the fixed e↵ects of countries. We fit this model using Poisson pseudo maximum

likelihood and let �̂(i, j) denote the fitted value. We define two ‘p-values’ for each country

pair: Q1(i, j) = P(Poisson(�̂(i, j)) > X(i, j)) and Q2(i, j) = P(Poisson(�̂(i, j)) < X(i, j)).

A small value of Q1(i, j) implies that the observed trade flow is significantly higher than the

fitted one, and a small value of Q2(i, j) indicates the opposite. We construct two undirected

networks. In the first one, there is an edge between nodes i and j if min{Q1(i, j), Q1(j, i)} <

0.05. In the second network, edges are defined similarly except that Q1 is replaced by Q2.

We call them the gravity-under-shooting (GUS) network and gravity-over-shooting (GOS)

network, respectively. For each network, we apply Mixed-SCORE to obtain (⇧̂, ⇥̂, P̂ ) and

then construct a new nodal covariate, U(i) = ln(✓̂(i)), and a new dyadic covariate, H(i, j) =

ln(⇡̂0
iP̂ ⇡̂j). We use them as surrogates of those unobserved covariates in the gravity model

and plug them back to re-fit the gravity model. As explained in Example 3 of Section 1.3,

we assume here that the unobserved covariates have a DCMM-like structure, which has the

same spirit as the model in Graham (2015). Our proposed ‘Mixed-SCORE + refitting’ is a

proxy approach to fitting the model we introduce there.

To test the performance of our approach, we use an edited version of the gravity data set

in Head et al. (2010) (available in the R package gravity). The original data set contains

the bilateral trade flows for 166 countries in 1948-2006. We only use the data in 2006. This

edited version includes a nodal covariate, gdp, and five dyadic covariates, distw, rta, contig,

comlang o↵ and comcur (their meanings are in Column 2 of Table 2). Compared with the

original gravity model fitting in Head et al. (2010), this edited version does not provide all

covariates, so it serves as a good example of unobserved covariates. Since there is only one
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Table 2: Combination of Mixed-SCORE and gravity model. The bigger model has two new covari-
ates created by Mixed-SCORE. The F statistic for model comparison is 928.56 (p-value < 2.2e-16).
We note that these coe�cients are not supposed to be directly compared with the fitted coe�cients
in Column 2 of Table 2 in Head et al. (2010), because they use panel data but we only use one year’s
data (this also explains why our standard errors are considerably smaller).

Before After
Covariate Meaning Coef. Pval Coef. Pval
distw weighted distance -.832 (.012) <2e-16 *** -.722 (.011) <2e-16 ***
rta regional trade agreement dummy .429 (.026) <2e-16 *** .429 (.022) <2e-16 ***
contig contiguity dummy .415 (.022) <2e-16 *** .403 (.019) <2e-16 ***
comlang o↵ common o�cial language dummy .242 (.022) <2e-16 *** .181 (.019) <2e-16 ***
comcur common currency dummy -.167 (.031) 7e-08 *** .005 (.027) .852
dyadic GUS new trade cost covariate (GUS) 1.294 (.033) <2e-16 ***
dyadic GOS new trade cost covariate (GOS) -.337 (.037) <2e-16 ***

year of data, we did not include any nodal covariate, because their e↵ects will be absorbed

into the fixed e↵ect ci; all five dyadic covariates were included. We constructed the GUS

and GOS networks as above and ran Mixed-SCORE separately on these two networks. We

set K = 3 for both networks.5 It gave rise to two new dyadic covariates HGUS and HGOS

(again, we did not include the new nodal covariates because of the fixed e↵ects ci). The

results are in Table 2, where both new covariates created by Mixed-SCORE are significant.

The other coe�cients have mild changes and slightly smaller standard errors after re-fitting,

except the coe�cient of comcur. Initially, the coe�cient of comcur is negative, with a very

small p-value. This contradicts our common sense: sharing common currency should not

have a significantly negative impact on trading. After adding the Mixed-SCORE covariates,

the coe�cient of cumcur becomes positive and insignificant. It suggests that our proposed

approach is potentially useful in correcting the bias caused by unobserved covariates.

To appreciate what information Mixed-SCORE captures, we check the rows of R̂ for the

GUS and GOS networks. Owing to space limit, we only discuss the GUS network here but

relegate the results of the GOS network to the supplementary material (see Section H). The

edges in the GUS network indicate significant under-estimation of trade flows in the initial

gravity model. Therefore, if r̂i and r̂j are close, the two countries may have unmodeled

connections that benefit trade. The rows of R̂ and the estimated simplex (which is a triangle

sinceK = 3) for GUS are shown in Figure 6a. We have some observations: (a) The 3 vertices

may be interpreted as Caribbean (top), Former Soviet Union (bottom left), and Western

African (bottom right). (b) United States, Canada and Mexico are close. These countries

are in the North American Free Trade Agreement (NAFTA). The benefit of NAFTA cannot

be fully captured by the regional trade agreement dummy rta (Anderson and Yotov, 2016)

5
We also tried other values of K. For di↵erent K, the networks and Mixed-SCORE output are di↵erent,

but the newly created covariates and the subsequent gravity model fitting are similar.
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and is further revealed in the covariates created by Mixed-SCORE. (c) United States and

Russia are far away from each other - a consequence of the historical confrontation between

two countries (Hufbauer and Oegg, 2003). (d) High-GDP countries tend to be in the interior

of the triangle (i.e., they have low ‘trading costs’ with many countries). This is consistent

with economic theory that good ‘tradability’ can boost economic growth (Waugh, 2010).

(e) United States (with the highest GDP) is not in the deep interior of the triangle but on

an edge. Interestingly, this position is farthest from the Former Soviet Union vertex.

Remark 9. In re-fitting the gravity model, an alternative approach is replacing H(i, j)

by ln(b⌦ij), where b⌦ is an arbitrary estimate of ⌦. Using the output of Mixed-SCORE, we

can obtain an estimate b⌦MS by b⌦MS

ij = ✓̂i✓̂j · ⇡̂0
iP̂ ⇡̂j . Since ✓̂i and ✓̂j will be absorbed into

the fixed e↵ects, this approach is equivalent to the approach we have used above. However,

we may plug in a di↵erent estimate of ⌦, such as b⌦PCA =
PK

k=1
�̂k⇠̂k⇠̂k, where �̂k and ⇠̂k

are the kth eigenvalue and eigenvector of A. In Section I of the supplementary material, we

compare the two estimates of ⌦ and find that b⌦MS has much better numerical performance.

The reason is that b⌦MS utilizes the DCMM model structure, not just low-rankness of ⌦.

Remark 10. In the recent literature of gravity modeling of trade data, it has become

common to use panel data and to include the importer-year and exporter-year fixed e↵ects

(Weidner and Zylkin, 2021). We did not use panel data because Mixed-SCORE only applies

to static networks. In a working paper, we extend Mixed-SCORE to dynamic networks. It

will be useful for analysis of panel data. We leave this to future work.

Remark 11. In the analysis of panel data, an interesting approach is using the pairwise

fixed e↵ects (Weidner and Zylkin, 2021) to account for unobserved covariates. However, for

our example here where we only use one year’s data, this approach will introduce n(n�1)/2

free parameters, but we only have n(n� 1) observed trading flows; therefore, this approach

will have the issue of over-fitting. In comparison, our Mixed-SCORE approach only allows

for O(nK) free parameters and does not have this over-fitting issue.

Using Mixed-SCORE for network analysis of the world trade web. Studying

the network topology of the world trade web is a problem of interest (Serrano and Boguná,

2003). These works do not require observing any covariates. They build networks directly

from trade flows and study the topology of these networks (e.g., power law degree distri-

bution, latent community structure, centrality metric, clustering coe�cient, etc.). We will

show that Mixed-SCORE is useful for creating low-dimensional embeddings of countries in

these networks. We downloaded the trade in services data from https://data.wto.org/.

For each pair of economies (i, j), we aggregated the total service export from economy i to
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(a) The GUS network after gravity model fitting.
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(b) The trade in service (TIS) network

Figure 6: Rows of R̂ and the estimated simplex (K = 3, so the simplex is a triangle). Left: Orange
dots are top 15 countries with highest GDPs. Right: Green dots are 35 manually-picked economies.

economy j during 2014-2018 (we used the numbers reported by economy i). There are 202

economies in total, but we removed European Union and Extra EU Trade, as their data

partially overlap with the data of individual countries. This gave rise to a 200⇥ 200 weight

matrix X. We symmetrize X to Y = (X +X 0)/2. Let u = (u1, u2, . . . , u200)0 contain the

row sums of Y . Define Z = [diag(u)]�1/2Y [diag(u)]�1/2, where each entry of Z is in [0, 1]. 6

Let µ and � be the mean and standard deviation of all nonzero entries of Z. We construct

an undirected network, where each economy is a node and there is an edge between i and

j if and only if Z(i, j) � µ+ �. We restrict it to the giant component, which has n = 116

nodes. We call this network the trade-in-service (TIS) network. We applied Mixed-SCORE

with K = 3.7 The rows of R̂ are displayed in Figure 6b.8 This creates an embedding of all

economies into a 2-dimensional latent space. We have some noteworthy observations. (a)

The point cloud fits well with a triangle, which we call the ‘trade triangle’. The three ver-

tices may be interpreted as three di↵erent regions: ‘North Africa’ (top vertex in Figure 6b),

‘Southeast Asia’ (bottom left vertex), and ‘Central/South Europe’ (bottom left vertex).

(b) It agrees to economic theory that geographic proximity plays a key role in trade. In

Figure 6b, countries that are geographically close tend to cluster together; e.g., countries in

6
One may use GDP or population to normalize, but here we are primarily interested in the case with no

observed covariates. We follow the literature to use total trade flows to normalize.
7
For the adjacency matrix, the scree plot shows the elbow point is either at K = 3 or K = 4. We applied

Mixed-SCORE with both K = 3 and K = 4. It turns out that for K = 3, the plot of the rows of R̂ (see

(2.5)) fits better with the simplex structure, and the results are easier to interpret, so we choose K = 3.

Furthermore, we set T = 2 log(n) and L = 25 in Mixed-SCORE.
8
The point associated with Montenegro is far away from the data cloud, which we treat as an outlier and

do not show in the figure.
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Southeast Asia (Thailand, Vet Nam, Malaysia, etc.), East Asia (China, Japan, Korea, etc.),

North America (USA, Canada, Mexico, etc.), West Europe (UK, France, Germany, etc.),

East Europe and West/Central Asia (Russian, Kazakhstan, Turkey, Bulgaria, etc.) and so

on. (c) The node embedding contains more information than geographical proximity. For

example, Singapore is geographically close to Southeast Asian countries, but it is closer

to East Asian countries in the trade triangle; West European countries are geographically

closer to East European countries, but they are closer to North American countries in the

trade triangle. These can be explained by trading agreements and historical trading rela-

tionships. The above supports that Mixed-SCORE is useful for node embedding. Imagine

that we are given the trade flows of a new product or service, with little known information;

we can apply Mixed-SCORE to visualize the locations of countries in the embedded space

and gain useful insights for next-step modeling.

5.2 The coauthor and citee network of statisticians, and Fan’s group

The study of coauthorship networks and citation networks is common in applied social sci-

ence (Barabâsi et al., 2002). The goal is using scientific publications in a field to study the

development of the field itself. It is useful for discovering whether all sub-areas (‘communi-

ties’) are developed in a healthy and balanced way and whether any particular sub-area is

under-developed and needs more allocation of resources (Foster et al., 2015). For example,

Andrikopoulos et al. (2016) studied the coauthorship network for Journal of Econometrics.

In this subsection, we use a data set from Ji and Jin (2016). It consists of bibtex and cita-

tion data of 3, 248 papers published in four top-tier statistics journals, Annals of Statistics,

Biometrika, Journal of American Statistical Association, and Journal of Royal Statistical

Society -Series B, during 2003–2012.

The coauthorship network. Ji and Jin (2016) defined a coauthorship network, where

each node is an author, and two authors have an edge if they coauthored 2 or more papers in

the data range. The giant component of the network contains 236 authors. Ji and Jin (2016)

suggest that this is the “High Dimensional Data Analysis” group, which has a “Carroll-

Hall” sub-group (including researchers in nonparametric and semi-parametric statistics and

functional estimation) and a “North Carolina” sub-group (including researchers from Duke,

North Carolina, and NCSU). In light of this, we consider a DCMMmodel assuming (a) there

are K = 2 communities called “Carroll-Hall” and “North Carolina” respectively, and (b)

some nodes have mixed memberships in two communities. We applied Mixed-SCORE, and

the results are in Table 3. It was argued in Ji and Jin (2016) that the “Fan” group (Jianqing
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Fan and collaborators) has strong ties to both communities. Our results confirm such a

finding but shed new light on the “Fan” group: many of the nodes (e.g., Yingying Fan, Rui

Song, Yichao Wu, Chunming Zhang, Wenyang Zhang) have highly mixed memberships, and

for each mixed node, we can quantify its weights in two communities. For example, both

Runze Li (former graduate of UNC-Chapel Hill) and Jiancheng Jiang (former post-doc at

UNC-Chapel Hill and current faculty member at UNC-Charlotte) have mixed memberships,

but Runze Li is more on the “Carroll-Hall” community (weight: 73%) and Jiancheng Jiang

is more on the “North Carolina” community (weight: 62%).

Table 3: Left and Middle: high-degree pure nodes in the “Carroll-Hall” community and the “North
Carolina” community. Right: highly mixed nodes (data: Coauthorship network).

Name Deg. Name Deg. Name Deg. Estimated PMF
Peter Hall 21 Joseph G Ibrahim 14 Jianqing Fan 16 54% of Carroll-Hall
Raymond J Carroll 18 David Dunson 8 Jason P Fine 5 54% of Carroll-Hall
T Tony Cai 10 Donglin Zeng 7 Michael R Kosorok 5 57% of Carroll-Hall
Hans-Georg Muller 7 Hongtu Zhu 7 J S Marron 4 55% of North Carolina
Enno Mammen 6 Alan E Gelfand 5 Hao Helen Zhang 4 51% of North Carolina
Jian Huang 6 Ming-Hui Chen 5 Yufeng Liu 4 52% of North Carolina
Yanyuan Ma 5 Bing-Yi Jing 4 Xiaotong Shen 4 55% of North Carolina
Bani Mallick 4 Dan Yu Lin 4 Kung-Sik Chan 4 55% of North Carolina
Jens Perch Nielsen 4 Guosheng Yin 4 Yichao Wu 3 51% of Carroll-Hall
Marc G Genton 4 Heping Zhang 4 Yacine Ait-Sahalia 3 51% of Carroll-Hall
Xihong Lin 4 Qi-Man Shao 4 Wenyang Zhang 3 51% of Carroll-Hall
Aurore Delaigle 3 Sudipto Banerjee 4 Howell Tong 2 52% of North Carolina
Bin Nan 3 Amy H Herring 3 Chunming Zhang 2 51% of Carroll-Hall
Bo Li 3 Bradley S Peterson 3 Yingying Fan 2 52% of North Carolina
Fang Yao 3 Debajyoti Sinha 3 Rui Song 2 52% of Carroll-Hall
Jane-Ling Wang 3 Kani Chen 3 Per Aslak Mykland 2 52% of North Carolina
Jiashun Jin 3 Weili Lin 3 Bee Leng Lee 2 54% of Carroll-Hall

The citee network. Ji and Jin (2016) also defined a citee network: there is an edge

between two authors if they have been cited at least once by the same author (other than

themselves). The giant component of this network contains 1790 authors. Ji and Jin (2016)

suggested that the network has three meaningful communities: “Large Scale Multiple Test-

ing” (MulTest), “Spatial and Nonparametric Statistics” (SpatNon) and “Variable Selection”

(VarSelect). We thereby set K = 3 and apply Mixed-SCORE. Figure 7 (left) plots the rows

of R̂ 2 Rn,2, where a simplex (triangle) is clearly visible in the cloud. Table 4 shows the

estimated PMF of high degree nodes (please also see Table 7 in the supplementary mate-

rial). The results confirm those in Ji and Jin (2016) (especially on the existence of three

communities aforementioned), but also shed new light on the network. First, high-degree

nodes in VarSelect are frequently observed to have an interest in MulTest, and this is not

true the other way around (e.g., compare Jianqing Fan, Hui Zou with Yoav Benjamini,

Joseph Romano). Second, the citations from SpatNon to either MulTest or VarSelect are

comparably lower than those between MulTest and VarSelect. This fits well with our im-

pression. Conceivably, a node with higher degree tends to be more senior and so tends to

be more mixed. Figure 7 (right) is the plot of the node purity, max1kK{⇡̂i(k)}, versus
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Figure 7: Left: rows of R̂ and the estimated simplex. Right: node purity v.s. degree; x-axis is ✓̂(i)
(grouped with an interval of .2; we plot the mean and standard deviation of k⇡̂ik1 in each group).

Table 4: Estimated PMF of the 12 nodes with the highest degrees in the Citee network.

Name Deg. MulTest SpatNon VarSelect Name Deg. MulTest SpatNon VarSelect
Jianqing Fan 977 0.365 0.220 0.415 Peter Buhlmann 742 0.527 0.121 0.352
Raymond Carroll 850 0.282 0.294 0.424 Hans-Georg Muller 714 0.413 0.237 0.350
Hui Zou 824 0.348 0.225 0.427 Yi Lin 693 0.417 0.137 0.446
Peter Hall 780 0.501 0.032 0.467 Nocolai Meinshausen 692 0.462 0.125 0.413
Runze Li 778 0.282 0.226 0.491 Peter Bickel 692 0.529 0.216 0.255
Ming Yuan 748 0.391 0.166 0.444 Jian Huang 677 0.572 0 0.428

the estimated degree heterogeneity parameter ✓̂(i). The results show a clear negative cor-

relation between two quantities (especially on the right end, which corresponds to nodes

with high degrees), which indicates that nodes with higher degrees tend to be more mixed.

6 Discussion

There have been independent interests on networks from both the econometric literature

and the statistical literature. Recently, the use of statistical network models in economic

problems has received increasingly more attention. However, the statistical models used in

network econometrics are largely limited to the classical models, such as SBM and graphon.

Recent developments in statistical network analysis have suggested new ideas in network

modeling, but such ideas are largely unknown in the area of network econometrics. In this

paper, we make two contributions: 1) We provide a new tool for estimating community

structure and creating nodal features from network data. 2) We o↵er a new network model

that accommodates severe degree heterogeneity and mixed memberships and is more suit-

able for real data; we also equip it with a fast spectral algorithm for estimating parameters

of this model. For many existing works in network econometrics that use SBM or graphon

as the network model, we may improve the results by using the more realistic DCMM model

introduced here. This will inspire interesting future research.

The design of our algorithm includes several novel ideas, e.g., discovering the simplex

structure in the spectral domain and the correct steps to estimate ⇧ from the simplex.
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We have also proposed new vertex hunting algorithms, which have much better numerical

performance than the existing algorithms such as successive projection. Theoretically, we

derive the explicit error bounds for ⇧̂ and show that it is rate-optimal under some conditions.

For future research, first, it is unclear how to estimate K from data. Jin et al. (2022)

proposed a stepwise goodness-of-fit procedure for estimating K when there is no mixed

membership (i.e., the DCMM model reduces to DCBM). It is an interesting question how

to combine Mixed-SCORE with this approach for estimating K under DCMM. Second,

we mention several applications of our work in network econometrics (see Section 1.3). It

is of great interest to study each application more carefully. For example, can we get a

theoretical guarantee for using Mixed-SCORE in these problems? We briefly discuss it in

the paragraph below Theorem 3.2, but more rigorous theoretical studies are needed. We

leave these open problems to future work.

Data and code: The code for implementing Mixed-SCORE and di↵erent VH algorithms

is available at https://github.com/ZhengTracyKe/MixedSCORE. This link also contains

all the real networks used in this paper.
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Bramoullé, Yann, Habiba Djebbari, and Bernard Fortin, 2009, Identification of peer e↵ects through
social networks, Journal of Econometrics 150, 41–55.

Cai, Tony, Zongming Ma, and Yihong Wu, 2013, Sparse pca: Optimal rates and adaptive estimation,
Ann. Statist. 41, 3074–3110.

Chen, Elynn Y, Jianqing Fan, and Xuening Zhu, 2020, Community network auto-regression for
high-dimensional time series, arXiv:2007.05521 .

Davis, Chandler, and William Morton Kahan, 1970, The rotation of eigenvectors by a perturbation.
iii, SIAM J. Numer. Anal. 7, 1–46.

Fan, Jianqing, Yingying Fan, Xiao Han, and Jinchi Lv, 2020, Asymptotic theory of eigenvectors for
random matrices with diverging spikes, J. Amer. Statist. Soc. 1–14.

Fan, Jianqing, Yingying Fan, Xiao Han, and Jinchi Lv, 2022, SIMPLE: Statistical inference on
membership profiles in large networks, J. R. Stat. Soc. Ser. B. (to appear) .

Foster, Jacob G, Andrey Rzhetsky, and James A Evans, 2015, Tradition and innovation in scientists’
research strategies, American Sociological Review 80, 875–908.

Gao, Chao, Zongming Ma, Anderson Y Zhang, and Harrison H Zhou, 2018, Community detection
in degree-corrected block models, Ann. Statist. 46, 2153–2185.

Gillis, Nicolas, and Stephen A Vavasis, 2013, Fast and robust recursive algorithms for separable
nonnegative matrix factorization, IEEE transactions on pattern analysis and machine intelligence
36, 698–714.

Graham, Bryan S, 2015, Methods of identification in social networks, Annu. Rev. Econ. 7, 465–485.

Graham, Bryan S, 2020, Network data, in Handbook of Econometrics , volume 7, 111–218 (Elsevier).

Gregory, Steve, 2010, Finding overlapping communities in networks by label propagation, New J.
Phys. 12, 103018.

Handcock, Mark, Adrian Raftery, and Jeremy Tantrum, 2007, Model-based clustering for social
networks, J. Roy. Statist. Soc. A 170, 301–354.

Head, Keith, Thierry Mayer, and John Ries, 2010, The erosion of colonial trade linkages after
independence, J. Internat. Econ. 81, 1–14.

Hindman, Matthew, Kostas Tsioutsiouliklis, and Judy A Johnson, 2003, Googlearchy: How a few
heavily-linked sites dominate politics on the web, in Annual Meeting of the Midwest Political
Science Association, volume 4, 1–33, Citeseer.

Horn, Roger, and Charles Johnson, 1985, Matrix Analysis (Cambridge University Press).

Hufbauer, Gary, and Barbara Oegg, 2003, The impact of economic sanctions on us trade: Andrew
rose’s gravity model, Technical report, Peterson Institute for International Economics.

Jackson, Matthew O, and Asher Wolinsky, 1996, A strategic model of social and economic networks,
Journal of Economic Theory 71, 44–74.

Ji, Pengsheng, and Jiashun Jin, 2016, Coauthorship and citation networks for statisticians (with
discussion), Ann. Appl. Statist. 10, 1779–1812.

Jin, Jiashun, 2015, Fast community detection by SCORE, Ann. Statist. 43, 57–89.

Jin, Jiashun, and Zheng Tracy Ke, 2017, A sharp lower bound for mixed-membership estimation,
arXiv:1709.05603 .

Jin, Jiashun, Zheng Tracy Ke, and Shengming Luo, 2021a, Optimal adaptivity of signed-polygon
statistics for network testing, Ann. Statist. 49, 3408–3433.

31



Jin, Jiashun, Zheng Tracy Ke, Shengming Luo, and Minzhe Wang, 2022, Optimal estimation of the
number of communities, J. Amer. Statist. Soc. (to appear) .

Jin, Jiashun, Shengming Luo, and Zheng Tracy Ke, 2021b, Improvements on SCORE, especially for
weak signals, Sankhya A .

Jin, Jiashun, and Wanjie Wang, 2016, Influential features pca for high dimensional clustering (with
discussion), Ann. Statist. 44, 2323–2359.

Karrer, Brian, and Mark Newman, 2011, Stochastic blockmodels and community structure in net-
works, Phys. Rev. E 83, 016107.
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A Identifiability and Regularity Conditions

We prove the identifiability of DCMM and discuss Assumption 4 (where we give su�cient

conditions for this assumption to hold).

A.1 The Identifiability of DCMM

The following proposition shows that the DCMM model is identifiable if each community

has at least one pure node.

Proposition A.1 (Identifiability). Consider a DCMM model as in (2.2), where P has unit

diagonals. When each community has at least one pure node, the model is identifiable: For

eligible (⇥,⇧, P ) and (e⇥, e⇧, eP ), if ⇥⇧P⇧0⇥ = e⇥e⇧ eP e⇧0e⇥, then ⇥ = e⇥, ⇧ = e⇧, and P = eP .

Proof of Proposition A.1: Let G = Kk✓k�2⇧0⇥2⇧ be the same as in Section 3. We consider

two cases: (1) PG is an irreducible matrix. (2) PG is a reducible matrix.

First, we study Case (1). When PG is irreducible, the matrix R is well-defined (see

Lemma 2.1). Additionally, by Lemma 2.1, there exists the Ideal Simplex, which is uniquely

determined by the eigenvectors ⇠1, ⇠2, . . . , ⇠K of ⌦. For either (⇥,⇧, P ) or (e⇥, e⇧, eP ), we have

an Ideal Simplex. The two Ideal Simplexes can be di↵erent only when there are multiple

choices of ⇠1, ⇠2, . . . , ⇠K . By Lemma C.1, the first eigenvalue of ⌦ has a multiplicity 1, so

by basic linear algebra, [⇠1, ⇠2, . . . , ⇠K ] are uniquely defined up to a rotation matrix of the

form
2

4 a 0

0 S

3

5 , where a 2 {�1, 1} and S 2 RK�1,K�1 is an orthogonal matrix.

Recalling R = [diag(⇠1)]�1[⇠2, ⇠3, . . . , ⇠K ], it is seen that the property of “a row of R falls

on one of the vertices of the Ideal Simplex” is invariant to the above rotation. Therefore,

a row of ⇧ equals to the corresponding row of e⇧, as long as one of them is pure.

We now proceed to showing (⇥,⇧, P ) = (e⇥, e⇧, eP ). By the above argument and that

each community has at least one pure node, we assume without loss of generality that for

1  k  K, the k-th node is a pure node in community k. Comparing the first K rows and

the first K columns of ⇥⇧P⇧0⇥ with those of e⇥e⇧ eP e⇧0e⇥0, it follows that

diag(✓1, . . . , ✓K) · P · diag(✓1, . . . , ✓K) = diag(✓̃1, . . . , ✓̃K) · eP · diag(✓̃1, . . . , ✓̃K).

As both P and eP have unit diagonal entries, P = eP and ✓k = ✓̃k, 1  k  K.

Moreover, note that P⇧0⇥ has a full row-rank. Since ⇥⇧P⇧0⇥ = e⇥e⇧ eP e⇧0e⇥, it is seen

that ⇥⇧ = e⇥e⇧�, where � = eP e⇧0e⇥X 0(XX 0)�1, with X = P⇧0⇥ for short. We compare
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the first K rows of ⇥⇧ and e⇥e⇧�, recalling that the first K rows are pure and that ✓k = ✓̃k

for 1  k  K. It follows that � equals to the K ⇥K identity matrix. Therefore,

⇥⇧ = e⇥e⇧.

Since each row of ⇧ or ⇧̃ is a PMF, ⇥ = ⇥̃, ⇧ = ⇧̃, and the claim follows.

Next, we study Case (2). By Lemma C.1,

⌅ = ⇥⇧B, for a non-singular matrix B.

Row i of ⌅ equals to ✓i times a convex combination of rows of B. It follows that all rows of

⌅ are contained in a simplicial cone with K supporting rays, where a pure row falls on one

supporting ray, and a mixed row falls in the interior of the simplicial cone. Note that ⌅ is

uniquely defined up to a K ⇥K orthogonal matrix. The e↵ect of this orthogonal matrix is

to simultaneously rotate all rows of ⌅. Such a rotation does not change the property that

“a pure row falls on one supporting ray”. Therefore, a row of ⇧ equals to the corresponding

row of ⇧̃, provided that one of them is pure. The remaining of the proof is similar to that

of Case (1).

Remark (Comparison with the identifiability of other models). Compared to other models

(e.g., MMSB, DCBM), DCMM has many more parameters (for degree heterogeneity and

for mixed memberships). These parameters have more degrees of freedom than those in

MMSB or DCBM, and so DCMM requires stronger conditions to be identifiable.

• The assumption that P has unit diagonals is not needed for identifiability of MMSB,

but it is necessary for identifiability of DCMM. Consider a DCMM with parameters

(⇥,⇧, P ). Given any K ⇥K diagonal matrix D with positive diagonals, let

eP = DPD, ⇡̃i = (D�1⇡i)/kD
�1⇡ik1, and ✓̃i = kD�1⇡ik1 · ✓i.

It is seen that ⇥⇧P⇧0⇥ = e⇥e⇧ eP e⇧0e⇥. This case will be eliminated by requiring P to

have unit diagonals.

• The assumption that P has a full rank is not needed for identifiability of DCBM, but

it is necessary for identifiability of DCMM. If the rank of P is < K, there exists a

nonzero vector � 2 RK such that P� = 0. As long as there is a ⇡i such that ⇡i(k) > 0

for all k, we can change (⇡i, ✓i) to (⇡̃i, ✓̃i) but keep ⌦ unchanged. To see this, let

⇡̃i = (⇡i + ✏�)/k⇡i + ✏�k1, and ✓̃i = k⇡i + ✏�k1 · ✓i,

for a su�ciently small ✏ > 0. Since the two vectors, ✓i ·P⇡i and ✓̃i ·P ⇡̃i, are equal, ⌦

remains unchanged.
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A.2 Su�cient conditions for Assumption 4 to hold

We give two propositions showing examples where Assumption 4 is satisfied. Below, for a

matrix M , let �k(M) denote the k-th largest eigenvalue in magnitude.

Proposition A.2. Consider a DCMM model where ⌦ = ⇥⇧P⇧0⇥ and kPkmax  C.

Write G = Kk✓k�2(⇧0⇥2⇧). Let ⌘1 be the first (unit-norm) right singular vector of PG.

As n ! 1, suppose at least one of the following conditions hold, where c > 0 is a constant:

• min1k,`K P (k, `) � c, and mink{
Pn

i=1
✓2i ⇡i(k)} � cmaxk{

Pn
i=1

✓2i ⇡i(k)}.

• K is fixed, mink G(k, k) � c, and |�1(PG)| � c + |�2(PG)|. For a fixed irreducible

matrix P0, kP � P0k ! 0.

• K is fixed, and |�1(PG)| � c + |�2(PG)|. For a fixed irreducible matrix G0, kG �

G0k ! 0.

Then, we can select the sign of ⌘1 such that all its entries are strictly positive. Furthermore,

[max1kK ⌘1(k)]/[min1kK ⌘1(k)]  C.

Proposition A.3. Consider a DCMM model where ⌦ = ⇥⇧P⇧0⇥. We assume that

max1kK{
PK

`=1
P (k, `)}  Cmink{

PK
`=1

P (k, `)}. Suppose ⇡i’s are i.i.d. generated from

Dirichlet(↵), where ↵ = (↵1,↵2, . . . ,↵K)0 satisfies C1  ↵k  C2 for two constants C2 >

C1 > 0. Write G = Kk✓k�2(⇧0⇥2⇧). Let ⌘1 be the first (unit-norm) right singular vector

of PG. As n ! 1, [max1kK ⌘1(k)]/[min1kK ⌘1(k)]  C, with probability 1� o(1).

Proof of Propositions A.2-A.3: First, we prove Propositions A.2. Consider the first case.

Let xk = Kk✓k�2
Pn

i=1
✓2i ⇡i(k). It is seen that

PK
k=1

xk = K. The assumption says that

mink xk � cmaxk xk. Therefore, xk ⇣ 1 for all k. At the same time,
PK

`=1
G(`, k) =

Kk✓k�2
PK

`=1

Pn
i=1

✓2i ⇡i(`)⇡i(k) = xk. It follows that

max
k

�X

`

G(`, k)
 
⇣ min

k

�X

`

G(`, k)
 
⇣ 1.

For any 1  m, k  K, the (m, k)-th entry of PG equals to
P

` P (m, `)G(`, k), which is

between c
P

`G(`, k) and C
P

`G(`, k) by the assumption on P . It follows that

max
k,`

�
(PG)(k, `)

 
⇣ min

k,`

�
(PG)(k, `)

 
⇣ 1. (A.12)

In particular, PG is a positive matrix. By Perron’s theorem (Horn and Johnson, 1985,

Theorem 8.2.8), the first right singular value �1(PG) is positive and has a multiplicity of 1,

and the first eigenvector ⌘1 is a positive vector. Write � = �1(PG) for short. By definition,

�⌘1 = (PG)⌘1.
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It follows that

max
k

⌘1(k) 
k⌘k1
�

max
k,`

{(PG)(k, `)}, min
k

⌘1(k) �
k⌘k1
�

min
k,`

{(PG)(k, `)}. (A.13)

Combining (A.12)-(A.13) gives maxk ⌘1(k) ⇣ mink ⌘1(k). The claim follows.

Consider the second case. We first state and prove a useful result:

Let A and B be two nonnegative matrices with strictly

positive diagonals. If A is irreducible, then AB is irreducible.
(A.14)

The proof uses the definition of primitive matrices (a subclass of irreducible matrices; see

(Horn and Johnson, 1985, Section 8.5)). We aim to show AB is a primitive matrix. By

(Horn and Johnson, 1985, Theorem 8.5.2), it su�ces to show that there exists m � 1, such

that (AB)m is a strictly positive matrix. By the assumption, A is an irreducible matrix

with positive diagonals; it follows from (Horn and Johnson, 1985, Theorem 8.5.4) that A is

a primitive matrix. By (Horn and Johnson, 1985, Theorem 8.5.2) again, there exists m � 1

such that Am is a strictly positive matrix. Let ↵ > 0 be the minimum diagonal entry of

B. Since A and B are nonnegative matrices, each entry of (AB)m is lower bounded by ↵m

times the corresponding entry of Am; hence, (AB)m is also a strictly positive matrix. It

follows that AB is a primitive matrix, which is also an irreducible matrix.

We then show the claim. Note that P and G are both nonnegative matrices with positive

entries. Since kP �P0k ! 0, the support of P has to be a superset of the support of P0 for

large enough n; as a result, when P0 is an irreducible matrix, P has to be an irreducible

matrix for su�ciently large n. We apply (A.14) to obtain that PG is an irreducible matrix.

It follows that �1(PG) > 0 and it has a multiplicity 1; additionally, the first right eigenvector

⌘1 is a positive vector.

It remains to show maxk ⌘1(k) ⇣ mink ⌘1(k). We prove by contradiction. Write ⌘1 =

⌘(n)
1

, P = P (n) and G = G(n) to emphasize the dependence on n. If the claim is not true,

then there is a subsequence {ns}
1
s=1

such that

lim
s!1

⇢
mink ⌘

(ns)

1
(k)

maxk ⌘
(ns)

1
(k)

�
! 0. (A.15)

Since K is fixed, all the entries of G(ns) are bounded. It follows that there exists a sub-

sequence of {ns}
1
s=1

, which we still denote by {ns}
1
s=1

for notation convenience, such that

G(ns) ! G⇤ for a fixed matrix G⇤. Therefore,

��(PG)(ns) � P0G
⇤��! 0, as s ! 1. (A.16)
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Let ⌘⇤
1
be the first right eigenvector of P0G⇤. Since |�1(PG)| � c + |�2(PG)|, by the

sin-theta theorem (e.g., see Lemma D.3), it follows from (A.16) that

k⌘(ns)

1
� ⌘⇤1k ! 0, as s ! 1. (A.17)

We now derive a contradiction from (A.15)-(A.17). On the one hand, combining (A.16)-

(A.17) and noting that ⌘⇤
1
is a fixed vector, we conclude that the minimum entry of ⌘⇤

1
is

zero. On the other hand, the assumption of mink G(k, k) � c ensures that G⇤ has strictly

positive diagonals. We apply (A.14) to conclude that P0G⇤ is a fixed irreducible matrix.

By Perron’s theorem, ⌘⇤
1
should be a strictly positive vector. This yields a contradiction.

Consider the third case. The proof is similar to that of the second case, except that

we switch the roles of P and G. Note that we do not need additional conditions on the

diagonals of P , since P always has unit diagonals.

Next, we prove Propositions A.3. By (A.12) and (A.13), we only need to show that

max
k,`

�
(PG)(k, `)

 
⇣ min

k,`

�
(PG)(k, `)

 
.

Since the maximum row sum and minimum row sum of P are at the same order, it su�ces

to show that the maximum and minimum entries of G are at the same order. Let G0 =

E⇡⇠Dirichlet(↵)[⇡⇡
0]. As n ! 1, it is easy to show that kG � G0kF = o(1). Therefore, we

only need to show that the maximum and minimum entries of G0 are at the same order.

By direct calculations,

G0 = (E[⇡])(E[⇡])0 +Cov(⇧)

=
1

k↵k2
1

↵↵0 +
1

1 + k↵k1


1

k↵k1
diag(↵)�

1

k↵k2
1

↵↵0
�

=
1

k↵k1(1 + k↵k1)
[diag(↵) + ↵↵0].

Since all entries of ↵ are bounded above and below by constants, it is easy to see that the

maximum and minimum entries of G0 are at the same order. This completes the proof.

B Faster Rates of Mixed-SCORE (Setting 2)

In Section 3.3, we discuss Mixed-SCORE with each specific VH approach in Table 1. For

Mixed-SCORE-SVS and Mixed-SCORE-SVS*, we consider two settings where they enjoy

faster rates than the generic Mixed-SCORE algorithm. Due to space limit, we only present

Setting 1 in Section 3.3. We now present Setting 1.
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Setting 2. Let Nk be the set of pure nodes of community k, 1  k  K, and let M be the

set of all mixed nodes. Suppose there are constants c1, c2 2 (0, 1) such that min1kK |Nk| �

c1n and min1kK
P

i2Nk
✓2(i) � c2k✓k2. Furthermore, for a fixed integer L0 � 1, we

assume there is a partition of M, M = M1 [ · · · [ML0 , a set of PMF’s �1, · · · , �L0 , and

constants c3, c4 > 0 such that (ek: k-th standard basis vector of RK)
�
min1j 6=`L0 k�j �

�`k, min1`L0,1kK k�` � ekk
 
� c3, and for each 1  `  L0 (note: errn is the same as

that in (3.10)), |M`| � c4|M| � n��2
n err2n and maxi2M` k⇡i � �`k  1/ log(n).

In this setting, ⇡i’s form several loose clusters, where the ⇡i’s in the same cluster are

within a distance of O( 1

log(n)) from each other. Since 1

log(n) is much larger than the order

of noise, max1in kHr̂i � rik, the assumed clustering structure is indeed “loose”. 9

Theorem B.1. Consider the DCMM model where Assumptions 1-4 hold and ⇡i’s are from

Setting 2. Let H be as in Theorem 3.1. Suppose we apply SVS or SVS* to rows of R̂ with

L = L̂n(A) := min
�
L � K + 1 : ✏L(R̂) < ✏L�1(R̂)/ log(log(n))

 
.

With probability 1� o(n�3),

max
1kK

kHv̂k � vkk  C

vuutn�1

nX

i=1

kHr̂i � rik2.

Moreover, for Mixed-SCORE-SVS or Mixed-SCORE-SVS*,

E
h 1
n

nX

i=1

k⇡̂i � ⇡ik
2

i
 CK3��2

n (err⇤n)
2 + o(n�2).

C The Oracle Case and Ideal Mixed-SCORE

We consider the oracle case where ⌦ is observed. In Section C.1, we state a useful lemma,

which is the key for analysis of the oracle case. In Section C.2, we prove Lemmas 2.1 in

the paper, which inspire Ideal Mixed-SCORE. In Section C.3, we prove Lemma 2.2, which

is about recovering (P, ✓) from ⇧. In Section C.4, we study eigenvalues and eigenvectors of

⌦ and the matrix R; these results are useful for the proofs in Sections D-F.

9
In fact, by a slight modification of the proof, we can replace (1/ log(n)) in Setting 2 by any o(1) term,

or an appropriately small constant c̃3 > 0 (this constant c̃3 will depend on the constants in Setting 2 in a

quite complicated way). We present the current version for its convenience.

38



C.1 A useful lemma and its proof

Let G = Kk✓k�2(⇧0⇥2⇧) is as in Section 3. Let �1,�2, . . . ,�K be the nonzero eigenvalues

of ⌦, sorted in the descending order of magnitudes. Let ⇠1, ⇠2, . . . , ⇠K be the corresponding

eigenvectors. We have the following lemma:

Lemma C.1. Consider the DCMM model, where PG is an irreducible matrix and there is

at least one pure node for each community. The following statements are true:

• There is a non-singular matrix B 2 RK,K such that ⇥⇧B = ⌅, and B is unique once

⌅ is chosen.

• For 1  k  K, denote by ak the kth largest (in magnitude) eigenvalue of PG. Then,

ak’s are real, and the nonzero eigenvalues of ⌦ are �k = (K�1
k✓k2)ak, 1  k  K.

• For 1  k  K, denote by bk the kth column of B. Then, bk is a (right) eigenvector

of PG associated with ak.

• �1 > 0 and it has a multiplicity 1 (so ⇠1 is uniquely determined up to a factor of ±1).

• ⇠1 can be chosen such that all of its entries are positive. For this choice of ⇠1, all the

entries of the associated b1 are also positive.

Proof of Lemma C.1: Consider the first claim. Denote by Span(M) the column space of

any matrix M . It su�ces to show that Span(⇥⇧) = Span(⌅). Then, since ⇠1, · · · , ⇠K form

an orthonormal basis of this subspace, there is a unique, non-singular matrix B̃ such that

⇥⇧ = ⌅B̃. We then take B = B̃�1.

We now show Span(⇥⇧) = Span(⌅). By the assumption that there is at least one pure

node in each community, we can find K rows of ⇧ such that they form a K ⇥K identity

matrix. So ⇧ has a rank K. Since ⇥ and P are both non-singular matrices, ⌦ also has a

rank K. By definition, ⌦⇠k = �k⇠k, for 1  k  K. It follows that

⇥⇧(P⇧0⇥⇠k) = �k⇠k.

Hence, each ⇠k is in the column space of ⇥⇧. This means the column space of ⌅ is contained

in the column space of ⇥⇧. Since both matrices have a rank K, the two column spaces are

the same.

Consider the second claim. Note that P is symmetric and G is positive definite. Let G1/2

be the unique square root of G. For any matrices A 2 Rm,n and B 2 Rn,m, if m � n, then

the nonzero eigenvalues of AB are the same as the nonzero eigenvalues of BA (Horn and
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Johnson, 1985, Theorem 1.3.22). As a result, eigenvalues of PG are the same as eigenvalues

of the symmetric matrix G1/2PG1/2. It implies that a1, a2, . . . , aK are real.

Furthermore, the nonzero eigenvalues of ⌦ = (⇥⇧)(P⇧0⇥) are the same as the nonzero

eigenvalues of (P⇧0⇥)(⇥⇧) = (K�1
k✓k2)(PG). Hence, the nonzero eigenvalues of ⌦ are

(K�1
k✓k2)a1, (K�1

k✓k2)a2, . . . , (K�1
k✓k2)aK .

Consider the third claim. Write G̃ ⌘ K�1
k✓k2G = ⇧0⇥2⇧. Note that ⌦⇠k = �k⇠k and

⇠k = ⇥⇧bk. Hence, (⇥⇧P⇧0⇥)(⇥⇧bk) = �k(⇥⇧bk). Multiplying both sides by ⇧0⇥ from

the left, we have

G̃P G̃bk = �kG̃bk.

Since G̃ is non-singular, PG̃bk = �kbk. Plugging in G̃ = (K�1
k✓k2)G and �k = (K�1

k✓k2)ak,

we obtain PGbk = akbk. This shows that bk is a (right) eigenvector of PG associated with

ak. Additionally, since ⌘1 is the first unit-norm right singular vector of PG, it yields that

⌘1 = b1/kb1k.

Consider the fourth claim. Since �1 = (K�1
k✓k2)a1, it su�ces to show that a1 > 0 and

that it has a multiplicity 1. This follows immediately from the Perron-Frobenius theorem

(Horn and Johnson, 1985, Theorem 8.4.4) and the assumption that PG is an irreducible

matrix.

Consider the last claim. Note that b1 is the eigenvalue of PG associated with a1. Since

a1 has a multiplicity 1, b1/kb1k is unique up to a factor of ±1 (depending on the choice of

⇠1). By Perron-Frobenius theorem again, b1/kb1k can be chosen such that all the entries

are positive. Recalling that ⌅ = ⇥⇧B, we immediately have ⇠1 = ⇥⇧b1. Since ⇥⇧ is

a nonnegative matrix with positive row sums and b1 has strictly positive entries, all the

entries of ⇠1 are also positive.

C.2 Proofs of Lemma 2.1

Consider the first claim. We have shown in Lemma C.1 that

⌅ = ⇥⇧B, for a non-singular matrix B = [b1, . . . , bK ] 2 RK,K .

Furthermore, by the last two bullet points of Lemma C.1, if we pick the sign of ⇠1 such that
Pn

i=1
⇠1(i) > 0, then ⇠1 and b1 are uniquely determined and have strictly positive entries.

This proves the first claim.

Consider the other two claims. We first show there are K a�nely independent vectors

v1, v2, . . . , vK such that each ri is a convex combination of them. For 1  k  K, define
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vk 2 RK�1 by

vk(`) = b`+1(k)/b1(k), 1  `  K � 1. (C.18)

The vectors v1, v2, . . . , vK are a�nely independent, if and only if the following matrix

Q =

0

@ 1 · · · 1

v1 · · · vK

1

A

is non-singular. By (C.18), we observe that Q0 = diag(b1)B. Since B is non-singular and

b1 is a positive vector, Q has to be a non-singular matrix. This proves that v1, v2, . . . , vK

are a�nely independent. We then study each ri. Since ⌅ = ⇥⇧B, we have

⇠`(i) = ✓(i)
KX

k=1

⇡i(k)b`(k) = ✓(i)kb` � ⇡ik1, 1  `  K.

By definition of R, ri(`) = ⇠`+1(i)/⇠1(i). It follows that

ri(`) =
✓(i)

PK
k=1

⇡i(k)b`+1(k)

✓(i)kb1 � ⇡ik1
=

KX

k=1

b1(k)⇡i(k)

kb1 � ⇡ik1
·
b`+1(k)

b1(k)
=

KX

k=1

wi(k)vk(`).

This proves that ri =
PK

k=1
wi(k)vk, with wi = (b1 � ⇡i)/kb1 � ⇡ik1. Since b1 is a positive

vector and ⇡i is a nonnegative vector, we have that wi is a nonnegative vector and kwik1 = 1.

Therefore, ri is a convex combination of v1, v2, . . . , vK .

We now show the second claim. Each ri is in the convex hull of v1, v2, . . . , vK . Since

these K vectors are a�nely independent, their convex hull is a non-degenerate simplex

with K vertices. Recall that wi = (b1 � ⇡i)/kb1 � ⇡ik1, where b1 is a strictly positive vector.

Therefore, for each 1  k  K, node i is a pure node of community k if and only if ⇡i = ek,

which happens if and only if wi = ek; and wi = ek means ri is located at the vertex vk.

We then show the last claim, which is the formula for b1. Write ⇤ = diag(�1, · · · ,�K).

Then, ⌦ = ⌅⇤⌅0. First, plugging in ⌅ = ⇥⇧B, we find that ⌦ = ⇥⇧(B⇤B0)⇧0⇥. Multiply-

ing both sides by ⇧0⇥ from the left and ⇥⇧ from the right, we have ⇧0⇥⌦⇥⇧ = G̃(B⇤B0)G̃,

where G̃ = ⇧0⇥2⇧ is a non-singular matrix. Second, since ⌦ = ⇥⇧P⇧0⇥0, we have

⇧0⇥⌦⇥⇧ = G̃P G̃. Combining the above gives

G̃P G̃ = G̃(B⇤B0)G̃ =) P = B⇤B0. (C.19)

It follows that

1 = P (k, k) =
KX

`=1

�`b
2

` (k) = b21(k)[�1 +
KX

`=2

�2

`vk(`� 1)].

Noting that b1(k) is positive, the above gives the formula for computing b1.
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C.3 Proof of Lemma 2.2

Write V = [v1, v2, . . . , vK ]. By (C.18), B = diag(b1)[1, V 0]. Moreover, by (C.19), P =

B⇤B0. Combining them gives the formula of recovering P . Note that ⌅ = ⇥⇧B. It follows

that ⇠1(i) = ✓(i) · ⇡0
ib1. This gives the formula of recovering ✓.

C.4 Spectral analysis of ⌦

First, we study the leading eigenvalues of ⌦. Let �1, . . . ,�K be the nonzero eigenvalues of ⌦,

listed in the descending order in magnitude. The following lemma is proved in Section C.4.1:

Lemma C.2. Under conditions of Theorem 3.1, the following statements are true:

• C�1K�1
k✓k2  �1  Ck✓k2. If �n = o(1), then �1 ⇣ k✓k2.

• �1 � |�2| ⇣ �1.

• |�k| ⇣ �nK�1
k✓k2, for 2  k  K.

Next, we study the leading eigenvectors of ⌦. For 1  k  K, let ⇠k be the eigenvector

of ⌦ associated with �k. Write ⌅0 = [⇠2, ⇠3, · · · , ⇠K ] 2 Rn,K�1, and let ⌅0
0,i be its i-th row,

1  i  n. The following lemma is proved in Section C.4.2:

Lemma C.3. Under conditions of Theorem 3.1, the following statements are true:

• If we choose the sign of ⇠1 such that
Pn

i=1
⇠1(i) > 0, then the entries of ⇠1 are positive

satisfying C�1✓(i)/k✓k  ⇠1(i)  C✓(i)/k✓k, 1  i  n.

• k⌅0,ik  C
p
K✓(i)/k✓k, 1  i  n.

Last, we study the entry-wise ratio matrix R. Recall that wi is the barycentric coordi-

nate vector of ri in the Ideal Simplex. The following lemma is proved in Section C.4.3.

Lemma C.4. Under conditions of Theorem 3.1, the following statements are true:

• The vertices of the Ideal Simplex satisfy that max1kK kvkk  C
p
K and mink 6=` kvk�

v`k � C�1
p
K.

• C�1
k⇡i � ⇡jk1  kwi � wjk1  Ck⇡i � ⇡jk1, for all 1  i, j  n.

• C�1
p
Kkwi � wjk  kri � rjk  C

p
Kkwi � wjk, for all 1  i, j  n.

Lemmas C.2-C.4 are useful for proofs in Sections D-F. Below, we prove these lemmas.
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C.4.1 Proof of Lemma C.2

By Lemma C.1, all nonzero eigenvalues of ⌦ are (K�1
k✓k2)a1, . . . , (K�1

k✓k2)aK , where ak

is the k-th largest eigenvalue (in magnitude) of PG. By Assumption 3,

a1 � |a2| � C�1a1, C�1�n  |aK |  |a2|  C�n.

The second and third claims follow immediately.

It remains to show the first claim, which reduces to studying a1. For any two matrices

A and B, the nonzero eigenvalues of AB are the same as the nonzero eigenvalues of BA.

Hence,

a1 = �1(PG) = �1(G
1/2PG1/2) = max

x 6=0

x0G1/2PG1/2x

kxk2
.

By Assumption 2, kGk  C and kG�1
k  C. It is easy to see that a1  C�1(P ). Addi-

tionally, �1(P ) = maxy 6=0
y0Py
kyk2 = maxx 6=0

x0G1/2PG1/2x
kG1/2xk2 . Since kG1/2xk2 = x0Gx � C�1

kxk2,

it follows that �1(P )  maxx 6=0
x0G1/2PG1/2x

C�1kxk2  C�1(PG). Together,

C�1�1(P )  �1(PG)  C�1(P ).

Note that �1(P )  KkPkmax = O(K) and �1(P ) � P (k, k) � 1. We plug them into the

above inequality to get

C�1
 a1  CK. (C.20)

This inequality holds in all cases. If, additionally, �n ! 0 as n ! 1, we can get a stronger

result. Note that P and G are nonnegative matrices, and for each 1  k  K, P (k, k) = 1

and G(k, k) � �min(G) � C�1. It follows that (PG)(k, k) � P (k, k)G(k, k) � C�1. We

thus have

trace(PG) � C�1K.

At the same time, trace(PG) = a1 +
PK

k=2
a2 = a1 +O(K�n) = a1 + o(K). It follows that

C�1K  a1  CK, if �n = o(1). (C.21)

The first claim follows from (C.20)-(C.21) and the equality �1 = (K�1
k✓k2)a1.

C.4.2 Proof of Lemma C.3

Consider the first claim. From the last item of Lemma C.1, we can choose the sign of ⇠1

such that both (⇠1, b1) have strictly positive entries, where this choice of sign corresponds
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to
Pn

i=1
⇠1(i) > 0. Note that ⌅ = ⇥⇧B, which implies ⇠1(i) = ✓(i)

PK
k=1

⇡i(k)b1(k). Since

each ⇡i is a PMF (a nonnegative vector whose entries sum to 1),

✓(i) min
1kK

b1(k)  ⇠1(i)  ✓(i) max
1kK

b1(k), 1  i  n.

Hence, to show the claim, it su�ces to show that

C�1
k✓k�1

 b1(k)  Ck✓k�1, for all 1  k  K. (C.22)

Write G̃ = K�1
k✓k2G = ⇧0⇥2⇧. Since ⌅ = ⇥⇧B and X 0X = IK , we have B0⇧0⇥2⇧B =

IK , or equivalently, B0G̃B = IK . Multiplying both sides by B from the left and B0 from

the right, we obtain BB0G̃BB0 = BB0. Since BB0 is non-singular, it implies

BB0 = G̃�1 = Kk✓k�2G�1. (C.23)

We note that BB0 =
PK

k=1
bkb0k ⌫ b1b01. So, kb1k2  kBk

2
 Kk✓k�2

kG�1
k. By our

assumption of kG�1
k  C. It follows that

kb1k  Ck✓k�1
p

K.

At the same time, 1 = k⇠1k2 = k⇥⇧b1k2. By direct calculations, k⇥⇧b1k2 =
P

i ✓
2

i (⇡
0
ib1)

2


P
i ✓

2

i kb1k
2
1  k✓k2kb1k21. It follows that

kb1k1 � C�1
k✓k�1.

In Lemma C.1, we have seen that b1 is the first right singular vector of PG. Hence, b1 / ⌘1,

where ⌘1 is the same as in Assumption 4. By Assumption 4, all the entries of ⌘1 are at the

same order. Hence, all the entries of b1 are at the same order. It follows that

b1(k) ⇣ kb1k1 ⇣ (1/
p

K)kb1k.

This gives (C.22) and completes the proof of the first claim.

Consider the second claim. Since ⌅ = ⇥⇧B, for 1  i  n,

k⌅0,ik  ✓(i)kB⇡ik  C✓(i)
p
�max(B0B)  C

p

Kk✓k�1✓(i),

where the last inequality is due to (C.23) and and the condition kG�1
k  C.

C.4.3 Proof of Lemma C.4

First, we prove the claim about the connection between kwi � wjk1 and k⇡i � ⇡jk1. Let

S0 ⇢ RK be the standard simplex whose vertices are e1, e2, . . . , eK . Define a mapping

T1 : S0 ! S0, where T1(x) =
x � b1

kx � b1k1
.
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Then, wi = T1(⇡i), for 1  i  n. To show the claim, it su�ces to show that T1 and T�1

1

are both Lipschitz with respect to the `1-norm, i.e., for any x, y 2 S0,

C�1
kx� yk1  kT1(x)� T1(y)k1  Ckx� yk1. (C.24)

We now show (C.24). Fixing any x, y 2 S0, write x⇤ = T1(x) and y⇤ = T1(y). By definition,

x⇤(k) = x(k)b1(k)/kx � b1k1 and y⇤(k) = y(k)b1(k)/ky � b1k1. We write

x⇤(k)�y⇤(k) =
[x(k)� y(k)]b1(k)

kx � b1k1
+ y(k)b1(k)


1

kx � b1k1
�

1

ky � b1k1

�

=
b1(k)

kx � b1k1
[x(k)� y(k)] +

y⇤(k)

kx � b1k1
(ky � b1k1 � kx � b1k1) .

First, by (C.22), b1(k) ⇣ k✓k�1 for all 1  k  K. It follows that |b1(k)|  Ck✓k�1 and

kx � b1k1 � kxk1 · C�1
k✓k�1

� C�1
k✓k�1. Hence,

b1(k)

kx � b1k1
|x(k)� y(k)|  C|x(k)� y(k)|.

Second, by the triangle inequality, |ky � b1k1 � kx � b1k1|  k(y� x) � b1k1. Moreover, since

b1(k) ⇣ k✓k�1 for all k, we have k(y�x)�b1k1  Ck✓k�1
kx�yk1 and kx�b1k1 � C�1

k✓k�1.

It follows that
y⇤(k)

kx � b1k1
|ky � b1k1 � kx � b1k1|  Cy⇤(k) · kx� yk1.

Combining the above gives

|x⇤(k)� y⇤(k)|  C|x(k)� y(k)|+ Cy⇤(k) · kx� yk1.

We sum over k on both sides and note that
P

k y
⇤(k) = 1. It gives

kx⇤ � y⇤k1  Ckx� yk1.

This shows that T1 is Lipschitz with respect to the `1-norm. We then consider T�1

1
. Define

b̃1 2 RK by b̃1(k) = 1/b1(k), 1  k  K. We can rewrite

T�1

1
(x) =

x � b̃1

kx � b̃1k1
.

T�1

1
has a similar form as T1, where the vector b̃1 satisfies that b̃1(k) ⇣ k✓k for all k. Hence,

we can similarly prove that T�1

1
is Lipschitz with respect to the `1-norm. This proves

(C.24).

Next, we prove the claim about the connection between kri � rjk and kwi � wjk. Let

S0 be the same as before, and let S
ideal = S

ideal(v1, v2, . . . , vK) ⇢ RK�1 denote the Ideal
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Simplex. Let B = [b1, b2, . . . , bK ] be as in Lemma C.1. Define a mapping:

T2 : S0 ! S
ideal, where

0

@ 1

T2(x)

1

A =

0

@ 1 · · · 1

v1 · · · vK

1

A

| {z }
⌘Q

x.

By Lemma 2.1, ri = T2(wi), for all 1  i  n. To show the claim, it su�ces to show that

T2 and T�1

2
are both Lipschitz with respect to the `2-norm, whose Lipschitz constants are

p
K and 1/

p
K, respectively. In other words, we want to prove, for any x, y 2 S0,

C�1
p

Kkx� yk  kT2(x)� T2(y)k  C
p

Kkx� yk. (C.25)

We now show (C.25). Note that Qx = (10Kx, T2(x))0. Since 10Kx = 10Ky = 1, we have

kT2(x)� T2(y)k
2 = kQx�Qyk2 = (x� y)0Q0Q(x� y).

It su�ces to show that

kQk  C
p

K, and kQ�1
k  C/

p

K. (C.26)

By (C.18), we can re-write

Q0 = [diag(b1)]
�1B.

By (C.22), b1(k) ⇣ k✓k�1 for all k. By (C.23), BB0 = Kk✓k�2G�1; we note that by

Assumption 2, kGk  C and kG�1
k  C; it follows that kBk  C

p
Kk✓k�1 and kB�1

k 

Ck✓k/
p
K. Combining them gives (C.26). Then, (C.25) follows.

Last, we prove the claims about the Ideal Simplex (IS). Let e1, e2, . . . , eK be the standard

basis vectors of RK . It is seen that vk = T2(ek), 1  k  K. By (C.25), for k 6= `,

kvk � v`k ⇣

p

Kkek � e`k ⇣

p

K.

By definition of Q and (C.26), for all 1  k  K,

kvkk  kQk = O(
p

K).

The above give the desired claims.

D Spectral Analysis of A and Large-deviation Bounds for R̂

We conduct spectral analysis for A. In Section D.1, we give the large deviation bounds for

eigenvalues of A. In Sections D.2, we study the eigenvectors of A and state a key technical

lemma. In Section D.3, we prove Theorem 3.1 in the paper, which is about the row-wise

large deviation bound for R̂. In Section D.4, we give the `2-norm large deviation bound for

R̂. In Section D.4, we give a useful property of the rotation matrix H.
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D.1 The eigenvalues of A

Let �̂1, �̂2, . . . , �̂K be the K largest eigenvalues of A (in magnitude), sorted descendingly

in magnitude.

Lemma D.1. Under conditions of Theorem 3.1, with probability 1�o(n�3), max1kK |�̂k�

�k|  C
p

✓maxk✓k1.

Proof of Lemma D.1: By Weyl’s inequality, max1kK |�̂k � �k|  kA � ⌦k. To show the

claim, it su�ces to show that with probability 1� o(n�3),

kA� ⌦k  C
p
✓maxk✓k1. (D.27)

The following inequality is useful:

(✓maxk✓k1)/ log(n) ! 1. (D.28)

To see why (D.28) is true, we rewrite errn = (✓max/✓min)k✓k�2
p
✓maxk✓k1 log(n). Since

✓max � ✓min and ✓maxk✓k1 � k✓k2, we immediately have errn � k✓k�1
p
log(n). Therefore,

the assumption errn ! 0 implies that k✓k2/ log(n) ! 1. Then (D.28) is also true because

✓maxk✓k1 � k✓k2.

We now prove (D.27). Write

A� ⌦ = W + diag(⌦), where W ⌘ A� E[A].

Note that ⇡0
iP⇡j =

P
k,` ⇡i(k)⇡j(`)Pk`  kPkmaxk⇡ik1k⇡jk1  C. It follows that

⌦(i, j)  C✓(i)✓(j).

Note that ⌦(i, i) = ✓2(i)(⇡0
iP⇡i)  C✓2(i). As a result,

kdiag(⌦)k  C✓2max  C
p
✓maxk✓k1, (D.29)

where the last inequality follows from (D.28) and ✓2max  C ⌧

p
log(n) . We then apply

the non-asymptotic bounds for random matrices in Bandeira and Van Handel (2016) to

bound kWk. By Corollary 3.12 and Remark 3.13 of Bandeira and Van Handel (2016), for

the n⇥ n symmetric matrix W whose upper triangle contains independent entries, for any

✏ > 0, there exists a universal constant c̃✏ > 0 such that for every t � 0,

P
�
kWk > (1 + ✏)2

p

2�̃ + t
�
 ne�t2/(c̃�̃2

⇤), (D.30)
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where

�̃ = max
i

sX

j

E[W (i, j)2], �̃⇤ = max
ij

kW (i, j)k1.

We fix ✏ = 1/2 in (D.30) and write c̃ = c̃✏ for short. For t = 2�̃⇤
p
c̃ log(n), it follows from

(D.30) that with probability 1� o(n�3),

kWk  3
p

2max
i

sX

j

E[W (i, j)2] + C�̃⇤
p
log(n).

Note that �̃⇤  1 and maxi{
P

j E[W (i, j)2]}  maxi{
P

j ⌦(i, j)}  Cmaxi{
P

j ✓(i)✓(j)} 

C✓maxk✓k1. We plug them into the above inequality and apply (D.28). It follows that, with

probability 1� o(n�3),

kWk  C
p

✓maxk✓k1 + C
p
log(n)  C

p
✓maxk✓k1. (D.31)

Combining (D.29) and (D.31) gives (D.27).

D.2 The eigenvectors of A

We state a main technical lemma about the eigenvectors of A. For 1  k  K, let ⇠̂k be the

eigenvector associated with �̂k. Write ⌅̂0 = [⇠̂2, ⇠̂3, . . . , ⇠̂K ] 2 Rn,K�1, and let ⌅̂0
0,i denote

its ith row, 1  i  n.

Lemma D.2. Suppose the conditions of Theorem 3.1 hold. With probability 1 � o(n�3),

there exist ! 2 {±1} and an orthogonal matrix X 2 RK�1,K�1 (both ! and X depend on

A and are stochastic) such that

(a) k!⇠̂1 � ⇠1k  Ck✓k�2K
p
✓maxk✓k1;

(b) k⌅̂0X � ⌅0kF  C��1
n k✓k�2K3/2

p
✓maxk✓k1;

(c) k!⇠̂1 � ⇠1k1  Ck✓k�3✓3/2maxK
p
k✓k1 log(n);

(d) max1in kX 0⌅̂0,i � ⌅0,ik  C��1
n k✓k�3✓3/2maxK3/2

p
k✓k1 log(n).

If �n = o(1), then the factor K in the bounds for k!⇠̂1 � ⇠1k and k!⇠̂1 � ⇠1k1 can be

removed.

Proof of Lemma D.2: We first prove claims (a)-(b). The proof is based on the the classical

sin-theta theorem Davis and Kahan (1970), where below is a simpler version (Cai et al.,

2013, Theorem 10).
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Lemma D.3. Let M and M̂ be two n⇥n symmetric matrices. For 1  k  n, let dk be the

k-th largest eigenvalue of M , ⌘k and ⌘̂k be the eigenvector associated with the k-th largest

eigenvalue of M and M̂ , respectively. Suppose for some � > 0 and 1  k1  k2  n, we

have dk1�1 > dk1 + �, dk2+1 < dk2 � � and kĜ � Gk  �/2. Write U = [⌘k1 , · · · , ⌘k2 ] and

Û = [⌘̂k1 , · · · , ⌘̂k2 ]. Then, kÛ Û 0
� UU 0

k  2��1
kĜ�Gk.

We divide all eigenvalues of ⌦ into four groups: (i) �1, (ii) positive eigenvalues among

�2, . . . ,�K , (iii) zero eigenvalues, and (iv) negative eigenvalues among �2, . . . ,�K . Define

⌅01 and ⌅02 as the submatrices of ⌅0 by restricting to columns corresponding to eigenvalues

in groups (ii) and (iv), respectively. By dividing the empirical eigenvalues and eigenvectors

in a similar way, we can define ⌅̂01 and ⌅̂02. Now, ⇠1, ⌅01 and ⌅02 contain the eigenvectors

associated with eigenvalues in groups (i), (ii) and (iv), respectively. By Lemma C.2, the

gap between eigenvalues in group (i) and those in other groups is �1 � |�2| � C�1�1 �

C�1K�1
k✓k2, and the eigen-gap between any two remaining groups is � C�nK�1

k✓k2. It

follows from Lemma D.3 that

k⇠̂1⇠̂
0
1 � ⇠1⇠

0
1k = O

⇣KkA� ⌦k

k✓k2

⌘
, max

t2{1,2}
{k⌅̂0t⌅̂

0
0t � ⌅0t⌅

0
0tk} = O

⇣KkA� ⌦k

�nk✓k2

⌘
. (D.32)

By elementary linear algebra, (⇠̂1⇠̂01 � ⇠1⇠01) has two nonzero eigenvalues ±[1 � (⇠̂0
1
⇠1)2]1/2,

where |1� (⇠̂0
1
⇠1)2| � min± |1± ⇠̂0

1
⇠1| = (min± k⇠̂1 ± ⇠1k2)/2. It follows that

min
±

k⇠̂1 ± ⇠1k 

p

2k⇠̂1⇠̂
0
1 � ⇠1⇠

0
1k. (D.33)

Moreover, by (Jin and Wang, 2016, Lemma 2.4), there always is an orthogonal matrix X1

such that k⌅̂01 � ⌅01X1kF  k⌅̂01⌅̂0
01

� ⌅01⌅0
01
kF . Since the rank of (⌅̂01⌅̂0

01
� ⌅01⌅0

01
) is

at most 2K, we then have

k⌅̂01 � ⌅01X1kF 

p

2Kk⌅̂01 � ⌅01X1k.

Similarly, there exists an orthogonal matrix X2 such that k⌅̂02 � ⌅02X2kF 
p
2Kk⌅̂02 �

⌅02X2k. As a result, for the orthogonal matrix X = diag(X1, X2),

k⌅̂0X � ⌅0kF  2
p

K max
t2{1,2}

{k⌅̂0t⌅̂
0
0t � ⌅0t⌅

0
0tk}. (D.34)

Plugging (D.33)-(D.34) into (D.32) gives that with probability 1� o(n�3),

min
±

k⇠̂1 ± ⇠1k = O

✓
KkA� ⌦k

k✓k2

◆
= O

✓
K
p
✓maxk✓k1
k✓k2

◆
,

k⌅̂0X � ⌅0kF = O

✓
K
p
KkA� ⌦k

�nk✓k2

◆
= O

✓p
K3✓maxk✓k1
�nk✓k2

◆
,
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where we have used (D.27). This proves the first two items.

We then prove claims (c)-(d). We borrow the techniques and some results from Abbe

et al. (2020). The following lemma is adapted from (Abbe et al., 2020, Theorem 2.1) and

is proved below. A direct use of (Abbe et al., 2020, Theorem 2.1) will lead to sub-optimal

dependence on �n in the resulting bound, so we have to modify that theorem accordingly.

Lemma D.4. Let M 2 Rn,n be a symmetric random matrix. Write M⇤ = EM and

K0 = rank(M⇤). For each 1  k  K0, let d⇤k and dk be the k-th largest nonzero eigenvalue

of M⇤ and M , respectively, and let ⌘⇤k and ⌘k be the corresponding eigenvector, respectively.

Let s and r be two integers such that 1  r  K0 and 0  s  K0 � r. Write D =

diag(ds+1, ds+2, . . . , ds+r), D⇤ = diag(d⇤s+1
, d⇤s+2

, . . . , d⇤s+r),

U = [⌘s+1, ⌘s+2, . . . , ⌘s+r], and U⇤ = [⌘⇤s+1, ⌘
⇤
s+2, . . . , ⌘

⇤
s+r].

Define �⇤ = min{d⇤s�d⇤s+1
, d⇤s+r�d⇤s+r�1

,min1jr |d⇤s+j |} and define  = (max1jr |d⇤s+j |)/�
⇤.

Below, the notation k · k2!1 represents the maximum row-wise `2-norm of a matrix, and

M⇤
m,· is the m-th row of M⇤. Suppose for a number � > 0, the following assumptions are

satisfied:

• A1 (Incoherence): max1mn kM⇤
m,·k  ��⇤.

• A2 (Independence): For any 1  m  n, the entries of the m-th row and column of

M are independent with the other entries.

• A3 (Spectral norm concentration): For a number �0 2 (0, 1), P(kM �M⇤
k  ��⇤) �

1� �0.

• A4 (Row concentration): There is a number �1 2 (0, 1) and a continuous non-

decreasing function '(·) with '(0) = 0 and '(x)/x being non-increasing in R+ such

that, for any 1  m  n and non-stochastic matrix Y 2 Rn,r,

P
✓
k(M �M⇤)m,·Y k2  �⇤

kY k2!1'
⇣

kY kF
p
nkY k2!1

⌘◆
� 1� �1/n.

Let I0 = ({1, . . . , s � 1} [ {s + r + 1, . . . ,K0}) \ {j : |d⇤j | > max1ir |d⇤s+r|} and �⇤
0
=

min{minj2I0 |d
⇤
j � d⇤s|,minj2I0 |d

⇤
j � d⇤s+r|}. Define eU⇤ = [⌘1, . . . , ⌘K0 ] and

e =

8
><

>:

maxj2I0(|d
⇤
j |/�

⇤
0
), if I0 6= ;,

0 otherwise.

Then, with probability 1� �0 � 2�1, for an orthogonal matrix O 2 Rr,r,

kUO �MU⇤(D⇤)�1
k2!1  C

⇥
(+ '(1))(� + '(�)) + e�

⇤
· keU⇤

k2!1. (D.35)
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Proof of Lemma D.4: Fix 1  m  n. Let M (m) be the matrix by setting the m-th

row and the m-th column of M to be zero. Let ⌘(m)

1
, ⌘(m)

2
, . . . , ⌘(m)

n be the eigenvectors

of M (m). Write U (m) = [⌘(m)

s+1
, . . . , ⌘(m)

s+r]. Let H = U 0U⇤, H(m) = (U (m))0U⇤ and V (m) =

U (m)H(m)
� U⇤. We aim to prove

kMm·V
(m)

k 6(+ e)��⇤
keU⇤

k2!1

+�⇤'(�)
�
4kUHk2!1 + 6kU⇤

k2!1
�
. (D.36)

Once (D.36) is obtained, the proof is almost identical to the proof of (B.26) in Abbe et al.

(2020), except that we plug in (D.36) instead of (B.32) in Abbe et al. (2020). This is

straightforward, so we omit it.

What remains is to prove (D.36). Without loss of generality, we only consider the case

where I0 6= ;. In the proof of (Abbe et al., 2020, Lemma 5), it is shown that

kMm·V
(m)

k  kM⇤
mV (m)

k+ k(M �M⇤)m·V
(m)

k,

k(M �M⇤)m·V
(m)

k  �⇤'(�)
�
4kUHk2!1 + 6kU⇤

k2!1
�
.

Combining them gives

kMm·V
(m)

k  kM⇤
m·V

(m)
k+�⇤'(�)

�
4kUHk2!1 + 6kU⇤

k2!1
�
. (D.37)

We further bound the first term in (D.37). Recall that I0 is the index set of eigenvalues

that are not contained in D⇤ and have an absolute value larger than kD⇤
k. Let fM⇤ =

P
j2I0 d

⇤
j⌘

⇤
j (⌘

⇤
j )

0.

kM⇤
m·V

(m)
k  kfM⇤

m·V
(m)

k+ k(M⇤
m· � fM⇤

m·)V
(m)

k

 kfM⇤
m·V

(m)
k+ kM⇤

� fM⇤
k2!1kV (m)

k

 kfM⇤
m·V

(m)
k+ 6�kM⇤

� fM⇤
k2!1,

where the last line uses kV (m)
k  6�, by (B.12) of Abbe et al. (2020). Note that M⇤

�fM⇤ =
P

j /2I0 d
⇤
j⌘

⇤
j (⌘

⇤
j )

0. By definition of I0, for any j /2 I0, |d⇤j |  max1ir |d⇤s+r|  �⇤. It follows

that

kM⇤
� fM⇤

k2!1 
�
max
j /2I0

|d⇤j |
�
keU⇤

k2!1  �⇤
keU⇤

k2!1.

Combining the above gives

kM⇤
m·V

(m)
k  kfM⇤

m·V
(m)

k+ 6��⇤
keU⇤

k2!1. (D.38)

Write D⇤
0
= diag(d⇤j )j2I0 , U

⇤
0

= [⌘⇤j ]j2I0 , U0 = [⌘j ]j2I0 , U
(m)

0
= [⌘(m)

j ]j2I0 , and H(m)

0
=

(U (m)

0
)0U⇤

0
. We similarly have kU (m)

0
H(m)

0
� U⇤

0
k  6�0, where �0 is defined in the same
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way as � but is with respect to the eigen-gap �⇤
0
. It is not hard to see that �0 = ��⇤/�⇤

0
.

Hence,

kU (m)

0
H(m)

0
� U⇤

0 k  6��⇤/�⇤
0.

By mutual orthogonality of eigenvectors, (U (m)

0
)0U (m) = 0 and (U⇤

0
)0U⇤ = 0. It follows that

kfM⇤
m·V

(m)
k = ke0m[U⇤

0⇤
⇤
0(U

⇤
0 )

0][U (m)H(m)
� U⇤]k

= ke0m[U⇤
0⇤

⇤
0(U

⇤
0 )

0]U (m)H(m)
k

 ke0m[U⇤
0⇤

⇤
0(U

⇤
0 )

0]U (m)
k

= ke0mU⇤
0⇤

⇤
0(U

⇤
0 � U (m)

0
H(m)

0
)0U (m)

k

 ke0mU⇤
0⇤

⇤
0(U

⇤
0 � U (m)

0
H(m)

0
)0k

 keU⇤
k2!1 · k⇤⇤

0k · kU
⇤
0 � U (m)

0
H(m)

0
k

 6(k⇤0k
⇤/�⇤

0) · ��
⇤
keU⇤

k2!1.

We plug it into (D.38) and note that e = k⇤0k
⇤/�⇤

0
. It gives

kM⇤
m·V

(m)
k  6(+ e)��⇤

keU⇤
k2!1. (D.39)

Combining (D.37) and (D.39) gives (D.36).

We now come back to the proof of Lemma D.2. We have divided nonzero eigenvalues

of ⌦ into four groups: (i) �1, (ii) positive eigenvalues in �2, . . . ,�K , (iii) zero eigenvalues,

and (iv) negative eigenvalues in �2, . . . ,�K . We shall apply Lemma D.4 to each of the four

groups. To save space, we only consider applying it to group (ii). The proof for other

groups is similar and omitted.

Now, M = A and M⇤ = ⌦ = diag(⌦) + (A � EA). We check conditions A1-A4. By

Lemma C.2, �⇤
� C�nK�1

k✓k2 and   C. For an appropriately large constant C̃ > 0,

we take

� = C̃��1

n k✓k�2K
p
✓maxk✓k1.

Consider A1. Since ⌦(i, j)  C✓(i)✓(j), we have max1in k⌦i,·k  C✓maxk✓k. From

the universal inequality k✓k 

p
✓maxk✓k1 and the assumption ✓max = O(1), this term is

O(
p
✓maxk✓k1), which is bounded by ��⇤ when C̃ is appropriately large. Hence, A1 is

satisfied. A2 is satisfied because the upper triangle of A contains independent variables.

By (D.27), A3 is satisfied for �0 = o(n�3). We then verify A4. Since kdiag(⌦)k  C,

kdiag(⌦)i,·Y k2  CkY k2!1, 1  i  n. (D.40)
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Fix 1  i  n and 1  k  r. Let yk 2 Rn be the k-th column of Y . Using the Bernstein’s

inequality, for any t � 0,

P
�
|y0k(A� EA)i,·| > t

�
 2 exp

 
�

t2/2Pn
j=1

⌦(i, j)y2k(j) + tkykk1/3

!
. (D.41)

Note that
P

j ⌦(i, j)y
2

k(j)  Ckykk21✓maxk✓k1. Moreover, ✓maxk✓k1 � log(n) by (D.28).

We take t = Ckykk1
p
✓maxk✓k1 log(n) for a large enough constant C > 0. It follows that

with probability 1� o(n�4),

|y0k(A� EA)i,·|  kykk1 · C
p
✓maxk✓k1 log(n).

Combining it with the probability union bound and (D.40), with probability 1� o(n�3),

k(A� ⌦)i,·Y k2  C
p
✓maxk✓k1 log(n) · kY k2!1

 �⇤
kY k2!1 ·

C
p
✓maxk✓k1 log(n)

K�1�nk✓k2
. (D.42)

Moreover, in (D.41), if we use an alternative bound
P

j ⌦(i, j)y
2

k(j)  kykk2✓2max, we obtain

a di↵erent bound as follows: With probability 1� o(n�4),

|y0k(A� EA)i,·|  Cmax
�
kykk✓max

p
log(n), kykk1 log(n)

 
.

Due to the probability union bound and (D.40), with probability 1� o(n�3),

k(A� ⌦)i,·Y k2  Cmax
�
kY kF ✓max

p
log(n), kY k2!1 log(n)

 

 �⇤
kY k2!1 max

(
✓max

p
n log(n)

K�1�nk✓k2
kY kF

p
nkY k2!1

,
log(n)

K�1�nk✓k2

)
. (D.43)

Let t1 = C(K�1�nk✓k2)�1
p
✓maxk✓k1 log(n), t2 = C(K�1�nk✓k2)�1✓max

p
n log(n), and

t3 = C(K�1�nk✓k2)�1 log(n). Define the function

e'(x) = min{t1, max{t2x, t3}}.

Then, (D.42)-(D.43) together imply that with probability 1� o(n�3),

k(A� EA)i,·Y k2  �⇤
kY k2!1 e'

⇣
kY kF

p
nkY k2!1

⌘
. (D.44)

We look at the function e'(x). Note that (
p
nkY k2!1)�1

kY kF takes values in the interval

[n�1/2, 1]. By (D.28), t1 � t3. Moreover, since k✓k1  n✓max, when x = 1, t2x � Ct1.

Last, when x = n�1/2, t2x ⌧ t3. Combining the above, we conclude that in [n�1/2,1), the

function e'(x) first stays flat at t3, then linearly increases to t1 and then stays flat at t1.
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Hence, we construct a function '(x), which linearly increases from 0 to t3 for x 2 [0, n�1/2],

then linear increases from t3 to t1 for x 2 [n�1/2, t2/t1], and then stays constant as t1 for

x 2 [t2/t1,1). It is seen that '(0) = 0, '(x)/x is non-increasing, and e'(x)  '(x)  t1 in

the interval [n�1/2, 1]. By (D.44) and that e'(x)  '(x), A4 is satisfied with �1 = o(n�3).

Furthermore, since '(x)  t1,

'(�) 
C
p
✓maxk✓k1 log(n)

K�1�nk✓k2
.

So far, we have shown that A1-A4 hold.

We now apply Lemma D.4. As mentioned, we only study the eigenvectors in group (ii),

which correspond to positive eigenvalues among �2, . . . ,�K . Let ⇤1 be the diagonal matrix

consisting of these eigenvalues and let ⌅01 be the matrix formed by associated eigenvectors.

Define their empirical counterparts, ⇤̂1 and ⌅̂01, in the same way. In Lemma D.4, we take

U = ⌅̂01, U⇤ = ⌅01, and eU⇤ = ⌅. Since �2, . . . ,�K are at the same order,   C. Also,

e  �1/(�1 � |�2|)  C by our assumption. It follows from (D.35) that there exists an

orthogonal matrix O such that

k⌅̂01O �A⌅01⇤
�1

1
k2!1 

C
p

✓maxk✓k1 log(n)

K�1�nk✓k2
k⌅k2!1.

By Lemma C.3, k⌅k2!1 = O(
p
Kk✓k�1✓max). Plugging it into the above inequality, we

find that

k⌅̂01O �A⌅01⇤
�1

1
k2!1 

C✓3/2maxK3/2
p
k✓k1 log(n)

�nk✓k3
. (D.45)

By definition of eigen-decomposition, ⌦⌅01 = ⌅01⇤1. It follows that

A⌅01⇤
�1

1
= ⌦⌅01⇤

�1

1
+ (A� ⌦)⌅01⇤

�1

1
= ⌅01 + (A� ⌦)⌅01⇤

�1

1
.

Plugging it into (D.45) yields

k⌅̂01O � ⌅01k2!1 
C✓3/2maxK3/2

p
k✓k1 log(n)

�nk✓k3
+ k(A� ⌦)⌅01⇤

�1

1
k2!1. (D.46)

To bound the second term on the right hand side, we apply the first line of (D.42) by letting

Y = ⌅01. It turns out that with probability 1� o(n�3),

k(A� ⌦)⌅01⇤
�1

1
k2!1  ( max

1in
k(A� ⌦)i,·⌅01k2) · k⇤

�1

1
k

 C
p
✓maxk✓k1 log(n) · k⌅01k2!1 · k⇤�1

1
k

 C
p
✓maxk✓k1 log(n) ·

p

Kk✓k�1✓max ·K��1

n k✓k�2, (D.47)
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where in the last inequality, the bound of k⇤�1

1
k is from Lemma C.2 and the bound of

k⌅01k2!1 is from Lemma C.3. Combining (D.46)-(D.47) gives

k⌅̂01O � ⌅01k2!1 
C✓3/2maxK3/2

p
k✓k1 log(n)

�nk✓k3
.

Note that the left hand side only involves eigenvectors in group (ii). We can prove similar

results for the other three groups of eigenvectors. For group (i), �⇤
� CK�1

k✓k�1 and

keU⇤
k2!1  Ck✓k�1✓max, and the resulting bound is

k!⇠̂1 � ⇠1k1 
C✓3/2maxK

p
k✓k1 log(n)

k✓k3
.

Furthermore, if �n = o(1), by Lemma C.2, �1 � |�2| � C�1�1 � C�1Kk✓k2. Compared

with the case of �n � c, the �⇤ of group (i) is larger by a factor of K, so all the bounds

concerning ⇠̂1 are reduced by a factor of K.

D.3 Proof of Theorem 3.1

Without loss of generality, we assume T = 1, so that no thresholding is applied in obtaining

R̂. Note that maxi krik  maxk kvkk  C
p
K by Lemma C.4. For any threshold

p
K ⌧

T < 1, the threshold always reduces errors. Therefore, the error bounds for the case of no

thresholding immediately imply the error bounds for the case of thresholding.

The second claim is straightforward. We only show the first claim. By Lemma C.3, we

can choose the sign of ⇠1 such that it is a strictly positive vector. By definition of errn, we

can re-write

errn =
k✓k

✓min

·
✓3/2max

p
k✓k1 log(n)

k✓k3
.

Then, the statements (c)-(d) of Lemma D.2 can be re-expressed as

k!⇠̂ � ⇠k1 = O
⇣✓min

k✓k
Kerrn

⌘
, max

1in
kX 0⌅̂i,0 � ⌅i,0k = O

⇣✓min

k✓k
K3/2��1

n errn
⌘
. (D.48)

We now show the claim. Let (!, X) be the same as in Lemma D.2, and define H = !X 0
2

RK�1,K�1. Fix i. By definition of (ri, r̂i) and H,

ri =
1

⇠1(i)
⌅i,0, Hr̂i = !X 0r̂i =

1

!⇠̂1(i)
X 0⌅̂i,0.

It follows that

Hr̂i � ri =
1

!⇠̂1(i)
(X 0⌅̂i,0 � ⌅i,0) +

h 1

!⇠̂1(i)
�

1

⇠1(i)

i
⌅i,0

=
1

!⇠̂1(i)
(X 0⌅̂i,0 � ⌅i,0)�

!⇠̂1(i)� ⇠1(i)

!⇠̂1(i)
ri.
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First, by Lemma C.3, ⇠1(i) � C✓min/k✓k; also, by (D.48), |!⇠̂1(i)� ⇠1(i)| ⌧ ✓min/k✓k. We

thus have !⇠̂1(i) � ⇠1(i)/2 � C✓min/k✓k. Second, using the first bullet point of Lemma C.4,

we have krik  maxk kvkk  C
p
K. Plugging these results into the above equation gives

kHr̂i � rik 
Ck✓k

✓min

�
kX 0⌅̂i,0 � ⌅i,0k+

p

K|!⇠̂1(i)� ⇠1(i)|
�
. (D.49)

The claim follows by plugging (D.48) into (D.49).

D.4 The `
2-norm deviation bound for R̂

Theorem 3.1 is about the row-wise large deviation bound for R̂. For completeness of theory,

we also present the `2-norm deviation bound for R̂. This result will be useful in the proofs

of Theorems 3.5-B.1 about faster rates of Mixed-SCORE. Recall the following definition:

err⇤n = [(✓1/2max✓̄
3/2)/(✓min✓̄⇤)] · (n✓̄

2)�1/2.

Lemma D.5. Under conditions of Theorem 3.1, with probability 1� o(n�3),

n�1

nX

i=1

kHr̂i � rik
2
 CK3��2

n (err⇤n)
2.

Proof of Lemma D.5: As explained in the proof of Theorem 3.1, we only need to prove the

claim for the special case of T = 1 in obtaining R̂ (i.e., no thresholding is applied). By

definition of err⇤n, we can re-write it as

err⇤n =
k✓k

✓min

p
n
·

p
✓maxk✓k1
k✓k2

.

Then, the first two bullet points of Lemma D.2 can be re-expressed as

k!⇠̂ � ⇠k = O

✓
✓min

p
n

k✓k
Kerr⇤n

◆
, k⌅̂0X � ⌅0kF = O

✓
✓min

p
n

k✓k
K3/2��1

n err⇤n

◆
.

Combining it with (D.49) gives

n�1

nX

i=1

kHr̂i � rik
2


Ck✓k2

n✓2
min

�
k⌅̂0X � ⌅̂0k

2

F +Kk!⇠̂1 � ⇠1k
2
�
 CK3��2

n (err⇤n)
2.

This proves the claim.

D.5 A property of the rotation matrix H

Lemma D.6. Let H be the orthogonal matrix in Theorem 3.1. With probability 1�o(n�3),

kHdiag(�̂2, . . . , �̂K)� diag(�̂2, . . . , �̂K)Hk  C
p
✓maxk✓k1.
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Proof of Lemma D.6: Write for short ⇤̂0 = diag(�̂2, . . . , �̂K). Let ⌅̂0, ⌅̂0, ! and X be the

same as in Lemma D.2. In the proof of Theorem 3.1, we have seen that

H = !X 0, where ! 2 {±1}.

It follows that

kH⇤̂0 � ⇤̂0Hk = k(H⇤̂0 � ⇤̂0H)0k = kX⇤̂0 � ⇤̂0Xk

= k(⌅̂0
0⌅0)⇤̂0 � ⇤̂0(⌅̂

0
0⌅0) + (H � ⌅̂0

0⌅0)⇤̂0 � ⇤̂0(H � ⌅̂0
0⌅0)k

 k(⌅̂0
0⌅0)⇤̂0 � ⇤̂0(⌅̂

0
0⌅0)k+ 2k⌅̂0

0⌅0 �Xk · k⇤̂0k. (D.50)

We shall apply (Abbe et al., 2020, Lemma 2): in our setting, their notations H and sgn(H)

correspond to our notations of ⌅̂0
0
⌅0 and X. By their Lemma 2,

k⌅̂0
0⌅0 �Xk

1/2
 CkA� ⌦k/�⇤, k(⌅̂0

0⌅0)⇤̂0 � ⇤̂0(⌅̂
0
0⌅0)k  2kA� ⌦k, (D.51)

where �⇤ is the eigen-gap quantity defined in the proof of Lemma D.2 and satisfies �⇤
�

C�nK�1
k✓k2. Additionally, by Lemma C.2 and Lemma D.1, k⇤̂0k . k⇤0k  C�nK�1

k✓k2 

C�⇤, with probability 1 � o(n�3). Combining these with (D.50)-(D.51), we have: with

probability 1� o(n�3),

kH⇤̂0 � ⇤̂0Hk  k(⌅̂0
0⌅0)⇤̂0 � ⇤̂0(⌅̂

0
0⌅0)k+ 2k⌅̂0

0⌅0 �Xk · k⇤̂0k

 2kA� ⌦k+ C(kA� ⌦k/�⇤)2 · C�⇤

 CkA� ⌦k

 C
p
✓maxk✓k1,

where the third line is because kA� ⌦k ⌧ �⇤ and the last line is from (D.27).

E Vertex Hunting

Mixed-SCORE as a generic algorithm, where the VH step is a plug-in step. To analyze the

errors of Mixed-SCORE, we must first understand the errors of di↵erent VH approaches.

Definition E.1 (E�ciency and strong e�ciency of Vertex Hunting). A Vertex Hunting

algorithm is said to be e�cient if it satisfies max1kK kHv̂k�vkk  Cmax1in kHr̂i�rik,

and it is said to be strongly e�cient if max1kK kHv̂k�vkk  C
�
n�1

Pn
i=1

kHr̂i�rik2
�1/2

,

where H is the same orthogonal matrix as in Theorem 3.1.

Consider all 4 VH approaches: SVS, SVS*, CVS, and SP in Table 1. We show
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• All approaches are e�cient under some regularity conditions.

• SVS and SVS* are also strongly e�cient in some settings (however, CVS and SP are

generally not strongly e�cient; this is because SVS and SVS* use a denoise stage

while CVS and SP do not).

E.1 E�ciency of SP and CVS

The next lemma gives the e�ciency of CVS and SP.

Lemma E.1 (E�ciency of CVS and SP). Suppose conditions of Theorem 3.2 hold. Suppose

we apply either CVS or SP algorithm to the n rows of R̂. With probability 1� o(n�3), the

estimated v̂1, . . . , v̂K satisfy that max1kK kHv̂k�vkk  Cmax1in kHr̂i�rik. Therefore,

both the CVS and SP algorithms are e�cient.

Proof of Lemma E.1: Without loss of generality, we only consider the case that H equals to

the identity matrix. When H is not the identity matrix, noticing that max1kK kHv̂k �

vkk = max1kK kv̂k �H 0vkk, we only need to plug H 0v1, . . . , H 0vK into the proof below.

We first prove the e�ciency of the CVS algorithm. Write ĥ = max1in kr̂i � rik. We

aim to show

min
1`K

kvk � v̂`k  C0ĥ, for all 1  k  K. (E.52)

It means for each true vertex vk, there is at least one of {v̂1, v̂2, . . . , v̂K} that is within a

distance of C0ĥ to vk. At the same time, since ĥ = o(
p
K) and the distance between any two

vertices is � C
p
K (see Lemma C.4), each v̂` cannot be simultaneously within a distance

C0ĥ to two vertices. The above imply that there is a one-to-one correspondence between

true and estimated vertices such that for each true vertex the corresponding estimated

vertex is within a distance C0ĥ to it. The claim then follows.

It remains to show (E.52). Fix 1  k  K. Recall that wi is the unique weight vector

such that ri =
PK

s=1
wi(s)vs, 1  i  n. For a constant C1 > 0 to be decided, let

V0k =
�
1  i  n : wi(k) � 1� C1K

�1/2ĥ
 
.

Let îs be such that v̂s = r̂îs , 1  s  K. We shall first prove that

{̂i1, î2, . . . , îK} \ V0k 6= ;. (E.53)

This means at least one of the estimated vertices has to come from the point set {r̂i : i 2

V0k}. We shall next prove that

max
i2V0k

kr̂i � vkk  C0ĥ. (E.54)
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Then, the estimated vertex which comes from {r̂i : i 2 V0k} is guaranteed to be within a

distance C0ĥ to the true vk, i.e., (E.52) holds.

It remains to show (E.53)-(E.54). First, consider (E.53). In the proof of Lemma C.4,

we introduce a one-to-one linear mapping T2 from the standard simplex S0 to the Ideal

Simplex S
ideal such that T2(wi) = ri for all 1  i  n. We have shown that both T2 and

T�1

2
are Lipschitz with the Lipschitz constants at the order of

p
K and 1/

p
K, respectively.

As a result, there is a constant C2 > 1 such that, for any w, w̃ 2 S0,

C�1

2

p

Kkw � w̃k  kT2(w)� T2(w̃)k  C2

p

Kkw � w̃k. (E.55)

Below, we first use (E.55) to show the distance from vk to the convex hull of {ri : i /2 V0k}

is su�ciently large, and then prove (E.53) by contradiction. We take C1 = 5C2. Take an

arbitrary point x⇤ from the convex hull H{ri : i /2 V0k}. Since T2 is a linear mapping,

y⇤ = T�1

2
(x⇤) is a convex combination of {wi : i /2 V0k}. By definition, for each i /2 V0k,

0  wi(k)  1�C1K�1/2ĥ. As a result, y⇤(k), as a convex combination of {wi(k) : i /2 V0k},

also satisfies that 0  y⇤(k)  1� C1K�1/2ĥ. This implies

kT�1

2
(x⇤)� ekk = ky⇤ � ekk � C1K

�1/2ĥ, for any x⇤ 2 H{ri : i /2 V0k}.

Combining it with (E.55), we have

kx⇤ � vkk = kT2(y
⇤)� T2(ek)k � C�1

2

p

K · C1K
�1/2ĥ � 5ĥ.

Since x⇤ is taken arbitrarily from the convex hull H{ri : i /2 V0k}, we have

d
�
vk,H{ri : i /2 V0k}

�
� 5ĥ. (E.56)

Come back to the proof of (E.53). When this claim is not true, the estimated simplex bS is

contained in the convex hull of {r̂i : i /2 V0k}. It follows that

d(vk, bS) � d
�
vk,H{r̂i : i /2 V0k}

�

� d
�
vk,H{ri : i /2 V0k}

�
� ĥ

� 4ĥ.

Let jk be a pure node of community k. Then, kr̂jk � vkk = kr̂jk � rjkk  ĥ. It follows that

max
1in

d(r̂i, bS) � d(r̂jk ,
bS) � d(vk, bS)� ĥ � 3ĥ. (E.57)

At the same time, consider the simplex bS⇤ formed by r̂j1 , r̂j2 , . . . , r̂jK , where js is a pure

node of community s, for 1  s  K. Note that ri1 , ri2 , . . . , riK form the Ideal Simplex S
⇤

59



and max1in d(ri,S⇤) = 0. It follows that

max
1in

d(r̂i, bS⇤)  max
1in

d(ri,S
⇤) + 2ĥ  2ĥ. (E.58)

Note that bS is the solution of the combinatory search step. It has to satisfy

max
1in

d(r̂i, bS)  max
1in

d(r̂i, bS⇤).

This yields a contradiction to (E.57)-(E.58). Hence, (E.53) must be true.

Next, consider (E.54). It is easy to see that

max
i2V0k

kr̂i � vkk  max
i2V0k

kri � vkk+ ĥ

= max
i2V0k

kT2(wi)� T2(ek)k+ ĥ

 C2

p

K max
i2V0k

kwi � ekk+ ĥ,

where we have used (E.55) in the last line. For any i 2 V0k, kwi � ekk2 = [1 � wi(k)]2 +
P

6̀=k w
2

i (`)  [1� wi(k)]2 + [
P

` 6=k wi(`)]2  2(C1K�1/2ĥ)2 = 50C2
2
K�1ĥ2. It follows that

max
i2V0k

kr̂i � vkk  (5
p

2C2

2 + 1)ĥ.

Hence, (E.54) is true by choosing C0 = 5
p
2C2

2
+ 1.

We then prove the e�ciency of the SP algorithm. For space limit, the exact description

of the SP algorithm is not given in the main paper. We include it here:

• Initialize Yi = (1, r̂0i)
0
2 RK , for 1  i  n.

• At iteration k = 1, 2, . . . ,K: Find ik = argmax1inkYik and let uk = Yik/kYikk. Set

the k-th estimated vertex as v̂k = r̂ik . Update Yi to (1� uku0k)Yi, for 1  i  n.

This algorithm has been analyzed in various literature. We only need to adapt the existing

results. The next lemma is from (Gillis and Vavasis, 2013, Theorem 3).

Lemma E.2. Fix m � r and n � r. Consider a matrix Y = SM + Z, where S 2 Rm⇥r

has a full column rank, M 2 Rr⇥n is a nonnegative matrix such that the sum of each

column is at most 1, and Z = [Z1, . . . , Zn] 2 Rm⇥n. Suppose M has a submatrix equal

to Ir. Write ✏ = max1in kZik. Suppose ✏ = O( �min(S)p
r2(S)

), where �min(S) and (S) are

the minimum singular value and condition number of S, respectively. If we apply the SP

algorithm to columns of Y , then it outputs an index set K ⇢ {1, 2, . . . , n} such that |K| = r

and max1kr minj2K kSk � Yjk = O(✏2(S)), where Sk is the k-th column of S.
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Given K, the estimated vertices by SP are {Yj}j2K. Hence, the above lemma says the

maximum `2-error on estimating vertices is O(✏2(S)) = O
�
2(S)max1in kZik

�
.

In our setting, we apply SP to Yi = (1, r̂0i)
0, 1  i  n. We shall re-write the data in the

same form as in Lemma E.2. Recall that H is the orthogonal matrix in Theorem 3.1 and

v1, . . . , vK are vertices of the Ideal Simplex. By definition,
0

@ 1 · · · 1

H�1v1 · · · H�1vK

1

Awi =

0

@ 1

H�1ri

1

A .

Let ṽk = (1, (H�1vk)0)0, r̃i = (1, (H�1ri)0)0, zi = (0, (r̂i �H�1ri)0)0, 1  k  K, 1  i  n.

It is seen that

(1, r̂0i)
0
⌘ Yi = [ṽ1, . . . , ṽK ]wi + zi.

Write Y = [Y1, . . . , Yn] 2 RK⇥n, Ṽ = [ṽ1, . . . , ṽK ] 2 RK⇥K , W = [w1, . . . , wn] 2 RK⇥n, and

Z = [z1, . . . , zn] 2 RK⇥n. The above can be re-written as

Y = Ṽ W + Z. (E.59)

This reduces to the form in Lemma E.2 with m = K. To apply Lemma E.2, we note that

Ṽ can be re-written as

Ṽ = diag(1, H�1) ·Q, where Q =

0

@ 1 · · · 1

v1 · · · vK

1

A .

Since diag(1, H�1) is an orthogonal matrix, the singular values of Ṽ are the same as the

singular values of Q. Moreover, by (C.26), all the singular values of Q are at the order of
p
K. It follows that

�min(Ṽ ) ⇣
p

K, (Ṽ ) ⇣ 1. (E.60)

In particular, Ṽ has a full rank, and �min(Ṽ )p
K2(Ṽ )

⇣ 1. By Lemma E.2, the maximum `2-error on

estimating vertices isO(max1in kZik) = O(max1in kr̂i�H�1rik) = O(max1in kHr̂i�

rik). The claim follows immediately.

E.2 Strong e�ciency of SVS and SVS⇤

SVS and SVS⇤ both have a denoise stage, where we use k-means to reduce the n rows of R̂

into L “cluster centers”, with an L that is (usually a few times) larger than K. We have

seen that the denoise stage makes SVS and SVS⇤ more accurate numerically (see Figure 4).

We now give a theoretical justification, where we show that SVS and SVS⇤ are strongly

e�cient (see Definition E.1). Without loss of generality, we focus on SVS. The analysis of

SVS⇤ is very similar, which is discussed in the remark in the end.
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First, consider Setting 1. Let S0 = S0(e1, e2, . . . , eK) be the standard simplex in RK ,

where the vertices e1, e2, . . . , eK are the standard Euclidean basis vectors of RK . Fix a

density g defined over S0 and let R = {⇡ 2 S0 : g(⇡) > 0} be the support of g. We suppose

there is a constant c0 > 0 such that

R is an open subset of S0, and distance(ek,R) � c0, 1  k  K. (E.61)

Let �v(⇡) denote the point mass at ⇡ = v. Let ✏1, . . . , ✏K > 0 be constants such that
PK

k=1
✏k < 1. We invoke a random design model where ⇡i’s are iid drawn from a mixture

f(⇡) =
KX

k=1

✏k · �ek(⇡) +
⇣
1�

KX

k=1

✏k
⌘
· g(⇡). (E.62)

Lemma E.3 (E�ciency of SVS, Setting 1). Suppose conditions of Theorem 3.2 hold. Ad-

ditionally, suppose K is fixed and rows of ⇧ are iid generated from (E.61)-(E.62). We

apply the SVS algorithm to rows of R̂ with an L that does not change with n. Then, there

exists L0 = L0(g, ✏1, . . . , ✏K) such that, as long as L � L0, with probability 1� o(n�3), the

estimated v̂1, . . . , v̂K satisfy max1kK kHv̂k � vkk  Cmax1in kHr̂i � rik. As a result,

the SVS algorithm is e�cient.

Lemma E.3 is proved in Section E.2.1. Its proof utilizes the Borel-Lebesgue covering

theorem to characterize the local centers produced in the denoise stage.

Remark. A noteworthy implication of Lemma E.3 is that the performance of SVS is

robust to the choice of L: an overshooting of L only has negligible e↵ects (so as long as

computation is not a serious issue, we can choose a larger L in SVS). This is intuitively

explained as follows. As L increases, more local centers emerge, and we have two represen-

tative scenarios. In the first scenario, new “local centers” emerge in the interior of the Ideal

Simplex, while “local centers” that fall close to one of the vertices of Ideal Simplex remain

una↵ected. In this case, as “local centers” that fall in the interior of the Ideal Simplex won’t

be selected in the second stage of SVS, the estimated vertices remain roughly the same as L

increases. In the second scenario, near a vertex of the Ideal Simplex, the number of “local

centers” increases as L increases. However, all these “local centers” remain close to the

vertex, and in its second stage, SVS selects one of these “local centers” as the estimated

vertex. In this case, the estimates of vertices also remain roughly the same as L increases.

The above heuristic explanation is made rigorous in the proof of Lemma E.3.

Next, consider Setting 2. Let Nk = {1  i  n : ⇡i(k) = 1} be the set of pure nodes of

community k, 1  k  K, and let M = {1  i  n : max1kK ⇡i(k) < 1} be the set of all
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mixed nodes. We assume there are constants c1, c2 2 (0, 1) such that

min
1kK

|Nk| � c1n, min
1kK

X

i2Nk

✓2(i) � c2k✓k
2. (E.63)

Furthermore, for a fixed integer L0 � 1, we assume there is a partition of M, M =

M1 [ · · · [ML0 , a set of PMF’s �1, · · · , �L0 , and constants c3, c4 > 0 such that (ek: k-th

standard basis vector of RK)

n
min

1j 6=`L0

k�j � �`k, min
1`L0,1kK

k�` � ekk
o
� c3, (E.64)

and for each 1  `  L0 (note: errn is the same as that in (3.10)),

|M`| � c4|M| � n��2

n err2n, max
i2M`

k⇡i � �`k  1/ log(n). (E.65)

In this setting, we assume that the true ⇡i’s form several loose clusters, where the ⇡i’s in

the same cluster are within a distance of O( 1

log(n)) from each other. We note that 1

log(n) is

much larger than the order of noise, max1in kHr̂i � rik (see Theorem 3.1). Hence, the

assumed clustering structure is “loose”.

Lemma E.4 (Strong e�ciency of SVS, Setting 2). Suppose conditions of Theorem 3.2 hold.

Additionally, suppose K is fixed and (⇥,⇧) satisfy (E.63)-(E.65). For any integer L � 1,

denote by ✏L(R̂) the sum of squared residuals of applying k-means to rows of R̂ to get L

clusters. We apply the SVS algorithm to rows of R̂, with a data-drive choice of L:

L̂n(A) = min{L � K + 1 : ✏L(R̂) < ✏L�1(R̂)/ log(log(n))}. (E.66)

With probability 1� o(n�3), the estimated v̂1, . . . , v̂K satisfy

max
1kK

kHv̂k � vkk  C
⇣
n�1

nX

i=1

kHr̂i � rik
2

⌘1/2
. (E.67)

As a result, the SVS algorithm is strongly e�cient.

Lemma E.4 is proved in Section E.2.2. The proof requires unconventional analysis of k-

means. The challenge comes from that the clusters of ⇡i’s are loose. Using the conventional

analysis of k-means, the VH error is governed by the largest within-cluster variance, which

can be as large as O( 1

log(n)) for loose clusters (see (E.65)). The key of the proof is to show

that the loose clusters in the interior have negligible e↵ects on the estimated vertices.

Remark. Lemmas E.3-E.4 can be easily extended to SVS⇤. Let ĥ = maxi kHr̂i � rik.

In the proofs of these lemmas, we have shown the following properties of the k-means cluster

centers: With high probability, (a) all k-means centers are within a distance of O(ĥ) to the
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Ideal Simplex, and (b) for each vertex vk, there is at least one k-means center that is within

a distance of O(ĥ) to vk. SVS⇤ applies SP to these k-means centers. Therefore, we can

apply Lemma E.1 pretending that the k-means centers are the data points. This gives the

desired claims for SVS⇤.

E.2.1 Proof of Lemma E.3

Lemma E.3 follows directly from the next lemma:

Lemma E.5. Suppose the conditions of Lemma E.3 hold. We apply the SVS algorithm

to {r̂i}ni=1
with L being a properly large constant. Write ĥ = max1in kHr̂i � rik. The

following statements are true.

• In the local clustering sub-step, all the local centers output by k-means are within a

distance of Cĥ to the Ideal Simplex. Moreover, for each true vertex vk, there is at

least one local center that is within a distance of Cĥ to it, 1  k  K.

• The combinatorial search sub-step selects exactly one local center among those within

a distance of Cĥ to a true vk, 1  k  K. As a result, up to a permutation of

estimated vertices, max1kK kHv̂k � vkk  Cĥ.

Proof of Lemma E.5: As explained in the proof of Lemma E.1, we can assume H = IK�1

without loss of generality.

We first argue that, once the first bullet point is proved, the second bullet point follows

directly. Let m̂1, m̂2, . . . , m̂L be the local centers by k-means. The combinatorial search step

of SVS is an application of CVS on these local centers, and we hope to apply Lemma E.1.

Note that when the first bullet point of the claim is true, we have:

• d(m̂j ,Sideal)  Cĥ, 1  j  L.

• For each 1  k  K, there exists jk such that km̂jk � vkk  Cĥ.

By Lemma C.4, the distance between two di↵erent vk and v` is lower bounded by a constant

times
p
K, while ĥ = o(

p
K). As a result, any m̂j cannot be simultaneously within a

distance of Cĥ to two vertices, which implies that j1, j2, . . . , jK are distinct. Define

mj =

8
><

>:

argminx2Sidealkx� m̂jk, j /2 {j1, j2, . . . , jK},

vk, j = jk, 1  k  K.

We then have
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• The points m1,m2, . . . ,mL are in the Ideal Simplex S
ideal.

• km̂j �mjk  Cĥ, 1  j  L.

• For each 1  k  K, there is at least one mj located at the vertex vk.

If we view m̂1, m̂2, . . . , m̂L as the data points and view mj1 , . . . ,mjK as the “pure nodes”,

we can apply Lemma E.1 to get max1kK kv̂k � vkk  Cmax1jL km̂j �mjk  Cĥ.

Therefore, it su�ces to prove the first bullet point of the claim. For any L � 1, let

RSS(L) be the objective achieved by applying k-means to mixed ri’s assuming  L clusters:

RSS(L) = min
L cluster centers

X

mixed nodes i

kri � (closest-cluster-center)k2.

In preparation, we study RSS(L) as a function of L.

We provide an upper bound of RSS(L) by constructing a feasible solution to the k-

means problem. In the proof of Lemma C.4, we see that there is a one-to-one mapping

T = T2 � T1 from the standard simplex S0 to the Ideal Simplex S
ideal such that ri = T (⇡i)

and that (note: we have used that K is a constant)

C�1
kx� yk  kT (x)� T (y)k  Ckx� yk, for any x, y 2 S0. (E.68)

For an integer s = bL
1

K�1 � 1c, we consider the following choice of centers:

n
T (x) : x 2 S0, entries of x take value on

�
0,

1

s
, ...,

s� 1

s
, 1
 o

.

The total number of centers is bounded by (s+ 1)K�1
 L. We then assign each ri to the

nearest center. The `1-distance from each ⇡i to the nearest x above is at most 1/s, so

the Euclidean distance is at most
p
K/s; combining it with (E.68), the Euclidean distance

from ri = T (⇡i) to the nearest T (x) above is at most C
p
K/s. It follows that

RSS(L)  n(C
p

K/s)2.

The choice of s guarantees that s > L
1

K�1 � 2. As a result, for a constant c̃ that does not

depend on L,

RSS(L)  n · c̃L� 2
K�1 . (E.69)

We are now ready to prove the first bullet point. Note that each r̂i is within a distance

Cĥ to the corresponding ri and that all the ri’s are in the Ideal Simplex. Hence, all data

points {r̂i}ni=1
are within a distance Cĥ to the Ideal Simplex. It is easy to see that all local

centers output by k-means must also be within a distance Cĥ to the Ideal Simplex. What

remains is to show that there is at least one local center within a distance of Cĥ to each

true vertex vk. Fix vk. Our strategy is as follows: for a constant `0 to be decided,
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(a) We first show that there exists at least one local center within a distance `0 to vk.

(b) We then show that, for each local center within a distance `0 to vk, the associated

data cluster consists of only pure r̂i from community k.

Then, by the nature of k-means, such a local center equals to the average of all the r̂i

assigned to this cluster. Since each r̂i corresponds to a pure node of community k, it is

within a distance Cĥ to vk. As a result, the local center must also be within a distance Cĥ

to vk. This gives the first bullet point.

What remains is to prove (a) and (b). Fix vk. Consider (a). Suppose there are no local

centers within a distance `0 to vk. Then, each pure ri from community k has a distance

> `0 to the nearest local center; hence, the distance from r̂i to the nearest local center is at

least `0 �Cĥ � `0/2. At the same time, by the generating process of ⇡i’s, with probability

1� o(n�3), the number of pure nodes of community k is at least n✏k/2. These pure nodes

contribute a sum-of-squares of

� (n✏k/2) · (`0/2)
2 = n(`20✏k/8).

Additionally, the mixed r̂i’s are assigned to at most L clusters. Since kr̂i � xk2 � kri �

xk2/2� O(ĥ2) for any point x, we immediately know that the sum-of-squares contributed

by mixed r̂i’s is

�
1

2
RSS(L)�O(nĥ2).

Combining the above, the objective attained by k-means is

�
1

2
RSS(L) + n(`20✏k/9) (E.70)

At the same time, we construct an alternative solution by letting (L�K) of the local centers

be those associated with RSS(L � K), letting the remaining K centers be v1, v2, . . . , vK ,

and assigning each r̂i to the center closest to the corresponding ri. Since kr̂i � xk2 

2kri � xk2 +O(ĥ2), the sum of squares attained by this solution is

 2RSS(L�K) +O(nĥ2). (E.71)

A contradiction is obtained as long as

2RSS(L�K)�
1

2
RSS(L+K) < n(`20✏k/9)�O(nĥ2)

< n(`20/10).

According to (E.69), the above is true if we choose L > (20c̃/`2
0
)
K�1

2 . This proves (a).
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Consider (b). Fix k. Let m̂⇤ be a local center such that km̂⇤
� vkk  `0. By the

assumption (E.61), for any ⇡i 6= ek, its distance to ek (ek is the k-th standard basis of

RK) is at least c0. Combining it with (E.68), for any node i that is not a pure node of

community k, the distance from ri to vk is at least C�1c0. As a result, for any such node,

kr̂i � m̂⇤
k � C�1c0 � `0 � Cĥ.

By taking `0 = C�1c0/4.1, for any node i not pure of community k,

the distance from r̂i to the center m̂⇤ is at least 3`0. (E.72)

We shall also show that, for any node i not pure of community k,

the distance from r̂i to the nearest center is at most 2.5`0. (E.73)

By (E.72)-(E.73), these nodes cannot be assigned to m̂⇤. Therefore, the cluster associated

with m̂⇤ consists of only those r̂i such that i is a pure node of community k. This proves

(b).

What remains is to prove (E.73). If i is a pure node of a di↵erent community `, then

by (a) above, the distance from ri = v` to the nearest center is `0 +Cĥ < 2.5`0. Hence, we

only need to consider i that is a mixed node. Since maxi kr̂i � rik  Cĥ ⌧ 0.5`0, it su�ces

to show that

the distance from a mixed ri to the nearest center is at most 2`0. (E.74)

Let S0 = S0(e1, . . . , eK) 2 RK be the standard (K � 1)-simplex, and denote by B(x; c) an

open ball in S0 centered at x with a radius c; we notice that here an “open ball” means

the intersection of S0 and an open ball in RK . Let R̄ be the closure of R, where R is the

support of f(·). We consider the open cover of R̄:

�
B(x,C�1`0) : x 2 R

 
.

Since R̄ is closed and bounded, it is a compact set. According to the Borel-Lebesgue

covering theorem, the above open cover has a finite sub-cover:

�
B(x1, C

�1`0),B(x2, C
�1`0), . . . ,B(xp, C

�1`0)
 
, where x1, . . . , xp 2 R.

This means each ⇡i 6= ek is contained in one B(xj , C�1`0). Recalling that T is the mapping

in (E.68), define

B
⇤
j = T

�
B(xj , C

�1`0)
�
, 1  j  p.
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Then, ri = T (⇡i) is contained in B
⇤
j . Moreover, for any y, ỹ 2 B

⇤
j , ky�ỹk  Cmaxx,x̃2B(xj ,C�1`0) 

2`0. Therefore, if we can show that

each B
⇤
j contains at least one local center, 1  j  p, (E.75)

then the distance from ri to this local center is bounded by 2`0. This gives (E.74), and in

turn gives (E.73).

What remains is to prove (E.75). Note that R is an open set. By definition of open sets,

for each of x1, x2, . . . , xp, there is a ⌧j > 0 such that the closed ball B̄(xj , ⌧j) is contained

in R. We define the closed balls

BBj ⌘ B̄
�
xj ,min{⌧j , C

�1`0/2}
�
, 1  j  p.

Let !j =
R
f(⇡)1{⇡ 2 BBj}d⇡ = (1 �

PK
k=1

✏k)
R
g(⇡)1{⇡ 2 BBj}d⇡, 1  j  p. Note

that each of these closed balls is contained in the support of g with a nonzero radius and

that g as a probability density is measurable. We immediately know that !j > 0. From

the assumption (E.62) and elementary large-deviation inequalities (e.g., the Hoe↵ding’s

inequality), we know that with probability 1� o(n�3), for 1  j  p,

the number of ⇡i’s contained in BBj is at least n!j/2. (E.76)

With (E.76), we now prove (E.75) by contradiction. Suppose (E.75) does not hold, i.e.,

there exists B⇤
j such that

B
⇤
j \ {m̂1, m̂2, . . . , m̂L} = ;,

where m̂1, m̂2, . . . , m̂L are the local centers output by k-means. By definition of B⇤
j and the

fact that T is a one-to-one mapping, we have

B(xj , C
�1`0) \

�
T�1(m̂1), T

�1(m̂2), . . . , T
�1(m̂L)

 
= ;.

Note that BBj is a ball also centered at xj but with a radius no larger than half of the

radius of B(xj , C�1`0). As a result, for any x 2 BBj , its distance to the nearest one of

T�1(m̂1), · · · , T�1(m̂L) is at least C�1`0/2; combining it with (E.68), the distance from

T (x) to the nearest one of m̂1, m̂2, . . . , m̂L is at least C�2`0/2. It follows that

for any ⇡i 2 BBj , min
1sL

kri � m̂sk � C�2`0/2.

Note that maxi kr̂i � rik  Cĥ = o(1). We further conclude that

for any ⇡i 2 BBj , the distance from r̂i

to the nearest local center is � C�2`0/3.
(E.77)
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Combining (E.76)-(E.77), the sum-of-squares attained by k-means is

� (C�2`0/3)
2
· (n!j/2) � n(!minC

�4`20/18),

where !min = min{!1, . . . ,!p}. At the same time, the objective attained by k-means should

be

 RSS(L) + n(Cĥ2).

A contradiction is obtained as long as

RSS(L) < n(!minC
�4`20/18)� n(Cĥ2). (E.78)

Comparing it with (E.69), as long as L > ( 19C4c̃
`20!min

)
K�1

2 , the inequality (E.78) will be true.

We then have a contradiction, which implies that (E.75) must hold. The proof is now

complete.

E.2.2 Proof of Lemma E.4

Lemma E.4 follows directly from the next lemma:

Lemma E.6. Suppose the conditions of Lemma E.4 hold. We apply the SVS algorithm to

{r̂i}ni=1
with L = L̂n(A), where L̂n(A) is defined in (E.66). Let ĥ⇤ =

p
n�1

Pn
i=1

kHr̂i � rik2

and ĥ = max1in kHr̂i � rik. With probability 1 � o(n�3), the following statements are

true.

• L̂n(A) = L0 +K.

• The local clustering sub-step identifies (L0+K) local centers, where there is a unique

(K�1)-simplex such that K of these centers (denoted by v̂1, v̂2, . . . , v̂K) are its vertices,

and all other centers are within a distance of Cĥ to this simplex. These K local centers

will be identified by the combinatorial search sub-step.

• The above K local centers satisfy v̂k = |Nk|
�1
P

i2Nk
r̂i, 1  k  K. As a result, up

to a permutation of estimated vertices, max1kK kHv̂k � vkk  Cĥ⇤.

Proof of Lemma E.6: As explained in the proof of Lemma E.1, we can assume H = IK�1

without loss of generality. By Theorem 3.1 and Lemma D.5, with probability 1� o(n�3),

ĥ ⌘ max
1in

kr̂i � rik 
Cerrn
�n

, n(h⇤)2 ⌘
nX

i=1

kr̂i � rik
2


Cn(err⇤n)
2

�2
n

, (E.79)
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where we have absorbed the factors of K into the constants. We also note that err⇤n 

errn/
p

log(n). Below, we restrict to the event of (E.79).

First, we study L̂n(A). Recall that �1, �2, . . . , �L0 are as in (E.64). Let T be the mapping

as in (E.68); note that T (⇡i) = ri for 1  i  n. Introduce

mj = T (�j), 1  j  L0.

By (E.68), the assumptions (E.64)-(E.65) imply that the distance between any two of

{v1, v2, . . . , vK ,m1,m2, . . . ,mL0} is at least c, and maxi2Mj kri �mjk  C1/ log(n), where

c > 0 and C1 > 0 are constants. In particular,

↵2

n 
C|M|

n log(n)
, where ↵2

n ⌘ n�1

L0X

j=1

X

i2Mj

kri �mjk
2.

We now study ✏L(R̂). When L = L0+K, by choosing this choice of centers {v1, . . . , vK ,m1, . . . ,mL0},

it is easy to see that

✏L0+K(R̂)  n↵2

n + C
nX

i=1

kr̂i � rik
2


C|M|

log(n)
, (E.80)

where the last inequality is due to (E.79) and the assumption that |M| � n��2
n err2n �

n��2
n (err⇤n)

2 log(n). When K  L < L0 +K, suppose there are L1 of {v1, v2, . . . , vK} and

L2 of {m1,m2, . . . ,mL0} such that no local centers are within a distance of c/3 of them.

Since the distance between any two of {v1, v2, . . . , vK ,m1,m2, . . . ,mL0} is at least c, we

have that (L1 + L2) is at least (L0 +K)� L. For any such vk and i 2 Nk or such mj and

i 2 Mj , the distance from r̂i to the nearest local center is at least c/3� ĥ � c/4. It follows

that

✏L(R̂) � (c/4)2 · (L1min
k

|Nk|+ L2min
j

|Mj |) � C|M|, (E.81)

where the last inequality is due to mink |Nk| � c1n and minj |Mj | � c4|M|. At the same

time, by choosing the centers to be {v1, v2, . . . , vK} and (L�K) of {m1,m2, . . . ,mL0},

✏L(R̂)  C(L0 +K � L)|M|+ C
nX

i=1

kr̂i � rik
2
 C|M|. (E.82)

By (E.80)-(E.82),

✏L(R̂)/✏L�1(R̂)

8
><

>:

 C/ log(n), L = L0 +K,

� C, K + 1  L  L0 +K.

Hence, the definition of L̂n(A) in (E.66) yields L̂n(A) = L0+K. This proves the first bullet

point.

70



Next, we consider the second bullet point. Suppose for L1 of {v1, v2, . . . , vK} and L2

of {m1,m2, . . . ,mL0}, there are no local centers are within a distance of c/4 of them.

When L1 + L2 � 1, using similar arguments as those for proving (E.81), we can see that

the associated sum-of-squares is lower bounded by C|M|. However, in (E.80), we have

seen that the sum-of-squares attained by k-means is at most C|M|/ log(n). Hence, the

above situation is impossible, i.e., for each of {v1, v2, . . . , vK ,m1, . . . ,mL0}, there is at least

one local center within a distance c/4 to it. Since that the distance between any two of

{v1, v2, . . . , vK ,m1, . . . ,mL0} is at least c, these (L0 + K) local centers must be distinct.

Noting that there are at most L̂n(A) = L0 +K cluster centers in total, we find that

there is exactly one local center within a distance c/4

to each of {v1, v2, . . . , vK ,m1,m2 . . . ,mL0}.
(E.83)

Denote by m̂⇤
(k) the local center nearest to vk and by m̂(j) the local center nearest to

mj , 1  k  K, 1  j  L0. For any i 2 Nk, the distance from r̂i to m̂⇤
(k) is at most

c/4+O(ĥ)  c/3, but its distance to any other local center is at least c�c/4�O(ĥ) � 2c/3;

hence, r̂i can only be assigned to the cluster associated with m̂⇤
(k). Similarly, for any i 2 Mj ,

the distance from r̂i to m̂(j) is at most c/4 + O( 1

log(n)) + O(ĥ)  c/3, but the distance to

any other local center is at least c� c/4�O( 1

log(n))�O(ĥ) � 2c/3; so r̂i must be assigned

to m̂(j). We have proved that
8
<

:
the cluster associated with m̂⇤

(k) is {r̂i : i 2 Nk}, 1  k  K,

the cluster associated with m̂(j) is {r̂i : i 2 Mj}, 1  j  L0.
(E.84)

Then, it is easy to see that

• All the local centers are within a distance ĥ to the Ideal Simplex.

• Each m̂⇤
(k) is within a distance Cĥ to vk, 1  k  K.

• Each m̂(j) is within a distance C/ log(n) to mj , 1  j  L0.

We now show that m̂⇤
(1)

, m̂⇤
(2)

, . . . , m̂⇤
(K)

will be selected by the combinatorial search. The

proof is similar to that of Lemma E.1 but is simpler. Suppose one m̂⇤
(k) is not selected by

the combinatorial search. By (E.84), the other local centers are contained in the convex

hull H{r̂i : i /2 Nk}. Hence, the estimated simplex Ŝ ⇢ H{r̂i : i /2 Nk}. We notice that

the distance from ek to the convex hull of all ⇡i 6= ek is lower bounded by a constant, as a

result of the assumptions (E.64)-(E.65). Using (E.68), we know that the distance from vk

to the convex hull H{ri : i /2 Nk} is also lower bounded by a constant. Then,

d(m̂⇤
(k), Ŝ) � d

�
m̂⇤

(k), H{r̂i : i /2 Nk})
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� d(vk,H{ri : i /2 Nk})�O(ĥ)

� C.

At the same time, if we pick the K local centers m̂⇤
(1)

, m̂⇤
(2)

, . . . , m̂⇤
(K)

,

max
1jL0

d
�
m̂j ,S(m̂

⇤
(1)

, m̂⇤
(2)

, . . . , m̂⇤
(K)

)
�
 Cĥ.

This yields a contradiction since ĥ = o(1). As a result, all of m̂⇤
(1)

, m̂⇤
(2)

, . . . , m̂⇤
(K)

will be

selected by the combinatorial search.

Last, we prove the third bullet point. So far, we have seen that v̂k = m̂⇤
(k) (up to a label

permutation). By (E.84) and the nature of k-means solutions,

v̂k = |Nk|
�1
X

i2Nk

r̂i, 1  k  K.

We note that 0 
P

i2Nk
kr̂i�v̂kk2 =

P
i2Nk

{kr̂i�vkk2�2(v̂k�vk)0(r̂i�vk)+kv̂k�vkk2)} =
P

i2Nk
kr̂i � vkk2 � |Nk|kv̂k � vkk2. As a result,

kv̂k � vkk
2


1

|Nk|

X

i2Nk

kr̂i � vkk
2


1

|Nk|

nX

i=1

kr̂i � rik
2, 1  k  K.

Since |Nk| � c1n, it follows that

max
1kK

kv̂k � vkk  C

vuutn�1

nX

i=1

kr̂i � rik2  Cĥ⇤. (E.85)

This proves the third bullet point.

F Rates of Convergence of Mixed-SCORE

We prove the main results about Mixed-SCORE, including Theorems 3.2-B.1.

F.1 Proofs of Theorem 3.2

Let H be the orthogonal matrix as in Theorem 3.1. We aim to show that, with probability

1� o(n�3), for all 1  i  n,

k⇡̂i � ⇡ik1  CkHr̂i � rik+ C max
1kK

kHv̂k � vkk+ CKerrn. (F.86)

Once (F.86) is true, by e�ciency of the VH algorithm (see Definition E.1) and the bound

in Theorem 3.1, we immediately have that, with probability 1� o(n�3),

max
1in

k⇡̂i � ⇡ik1  CK3/2��1

n errn. (F.87)
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Note that k⇡̂i�⇡ik2  k⇡̂i�⇡ik1k⇡̂i�⇡ik1  k⇡̂i�⇡ik21. It follows that
1

n

Pn
i=1

k⇡̂i�⇡ik2 

max1in k⇡̂i � ⇡ik2  max1in k⇡̂i � ⇡ik21  CK3��2
n err2n, with probability 1 � o(n�3).

Moreover,
Pn

i=1
k⇡̂i � ⇡ik2  2 always holds. Combining these arguments gives

E
h 1
n

nX

i=1

k⇡̂i � ⇡2

i k

i
 CK3��2

n err2n + o(n�3).

This proves the first claim. The second claim follows directly by noting that err2n  (n✓̄2)�1

if ✓max  C✓min.

Below, we show (F.86). In the Membership Reconstruction (MR) step, we compute ŵi

and b̂1, then use them to construct

⇡̂⇤
i (k) = max{0, ŵi(k)/b̂1(k)}, 1  k  K, (F.88)

and then estimates ⇡i by ⇡̂i = ⇡̂⇤
i /k⇡̂

⇤
i k1. We shall study ŵi and b̂1 separately and then

combine their error bounds to get (F.86).

First, we study ŵi. By definition,
0

@ 1 · · · 1

v1 · · · vK

1

A

| {z }
⌘Q

wi =

0

@1

ri

1

A ,

0

@ 1 · · · 1

Hv̂1 · · · Hv̂K

1

A

| {z }
⌘Q̂

ŵi =

0

@ 1

Hr̂i

1

A . (F.89)

We thus write

ŵi � wi = Q̂�1

0

@ 1

Hr̂i

1

A�Q�1

0

@1

ri

1

A

= Q̂�1

0

@ 1

Hr̂i

1

A�

0

@1

ri

1

A
�
� (Q�1

� Q̂�1)

0

@1

ri

1

A

= Q̂�1

0

@ 0

Hr̂i � ri

1

A� Q̂�1(Q̂�Q)Q�1

0

@1

ri

1

A

= Q̂�1

0

@ 0

Hr̂i � ri

1

A� Q̂�1(Q̂�Q)wi.

It follows that

kŵi � wik  kQ̂�1
k ·
�
kHr̂i � rik+ k(Q̂�Q)wik

�
. (F.90)

This matrix Q is studied in the proof of Lemma C.4, where we prove kQ�1
k = O(1/

p
K);

see (C.26). This means the minimum singular value of Q is lower bounded by C
p
K.

Moreover, kQ̂�Qk  kQ̂�QkF 
p
Kmax1kK kHv̂k � vkk = o(

p
K). As a result, the

minimum singular value of Q̂ is also lower bounded by C
p
K. It leads to

kQ̂�1
k  C/

p

K.
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We note that (Q̂�Q)wi 2 RK is a vector whose first entry is 0 and whose remaining entries

are equal to
PK

k=2
wi(k)(v̂k � vk) 2 RK�1. Since wi contains the coe�cients of writing ri

as a convex combination of v1, . . . , vK , we have kwik1 = 1. Therefore,

k(Q̂�Q)wik =
���

KX

k=1

wi(k)(Hv̂k � vk)
��� 

KX

k=1

wi(k)kHv̂k � vkk  max
1kK

kHv̂k � vkk.

Plugging in the above results into (F.90) gives

kŵi � wik  CK�1/2
�
kHr̂i � rik+ max

1kK
kHv̂k � vkk

�
. (F.91)

Next, we study b̂1. Recall that

b̂1(k) = [�̂1 + v̂0kdiag(�̂2, · · · , �̂K)v̂k]
�1/2.

By Lemma 2.1, b1(k) has the same form except that (�̂k, v̂k) are replaced with their popu-

lation counterparts. Letting ⇤0 = diag(�2, · · · ,�K) and ⇤̂0 = diag(�̂2, · · · , �̂K), we write

1

b̂2
1
(k)

= �̂1 + v̂0k⇤̂0v̂k,
1

b2
1
(k)

= �1 + v0k⇤0vk.

By direct calculations,

|
1

b̂2
1
(k)

�
1

b2
1
(k)

|  |�̂1 � �1|+ |v̂0k⇤̂0v̂k � v0k⇤0vk|

= |�̂1 � �1|+ |v̂0kH
0H⇤̂0v̂k � v0k⇤0vk|

 |�̂1 � �1|+ |v̂0kH
0⇤̂0Hv̂k � v0k⇤̂0vk|+ |v̂0kH

0(H⇤̂0 � ⇤̂0H)v̂k|+ |v0k(⇤̂0 � ⇤0)vk|

 |�̂1 � �1|+ |v̂0kH
0⇤̂0Hv̂k � v0k⇤̂0vk|+ kv̂kk

2
kH⇤̂0 � ⇤̂0Hk+ kvkk

2
k⇤̂0 � ⇤0k

 (1 + kvkk
2)|max

`
|�̂` � �`|+ |v̂0kH

0⇤̂0Hv̂k � v0k⇤̂0vk|+ kv̂kk
2
kH⇤̂0 � ⇤̂0Hk.

First, by Lemma D.1, max` |�̂` � �`|  C
p

✓maxk✓k1. Second, by Lemma D.6, kH⇤̂0 �

⇤̂0Hk  C
p
✓maxk✓k1. Third, by Lemma C.4, kvkk  C

p
K; since max` kv̂`�v`k = o(

p
K),

it follows that kv̂kk  C
p
K. Combining the above gives

|
1

b̂2
1
(k)

�
1

b2
1
(k)

|  |v̂0kH
0⇤̂0Hv̂k � v0k⇤̂0vk|+ CK

p
✓maxk✓k1. (F.92)

Since v̂0kH
0⇤̂0Hv̂k = v0k⇤̂0vk + 2v0k⇤̂0(Hv̂k � vk) + (Hv̂k � vk)0⇤̂0(Hv̂k � vk), we have

|v̂0kH
0⇤̂0Hv̂k � v0k⇤̂0vk|  2kvkkk⇤̂0kkHv̂k � vkk+ k⇤̂0kkHv̂k � vkk

2.

By Lemma C.2 and Lemma D.1, k⇤0k  C�nK�1
k✓k2 and k⇤̂0 � ⇤0k  C

p
✓maxk✓k1 =

o(K��1
n k✓k2). It follows that k⇤̂0k  C�nK�1

k✓k2. Also, as we have argued before,
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kvkk  C
p
K and kHv̂k � vkk = o(

p
K). Plugging these results into the above inequality

gives

|v̂0kH
0⇤̂0Hv̂k � v0k⇤̂0vk|  CK�1/2�nk✓k

2
kHv̂k � vkk.

We then plug it into (F.92) to get

|
1

b̂2
1
(k)

�
1

b2
1
(k)

|  CK�1/2�nk✓k
2
kHv̂k � vkk+ CK

p
✓maxk✓k1. (F.93)

In the proof of Lemma C.3, we have shown b1(k) ⇣ k✓k�1; see (C.22). Then, 1

b21(k)
⇣ k✓k2.

Combining it with (F.93), we have 1

b̂21(k)
= 1

b21(k)
[1 + o(1)] ⇣ k✓k2. It follows that

|
1

b̂1(k)
�

1

b1(k)
| = |

1

b̂1(k)
+

1

b1(k)
|
�1

· |
1

b̂2
1
(k)

�
1

b2
1
(k)

|

 Ck✓k�1
· |

1

b̂2
1
(k)

�
1

b2
1
(k)

|

 CK�1/2�nk✓kkHv̂k � vkk+ Ck✓k�1K
p
✓maxk✓k1

 CK�1/2�nk✓kkHv̂k � vkk+ CKk✓kerrn, (F.94)

where the last line is because errn = (✓max/✓min)·k✓k�2
p
✓maxk✓k1 log(n) � k✓k�2

p
✓maxk✓k1.

Last, we combine the results for (ŵi, b̂1) to prove (F.86). Recall that ⇡̂⇤
i is as defined in

(F.88). Introduce its non-stochastic counterpart ⇡⇤
i by

⇡⇤
i (k) = wi(k)/b1(k), 1  k  K. (F.95)

Since ⇡⇤
i (k) � 0, in (F.88), the operation of truncating at zero can only make it closer to

⇡⇤
i (k). It follows that

|⇡̂⇤
i (k)� ⇡⇤

i (k)|  |ŵi(k)/b̂1(k)� ⇡⇤
i (k)|

= |ŵi(k)/b̂1(k)� wi(k)/b1(k)|


1

b̂1(k)
|ŵi(k)� wi(k)|+ wi(k)|

1

b̂1(k)
�

1

b1(k)
|. (F.96)

We sum over k on both sides and note that b̂1(k) ⇣ k✓k�1 (see the paragraph above (F.94))

and kwik1 = 1. It yields

k⇡̂⇤
i � ⇡⇤

i k1  Ck✓kkŵi � wik1 + |
1

b1(k)
�

1

b̂1(k)
|

 Ck✓k
p

Kkŵi � wik+ max
1kK

|
1

b1(k)
�

1

b̂1(k)
|

 Ck✓k
�
kHr̂i � rik+ max

1kK
kHv̂k � vkk+Kerrn

�
, (F.97)
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where in the second line we have used Cauchy-Schwarz inequality and in the last line we have

plugged in (F.91) and (F.94). By definition, ⇡̂i = ⇡̂⇤
i /k⇡̂

⇤
i k1. By the triangular inequality,

|⇡̂i(k)� ⇡i(k)| 
1

k⇡⇤
i k1

|⇡̂⇤
i (k)� ⇡⇤

i (k)|+ ⇡̂⇤
i (k)|

1

k⇡̂⇤
i k1

�
1

k⇡⇤
i k1

|

=
1

k⇡⇤
i k1

|⇡̂⇤
i (k)� ⇡⇤

i (k)|+
⇡̂i(k)

k⇡⇤
i k1

|k⇡̂⇤
i k1 � k⇡⇤

i k1|


1

k⇡⇤
i k1

�
|⇡̂⇤

i (k)� ⇡⇤
i (k)|+ ⇡̂i(k)k⇡̂

⇤
i � ⇡⇤

i k1
�
, (F.98)

where the last inequality is because |k⇡̂⇤
i k1 � k⇡⇤

i k1|  k⇡̂⇤
i � ⇡⇤

i k1. We sum over k on both

sides and note that
P

k ⇡̂i(k) = 1 by definition. It follows that

k⇡̂i � ⇡ik1 
1

k⇡⇤
i k1

· 2k⇡̂⇤
i � ⇡⇤

i k1.

By (F.95), k⇡⇤
k1 � kwik1 · mink

1

b1(k)
. In the paragraph above (F.94), we have seen that

b1(k) ⇣ k✓k�1. This suggests that k⇡⇤
i k1 � Ck✓k. As a result,

k⇡̂i � ⇡ik1  Ck✓k�1
· k⇡̂⇤

i � ⇡⇤
i k1

 C
�
kHr̂i � rik+ max

1kK
kHv̂k � vkk+Kerrn

�
. (F.99)

This gives (F.86). The proof is now complete.

F.2 Proof of Theorem 3.3

First, consider P̂ � P . Let Q and Q̂ be the same as in (F.89). Then,

P = diag(b1)Q
0⇤Qdiag(b1), P̂ = diag(b̂1)Q̂

0⇤̂Q̂diag(b̂1).

It follows that

kP̂ � Pk  kQ̂diag(b̂1)k
2
k⇤̂� ⇤k+ kQ̂diag(b̂1)�Qdiag(b1)kk⇤kkQ̂diag(b̂1)k

+ kQdiag(b1)kk⇤kkQ̂diag(b̂1)�Qdiag(b)1k. (F.100)

Recall that we have the following facts (they hold with probability 1� o(n�3)):

• k⇤k  Ck✓k�1 (by Lemma C.2); k⇤̂�⇤k  C
p
✓maxk✓k ⌧ k✓k2errn (by Lemma D.1

and the definition of errn).

• kQk  C
p
K (by Lemma C.4); kQ̂�Q̂k  C

p
Kmax1kK kHv̂k�vkk  CK2��1

n errn

(by Theorem 3.1 and the definitions of Q and Q̂).

• C�1
k✓k�1

 b1(k)  Ck✓k�1, for 1  k  K (by (C.22) in the proof of Lemma C.3);

|
1

b̂1(k)
�

1

b1(k)
|  CK�1/2�nk✓kkHv̂k � vkk+ CKk✓kerrn  CKk✓kerrn (by (F.94) in

the proof of Theorem 3.2).
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From the third bullet point, |b̂1(k)� b1(k)|  Ck✓k�2
|

1

b̂1(k)
�

1

b1(k)
|  CKk✓k�1errn. From

the second bullet point, kQ̂�Qk  CK2��1
n errn, and kQ̂k  2kQk  C

p
K. As a result,

kQ̂diag(b̂1)�Qdiag(b)1k  kQ̂kkdiag(b̂1)� diag(b1)k+ kQ̂�Qkkdiag(b1)k

 C
p

K ·Kk✓k�1errn + CK2��1

n errn · k✓k�1

 C(K3/2 +K2��1

n )k✓k�1errn. (F.101)

It further implies kQ̂diag(b̂1)k  2kQdiag(b)1k  C
p
Kk✓k�1. We then plug these results

into (F.100) and use the first bullet point above. It gives

kP̂ � Pk  kQ̂diag(b̂1)k
2
k⇤̂� ⇤k+ 3kQ̂diag(b̂1)�Qdiag(b1)kk⇤kkQ̂diag(b̂1)k

 C(
p

Kk✓k�1)2 · k✓k2errn + C(K3/2 +K2��1

n )k✓k�1errn · k✓k2 ·
p

Kk✓k�1

 C(K2 +K3/2��1

n )errn. (F.102)

This proves the first claim.

Second, consider k⇥̂ � ⇥k
2

F , which by definition is equal to
Pn

i=1
|✓̂(i) � ✓(i)|2. Recall

that ✓(i) = ⇠1(i)/(⇡0
ib1) and ✓̂(i) = ⇠̂1(i)/(⇡̂0

ib̂1). It follows that

|✓̂(i)� ✓(i)| 
1

|⇡0
ib1|

|⇠̂1(i)� ⇠1(i)|+ |⇠̂1(i)|
���

1

⇡̂0
ib̂1

�
1

⇡0
ib1

���


1

|⇡0
ib1|

|⇠̂1(i)� ⇠1(i)|+ |⇠̂1(i)| ·
|⇡̂0

ib̂1 � ⇡0
ib1|

|⇡̂0
ib̂1||⇡

0
ib1|


|⇠̂1(i)� ⇠1(i)|

|⇡0
ib1|

+
|⇠̂1(i)|

|⇡̂0
ib̂1||⇡

0
ib1|

�
k⇡̂i � ⇡ik1kb1k1 + k⇡̂ik1kb̂1 � b1k1

�
.

Note that k⇡̂ik1 = 1, b1(k) ⇣ k✓k�1, and kb̂1�b1k1  CKk✓k�1errn = o(k✓k�1). It further

implies ⇡0
ib1 ⇣ ⇡̂0

ib̂1 ⇣ k✓k�1. We plug these results into the above inequality to get

|✓̂(i)� ✓(i)|  Ck✓k|⇠̂1(i)� ⇠1(i)|+ Ck✓k|⇠̂1(i)|k⇡̂i � ⇡ik1 + CKk✓kerrn|⇠̂1(i)|.

We take the sum of squares of i = 1, 2, . . . , n on both sides and note that k⇠̂k = 1. Moreover,

by Lemma D.2, k⇠̂1 � ⇠1k  Ck✓k�2K
p
✓maxk✓k1 ⌧ Kerrn. It follows that

k⇥̂�⇥k
2

F  Ck✓k2k⇠̂1 � ⇠1k
2 + Ck✓k2

⇣
max
1in

k⇡̂i � ⇡ik
2

1

⌘
+ CK2

k✓k2err2n

 Ck✓k2
�
K2err2n +K3��2

n err2n + CK2err2n
�

 k✓k2 · CK3��2

n err2n. (F.103)

This proves the second claim.

77



F.3 Proofs of Theorems 3.4, 3.5 and B.1

Theorem 3.4 is a direct consequence of Theorem 3.2 and Lemma E.1. For Theorem 3.5 and

Theorem B.1, their first claims about the VH step follow from Lemma E.3 and Lemma E.4,

respectively. We now show their second claims, where we aim to obtain a faster rate for

1

n

Pn
i=1

k⇡̂i � ⇡ik2 when the VH step is strongly e�cient.

In (F.98), we have shown that for every 1  k  K,

|⇡̂i(k)� ⇡i(k)| 
1

k⇡⇤
i k1

�
|⇡̂⇤

i (k)� ⇡⇤
i (k)|+ ⇡̂i(k)k⇡̂

⇤
i � ⇡⇤

i k1
�
.

Taking the sum of squares over k on both sides and using the universal inequality (a+b)2 

2a2 + 2b2, we have

k⇡̂i � ⇡ik
2


2

k⇡⇤
i k

2
1

�
k⇡̂⇤

i � ⇡⇤
i k

2 + k⇡̂ik
2
· k⇡̂⇤

i � ⇡⇤
i k

2

1

�
.

In the paragraph above (F.99), we have shown that k⇡⇤
i k1 � Ck✓k. Additionally, k⇡̂ik2 

k⇡̂ik1k⇡̂ik1  1. It follows that

k⇡̂i � ⇡ik
2


C

k✓k2
�
k⇡̂⇤

i � ⇡⇤
i k

2 + k⇡̂⇤
i � ⇡⇤

i k
2

1

�
. (F.104)

In light of (F.104), we first derive upper bounds for k⇡̂⇤
i�⇡⇤

i k and k⇡̂⇤
i�⇡⇤

i k1, respectively.

By (F.96) and (F.94),

|⇡̂⇤
i (k)� ⇡⇤

i (k)| 
1

b̂1(k)
|ŵi(k)� wi(k)|+ wi(k)|

1

b̂1(k)
�

1

b1(k)
|,

|
1

b̂1(k)
�

1

b1(k)
|  CK�1/2�nk✓kkHv̂k � vkk+ Ck✓k�1K

p
✓maxk✓k1.

Also, b̂1(k) ⇣ b1(k) ⇣ k✓k�1 (see the paragraph above (F.94)). It follows that

|⇡̂⇤
i (k)� ⇡⇤

i (k)|  Ck✓k |ŵi(k)� wi(k)|+ Cwi(k)

✓
�nk✓kkHv̂k � vkk

p
K

+
K
p
✓maxk✓k1
k✓k

◆
.

Note that

err⇤n = [k✓k/(✓min

p
n)] · k✓k�2

p
✓maxk✓k1 � k✓k�2

p
✓maxk✓k1.

We further have

|⇡̂⇤
i (k)�⇡⇤

i (k)|  Ck✓k|ŵi(k)�wi(k)|+Cwi(k)k✓k
⇣
K�1/2�nkHv̂k�vkk+Kerr⇤n

⌘
. (F.105)

It follows that

k⇡̂⇤
i � ⇡⇤

i k
2
 Ck✓k2

h
kŵi � wik

2 + kwik
2

⇣
K�1�2

n max
1kK

kHv̂k � vkk
2 +K2(err⇤n)

2

⌘i
,
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k⇡̂⇤
i � ⇡⇤

i k1  Ck✓k
h
kŵi � wik1 + kwik1

⇣
K�1/2�n max

1kK
kHv̂k � vkk+Kerr⇤n

⌘i
.

Note that kwik1 = 1, kwik
2
 kwik1kwik1  1, and kŵi � wik1 

p
Kkŵi � wik. Addi-

tionally, by (F.91),

kŵi � wik  CK�1/2
�
kHr̂i � rik+ max

1kK
kHv̂k � vkk

�
.

Combining the above gives

k⇡̂⇤
i � ⇡⇤

i k
2
 Ck✓k2

⇣
K�1

kHr̂i � rik
2 +K�1 max

1kK
kHv̂k � vkk

2 +K2(err⇤n)
2

⌘
,

k⇡̂⇤
i � ⇡⇤

i k1  Ck✓k
⇣
kHr̂i � rik+ max

1kK
kHv̂k � vkk+Kerr⇤n

⌘
. (F.106)

Next, we plug (F.106) into (F.104) to get

k⇡̂i � ⇡ik
2
 CkHr̂i � rik

2 + C
⇣

max
1kK

kHv̂k � vkk
⌘2

+ CK2(err⇤n)
2.

Summing over i on both sides gives

n�1

nX

i=1

k⇡̂i � ⇡ik
2
 Cn�1

nX

i=1

kHr̂i � rik
2 + C

⇣
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1kK
kHv̂k � vkk

⌘2
+ CK2(err⇤n)

2.

By strong e�ciency of the VH step, max1kK kHv̂k � vkk 
p

n�1
Pn

i=1
kHr̂i � rik2 (see

Definition E.1). It follows that

n�1

nX

i=1

k⇡̂i � ⇡ik
2
 Cn�1

nX

i=1

kHr̂i � rik
2 + CK2(err⇤n)

2.

Using Lemma D.5, n�1
Pn

i=1
kHr̂i � rik2  CK3��2

n (err⇤n)
2. Therefore,

n�1

nX

i=1

k⇡̂i � ⇡ik
2
 CK3��2

n (err⇤n)
2 + CK2(err⇤n)

2
 CK3��2

n (err⇤n)
2.

Additionally, err⇤n = [k✓k/(
p
n✓max)] · errn/

p
log(n)  errn/

p
log(n). We thus have

n�1

nX

i=1

k⇡̂i � ⇡ik
2

1  CK3��1

n (err⇤n)
2


CK3��1
n err2n

log(n)
. (F.107)

This proves the claim.

G More Simulation Results

We present additional simulation results. They are not included in the main article due to

space limit. For most experiments below, we set n = 500 and K = 3. For 0  n0  160, let

each community have n0 number of pure nodes. Fixing x 2 (0, 1/2), let the mixed nodes
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have four di↵erent memberships (x, x, 1�2x), (x, 1�2x, x), (1�2x, x, x) and (1/3, 1/3, 1/3),

each with (500�3n0)/4 number of nodes. Fixing ⇢ 2 (0, 1), the matrix P has diagonals 1 and

o↵-diagonals ⇢. Fixing z � 1, we generate the degree parameters such that 1/✓(i)
iid
⇠ U(1, z),

where U(1, z) denotes the uniform distribution on [1, z]. The tuning parameter L is selected

as in (2.8). For each setting, we report n�1
Pn

i=1
k⇡̂i � ⇡ik2 averaged over 100 repetitions.

Experiment 5: Connectivity across communities. Fix (x, n0, z) = (0.4, 80, 5)

and let ⇢ range in {0.05, 0.1, 0.15, · · · , 0.5}. The larger ⇢, the more edges across di↵erent

communities. The results are presented in Figure 8. We see that the performance of Mixed-

SCORE improves as ⇢ decreases. One possible reason is that, for ⇢ large, it is relatively

more di�cult to identify the vertices of the Ideal Simplex. Furthermore, Mixed-SCORE is

better than OCCAM in all settings.
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Figure 8: Estimation errors of Mixed-SCORE and OCCAM (y-axis: n�1
Pn

i=1
k⇡̂i � ⇡ik2).

Experiment 6: Mixed memberships taking continuous values. In this exper-

iment, we generate the mixed memberships from a continuous distribution. Set (n,K) =

(500, 3) and let P have diagonals 1 and o↵-diagonals 0.3. Each community has n0 = 25 pure

nodes. The ⇡i of remaining nodes are iid drawn as follows: We generate ⇡i(1) and ⇡i(2)

independently from U(1/6, 1/2) and set ⇡i(3) = 1 � ⇡i(1) � ⇡i(2). The degree parameters

✓(i) are iid drawn from ↵n ·U(1, 2), where ↵n > 0 controls the sparsity of the network. Let

↵n range in {0.02, 0.04, 0.06, · · · , 0.20}. The results are presented in Table 5. This setting

does not satisfy the regularity conditions (E.64)-(E.65) on ⇡i’s, however, Mixed-SCORE

still has a good performance and outperforms OCCAM. It suggests that the regularity

conditions on ⇡i’s are only for theoretical convenience, and our method indeed works for

broader settings.

Experiment 7: Tuning parameter selection. We first study the choice of the

tuning parameter L in Mixed-SCORE. We aim to see (i) how the estimation errors change

for a range of L, and (ii) how the adaptive choice L̂⇤
n(A) in (2.8) performs. Fix (x, ⇢, z) =
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Table 5: Estimation errors in Experiment 6, where ⇡i’s take continuous values.

↵n 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Mixed-SCORE .38 .35 .36 .32 .30 .28 .23 .18 .15 .12

OCCAM .44 .42 .41 .41 .38 .36 .32 .28 .26 .23

(0.4, 0.2, 5) and let n0 range in {60, 80, 100}. For each setting, we run Mixed-SCORE with

L 2 {4, 5, · · · , 9} and L̂⇤
n(A). The results are displayed in Figure 9. First, when there are

relatively few mixed nodes (e.g., n0 = 100), small values of L yield good performance; but as

the number of mixed nodes going up, we favor larger values of L; these match our theoretical

results (Lemmas E.3-E.4). Second, under the circumstances of a moderate number of mixed

nodes (e.g., n0 = 60, 80), for a range of L (e.g., L 2 {7, 8, 9}), the statistical errors of Mixed-

SCORE are similar, and L̂⇤
n(A) falls in this range with high probability. Figure 10 shows

the estimated 2-simplex in one repetition (n0 = 80), and the simplex changes very little

when L falls in a range.
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Figure 9: Performance of Mixed-SCORE as the tuning parameter L varies (y-axis: esti-
mation errors; L̂⇤

n(A) is plotted in red; both mean and standard deviation are displayed).
From left to right, there are 60, 80, 100 pure nodes in each community, respectively.

Experiment 8: Comparison with latent space approach. We compare Mixed-

SCORE with the Bayesian method based on LPC Handcock et al. (2007) (we use the R

Figure 10: Illustration of the Vertex Hunting step. From left to right, L = 7, 8, 9. Although
the local cluster centers (blue points) are di↵erent, the estimated 2-simplex (dashed black)
changes very little, and it approximates the IS (solid red) well.
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package latentnet). In this experiment, we fix n = 120, K = 3, (x, ⇢, z) = (0.4, 0.3, 5), and

let n0 range in {12, 16, 20, · · · , 32, 36} (so the number of mixed nodes in each group decreases

from 21 to 3). The results are displayed in Figure 11. We find that, when the fraction of

mixed nodes is comparably small, LPC has a perfect performance; however, as the fraction

of mixed nodes increases to more than 40%, the performance of LPC deteriorates rapidly;

one reason is that, when n0 is not very large, LPC often estimates the PMF of all the

nodes as the same. In contrast, the performance of Mixed-SCORE is quite stable. In terms

of computing time, Mixed-SCORE takes only seconds for one repetition while LPC takes

> 20 minutes (both measured in R).
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Figure 11: Estimation errors of Mixed-SCORE and LPC (y-axis: n�1
Pn

i=1
k⇡̂i � ⇡ik2).

H More Real Data Results

We present additional results for the trade networks. First, we plot the rows of R̂ for the

GOS network (see Figure 6a for a comparison). Recall that edges in the GOS network indi-

cate significant over-estimation of trade flows in the initial gravity model. This embedding

is not as informative as the embedding we obtained for the GUS network. One interesting

observation is that countries with high GDPs tend to cluster together and countries with

low GDPs tend to cluster together.

Next, we present the estimated mixed memberthips of representative countries in the

trade in service (TIS) network.

We also present additional results for the citee network. The following table shows those

“high-degree and relatively pure” nodes in each of the three communities.

82



−8 −6 −4 −2 0

−2
−1

0
1

2
3

NLD

TUR

BEL

SWECHE IDNPOL
AUTNORDNKZAF

GRCIRN

IRL ARG
FINTHA

PRT

HKG

VEN

MYS

CHL
CZE

COL

SGP

PAK

ROM
PHL

DZA
NGA

HUN

EGYUKR

NZL
PER

KAZ
BGDVNMMAR

SVK

LBY
AGO

HRV

ECU

SDN

SVN
BLR

GTM

SYR

BGR

DOM

TUNLTU

YUG

LKA
LBN

CRI
KENAZE

LVA
TTO
URY

YEM
CMR

SLV

CIV

UZB

PAN
EST

ISL

MAC

JOR

ETH

GHA
TZA

BIH

BOL
ZMB

JAM
TKM

BWA

GAB

UGA

HND

ALB

PRYSEN
GNQZAR

AFGNPL

MOZGEO

COG

KHM

TCD

MUS

ARM

NAM

MKD

BFAMLI
PNG

MDG
NIC

ZWE

HTI

BEN

NER

LAO

GIN MDA

FJI

TJK
KGZ

MNG
MRT

SWZ

RWA

MWI

TGO

SUR

CAF

LSOSLE

BLZ

CPV

ERI

ATG

BTN

MDV
LCAGUY

BDI

DJI
SYC

LBR

GRD
GMB
KNA VCT

WSM
COM

VUT
SLB

GNB
DMA

TON

PLWSTP KIR

USA

JPN

DEU

CHN

GBR

FRA

ITA
CANESP

BRA
RUS

IND

KOR

MEX

AUS

Figure 12: Rows of R̂ for the GOS network after fitting a gravity model. We set K = 3 in
Mixed-SCORE, so the Ideal Simplex is a triangle. Each r̂i corresponds to a country, whose
ISO3 code is shown (orange color: top 15 countries with highest GDPs). In each plot, the
dashed triangle is the estimated simplex from SVS with L = 40. We note that although
each ri is in the Ideal Simplex, some r̂i’s can be outside the estimated simplex due to noise
corruption.

Table 6: The estimated ⇡̂i for the 10 countries with largest total service exports. By
Figure 6b, the three communities are interpreted as ‘North Africa’, ‘Southeast Asia’ and
‘South/Central Europe’.

Economy
Service
export degree ⇡̂i(1) ⇡̂i(2) ⇡̂i(3)

USA 3,998,419 45 0.128 0.424 0.448
UK 1,914,255 34 0.202 0.319 0.479
Germany 1,534,393 29 0.348 0.215 0.436
France 1,354,407 26 0.243 0.193 0.564
China 1,146,845 14 0.130 0.606 0.264
Netherlands 1,064,165 19 0.218 0.215 0.567
Japan 882,650 17 0.124 0.611 0.265
India 865,543 6 0.033 0.598 0.369
Singapore 830,975 20 0.313 0.554 0.134
Ireland 811,105 12 0.144 0.269 0.586

Table 7: Estimated PMF of the 100 nodes with the highest degrees in the Citee network, among
which only the 12 purist nodes in each community are reported.

Name Deg. MulTest SpatNon VarSelect Name Deg. MulTest SpatNon VarSelect Name Deg. MulTest SpatNon VarSelect
Felix Abramovich 366 0.943 0 0.057 Peter Muller 429 0.326 0.613 0.061 Lixing Zhu 432 0.121 0 0.879
Joseph Romano 377 0.868 0 0.132 Je↵rey Morris 452 0.146 0.519 0.335 Zhiliang Ying 382 0.107 0.027 0.866
Sara van de Geer 372 0.834 0 0.166 Michael Jordan 383 0.321 0.495 0.184 Zhezhen Jin 361 0.134 0 0.866
Yoav Benjamini 478 0.821 0 0.179 Mahlet Tadesse 383 0.373 0.493 0.134 Dennis Cook 424 0.253 0 0.747
David Donoho 484 0.819 0 0.181 Naijun Sha 383 0.373 0.493 0.134 Wenbin Lu 405 0.255 0 0.745
Christopher Genovese 521 0.810 0 0.190 Michael Stein 379 0.093 0.449 0.458 Dan Yu Lin 527 0.257 0 0.743
Larry Wasserman 535 0.800 0 0.200 Adrian Raftery 413 0.175 0.446 0.379 Donglin Zeng 489 0.270 0 0.730
Jon Wellner 387 0.798 0.05 0.152 Robert Kohn 429 0.310 0.428 0.262 Gerda Claeskens 404 0.247 0.033 0.720
Alexandre Tsybakov 521 0.784 0 0.216 George Casella 430 0.303 0.425 0.271 Yingcun Xia 358 0.302 0 0.698
Jiashun Jin 441 0.780 0 0.220 Marina Vannucci 571 0.304 0.418 0.278 Naisyin Wang 586 0.283 0.043 0.674
Yingying Fan 410 0.741 0 0.259 Bernard Silverman 577 0.514 0.395 0.091 Hua Liang 509 0.334 0 0.666
John Storey 544 0.737 0 0.263 Catherine Sugar 501 0.450 0.360 0.190 Wolfgang Karl Hardle 456 0.343 0 0.657

83



I Using Mixed-SCORE for the Estimation of ⌦

In Remark 9 of Section 5.1, we mentioned that Mixed-SCORE can be used to estimate

⌦, where we let ⌦̂ = ⇥̂⇧̂P̂ ⇧̂0⇥̂ by using ⇧̂ from Mixed-SCORE and (⇥̂, P̂ ) in Section 2.4.

Alternatively, we may also estimate ⌦ by the standard PCA, where ⌦̂ =
PK

k=1
�̂k⇠̂k⇠̂k. The

following simulation results suggest that the ⌦̂ by Mixed-SCORE is much better than the

⌦̂ by standard PCA.

Parameters ⌦̂=
PK

k=1
�̂k⇠̂k⇠̂k Mixed-SCORE

✓�1

i ⇠ Unif(5, 10), ↵1=(.6, .2, .2), ↵2=(.3, .4, .3) 78.84 46.63

✓�1

i ⇠ Unif(5, 10), ↵1=(.4, .2, .4), ↵2=(.2, .6, .2) 78.78 44.43

✓�1

i ⇠ Unif(5, 10), ↵1=(.4, .2, .4), ↵2=(.1, .8, .1) 80.65 44.84

✓i ⇠ Unif(0.05, 0.2), ↵1=(.4, .2, .4), ↵2=(.2, .6, .2) 71.83 44.31

✓i ⇠ Unif(0.05, 0.2), ↵1=(.6, .2, .2), ↵2=(.3, .4, .3) 71.73 38.86

Table 8: Comparison of the Frobenius errors of estimating ⌦ based on 100 repetitions.

Settings: K = 3, n = 540; There are n/6 pure nodes for each community, and the ⇡i’s

of the remaining nodes are i.i.d. drawn from a mixture distribution 0.5Dirichlet(↵1) +

0.5Dirichlet(↵2). The diagonals of P are 1 and o↵-diagonals are 0.3.
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