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Abstract

In economics and social science, network data are regularly observed, and a thorough
understanding of the network community structure facilitates the comprehension of
economic patterns and activities. Consider an undirected network with n nodes and K
communities. We model the network using the Degree-Corrected Mixed-Membership
(DCMM) model, where for each node i = 1,2,...,n, there exists a membership vector
m = (m(1), m(2), ..., m(K)), where 7; (k) is the weight that node ¢ puts in community
k, 1 <k < K. In comparison to the well-known stochastic block model (SBM), the
DCMM permits both severe degree heterogeneity and mixed memberships, making
it considerably more realistic and general. We present an efficient approach, Mixed-
SCORE, for estimating the mixed membership vectors of all nodes and the other DCMM
parameters. This approach is inspired by the discovery of a delicate simplex structure
in the spectral domain. We derive explicit error rates for the Mixed-SCORE algorithm
and demonstrate that it is rate-optimal over a broad parameter space. Our findings
provide a novel statistical tool for network community analysis, which can be used to
understand network formations, extract nodal features, identify unobserved covariates
in dyadic regressions, and estimate peer effects. We applied Mixed-SCORE to a political
blog network, two trade networks, a co-authorship network, and a citee network, and
obtained interpretable results.
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I Using Mixed-SCORE for the Estimation of (2

1 Introduction

Many economic activities happen on networks. Some examples of economic networks are
the international trade networks, high-school friendship networks, stock co-jump networks,
and job information networks. We denote a network with n nodes by its adjacency matrix
A e R™" with A;; = 1 if there is an edge between nodes 7 and j and A;; = 0 otherwise.
In network econometrics, there is a surge of interests in understanding the interplay
between network topology and economic activities (Graham) 2020). The literature can be
divided into two categories, formation and consequence. Research in formation treats the
network itself as the object of interest and studies the mechanism of forming the network.
One popular model is the dyadic regression model, including the famous gravity model for
bilateral trade (Tinbergen, 1962)) as a special example. In this model, E[A;;] is a function of
the dyadic covariates X ;; and nodal covariates Y; and Y ;, and the main goal is estimation
and inference of parameters of this function. Another popular model is the strategic model
of network formation (Jackson and Wolinsky, 1996)). In this model, each node has a utility
function u;(A) that depends on the whole network, so deletion/addition of an edge affects
the utilities of all nodes. Given these utility functions {u;}}" ;, the network is in equilibrium
if no node wishes to delete an edge and no pair of nodes wish to add an edge. The problems
of interest include estimation and inference of these utility functions, e.g., by using network
moment statistics (Miyauchi, 2016). Research in consequence treats the network as given
information and aims to study influence of network structure on economic outcomes. There
is a line of literature on estimation of the linear-in-means models (Manski, 1993; Bramoullé
et al., [2009). In the simplest case of no covariates, let y; be the response of node i and d; be
the degree of node i; the linear-in-means model assumes y; = a+ 3 Zj(di_lAij)yj +¢;, with

€;’s being i.i.d. noise. The parameter 5 captures the ‘peer effect’ and is of main interest.



Independent of the econometric literature, there is also a body of statistical literature
on network data analysis, where the main interest is fitting a probabilistic, easy-to-interpret
model for an observed network. Pioneered by Bickel and Chen| (2009), the stochastic block
model (SBM) has attracted much attention. SBM assumes that nodes are divided into a
few communities, and E[A;;] is determined by community memberships of two nodes. Dif-
ferent from the formation literature of network econometrics, there are usually no observed
covariates and the adjacency matrix A is the only available data. Many methods have been
proposed for estimating the underlying community structure from A.

Recently, the two lines of literature have crossed. There are many interests in applying
statistical network models in econometrics. |Auerbach (2022)) proposed a joint regression and
network formation model, where the goal is learning latent nodal features from the network
and using these features in the regression. |Chen et al. (2020) used network modeling to
estimate the Bernoulli probability matrix E[A]. They replaced A by Hﬁz] in fitting a network
auto-regression model, in hopes of improving the estimation of peer effects. |Graham/ (2015)
combined the dyadic regression in econometrics and the latent space model in statistics to
account for both observed and unobserved covariates in network formation.

Unfortunately, despite these encouraging progresses, we note two problems. First, both
the statistical literature and the econometric literature have been largely focused on some
classical and idealized network models, such as the stochastic block model (SBM) and the
graphon (Lovéasz and Szegedy, 2006). Second, recent developments in statistical network
analysis have suggested new ideas in network modeling, but such ideas are largely unknown
in the area of network econometrics. The SBM and graphon models are often too ideal-
ized for real networks. Many real networks have the so-called severe degree heterogeneity,
meaning that the degree of one node is higher than another by 10 or even 100 times (Jin
et al.,2021b| Table 1). Also, many networks have the so-called mized-membership, meaning
that different network communities overlap with each, and a node may belong to multiple
communities (Airoldi et al., 2008); for such networks, the SBM is too idealized, which does
not model either mixed-membership or severe degree heterogeneity. The graphon model
is also too idealized. It does not model severe degree heterogeneity and requires that the
nodes are exchangeable (an assumption that is hard to check and is too strong for many real
networks). It is therefore desirable to (a) develop more realistic network models and new
algorithms, and (b) introduce the most recent developments in statistical network analysis
to the area of network econometrics.

We propose the Degree-Corrected Mixed-Membership (DCMM) model as a more suit-
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Figure 1: The political blog network and the output of Mixed-SCORE. Left: A visualization
of the network (figure source: |[Adamic and Glance (2005)), where blue/red colors indicate
the manually assigned community labels by |Adamic and Glance| (2005), and yellow/purple
colors indicate the edges between two commmunities. Right: The estimated p; (x-axis) and
0; (y-axis) by the Mixed-SCORE algorithm.

able network model. Compared with SBM, DCMM allows for both severe degree hetero-
geneity and mixed membership and it is much broader. Compared with graphon, DCMM
accommodates severe degree heterogeneity and does not require node exchangeability. Since
many real networks have strong mixed-membership, an interesting problem is how to esti-
mate the mixed-memberships of nodes. We propose a fast spectral method, Mixed-SCORE,
for estimating network mixed-memberships, and show that it is rate-optimal in a decision
theory framework. Given the interesting connections between the two areas (statistical net-
work analysis and network econometrics) we discuss above, our model and method not only
provide new contributions to the former but also provide new opportunities to the latter.
For example, for many existing works in network econometrics that used SBM or graphon as
the network model, we may improve the results by using the more realistic DCMM model.
Also, our method is useful in several problems of network econometrics. For example, one
can use the output of our method to understand network formation, create nodal features,
estimate the Bernoulli probability matrix, and learn the unobserved dyadic covariates.

In what follows, we first present a motivating example. In this example, DCMM has a
relatively simple form. We use this example to illustrate why DCMM is a reasonable model

and how to use the output of our method to answer real questions of interest.



1.1 A motivating example: Political blog network

The 2004 U.S. Presidential Election was the first presidential election in the United States in
which blogging played an important role. [Adamic and Glance| (2005) recorded the linkages
of political blogs in a single day snapshot before the election. We use the data to construct
an undirected network, where each node is a blog and two blogs are connected by an edge if
they have links between them (one-way or reciprocal). The giant component of the network
has n = 1222 nodes. We assume each blog has a political orientation parameter p; € [—1, 1],
where p; > 0, p; = 0 and p; < 0 corresponds to liberal, neutral and conservative. A node
with p; = 1is extremely conservative, while a node with p; = 0.2 is only mildly conservative.
We also assume each blog has a popularity score 6; > 0. The larger 6;, the more influence of
the blog. Suppose the edges are independently generated. We model the edge probability

between two nodes as a function of their political orientations and popularities:

P(Aij = 1) = 0:6; - (o + Bpipj), 1<i<j<n (1.1)

Here, o > 0 is the baseline effect, and 5 > 0 captures the effect of political orientations on
linkage probabilities. When two blogs are both liberal or both conservative, 8p;p; > 0, so
they are more likely to be linked. When one blog is liberal and the other is conservative,
Bpip; < 0, so they are less likely to be linked. The more extreme of political orientations of
two nodes, the larger |3p;p;| and the stronger effect on linkage probability. Besides political
orientations, the linkage probability is also affected by the popularity of nodes. Suppose two
blogs ¢ and j have exactly the same political orientation, but blog i has a larger influence
in the internet. It is more likely for other blogs to link to blog ¢ than blog j.

We propose a fast spectral method, Mixed-SCORE, for estimating (p;, #;) of each node
and the global parameters («, 5). The details of this method will be deferred to Section
Figure 1] plots (p;, HAZ) of political blogs. The points in the top left regions correspond to
influential and liberal blogs, and those in the top right region are influential and conservative
blogs. Some of these influential blogs are more ‘extreme’ than others in political orientation,
such as the liberal blog atrios.blogspot.com and the conservative blog hughhewitt. com.
Blogs with large 0, typically have clear political orientations and are far away from being
neutral, with some exceptions like truthprobe.blogspot.com.

When |Adamic and Glance (2005)) collected this data set, they assigned a manual label

¢; € {liberal, conservative} to each blog i by checking the host website directory or reading

"Model (T.1) is not identifiable, as we can multiple (o, ) by a scalar ¢ and divide each 8; by /¢ to make
the edge probabilities invariant. For identifiability, we let e + 8 = 1. This is the same as the identifiability
condition we use for a general DCMM model (see Section E[)
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blog posts. Our method does not need any manual efforts to label the blogs; using the sign
of p;, we can recover their manual labels with an accuracy of 95.5%. Meanwhile, people are
interested in not only the label of a blog but also the extremity of its political orientation,
as an extremely conservative blog and a mildly conservative blog can have different opinions
on issues such as abortion, gun control, and death penalties (Hindman et al., 2003). The
pi’s from our method help reveal such information that is not seen in manual labels.

We can use the output of Mixed-SCORE in several different ways. First, it is useful for
understanding the formation of links between blogs. Our method obtains B=1—é=0471.
It captures the effect of political orientation on link formation Second, our method creates
two covariates, p; (‘political orientation’) and 6; (‘influence’), for each blog. These covariates
will be useful in other tasks such as predicting the opinion of a blogger on a given topic.
Third, we obtain m = élé] (& + Bﬁi;ﬁj), which can be plugged into the linear-in-means
model to improve the estimation of peer effect. Let y; be an outcome of interest (e.g., the
frequency of a key word in blog posts). We fit a model y; = ”y—i—&ji_l Zj éj(d—i—ﬁﬁiﬁj)yj + €,
where §; = > ;. ék(d + Bﬁiﬁk). Compared with the standard linear-in-means model, this

one better deals with measurement errors on the network itself.

1.2 Main results and contributions

Model is a special case of the Degree-Corrected Mixed Membership (DCMM) model to
be introduced in Section [2| In the DCMM model, the network has K perceivable communi-
ties. Each node has a mixed membership vector m; € RX, where 7;(k) > 0 is the weight that
node 7 puts on community k, satisfying Zszl mi(k) = 1. When 7; is degenerate (i.e., 7; has
only one nonzero entry which is equal to 1, and the other entries are zero), we call node i a
pure node; otherwise, we call it a mized node. In Model for the political blog network,
K=2m= (%, %)’, and a node is pure if and only if p; € {+1}. Each node also has a
degree heterogeneity parameter 6; > 0. The probability of forming an edge between nodes
¢ and j is determined jointly by their mixed membership vectors and degree heterogeneity
parameters (see Section. Given the adjacency matrix A, we are interested in estimating
parameters of DCMM, especially the membership matrix IT := |7, 79, ..., 7,]". Estimation
of IT is known as the problem of mixed membership estimation (Airoldi et al.l 2008).

In the statistical literature of network data analysis, many works focused on community

detection, which clusters nodes into K non-overlapping communities. Overlapping commu-

2We focus on estimation in this paper. In a companion paper |[Jin et al. (2021a), we also provide a test for
testing against the null hypothesis 8 = 0. The p-value is < 10~ for this political blog network, suggesting
a significant effect of political orientation on link formation.



nity detection (Gregory,[2010)) allows the assignment of a node to more than one community.
It is equivalent to a community detection problem with 2% non-overlapping communities.
Community detection is a clustering problem, so the methods and theory do not apply to
mixed membership estimation. Airoldi et al. (2008) is a pioneer work on mixed membership
estimation. They considered a special setting of DCMM with §; = 0y = ... = 6, (i.e., no de-
gree heterogeneity) and assumed that 7;’s are i.i.d. generated from a Dirichlet prior. They
proposed a variational Bayes approach to computing the posterior of 71, ...,m,. However,
in many real networks, degree heterogeneity is severe (Newman, 2003), so we must assume
unequal 6;’s. [Zhang et al. (2020) proposed the OCCAM algorithm for mixed membership
estimation. OCCAM has the nice property of accommodating degree heterogeneity, but it
requires a condition that the fraction of mixed nodes must be properly small, and so it does
not work for networks with a large fraction of mixed nodes.

We propose a new method Mixed-SCORE for network mixed membership estimation.
It is inspired by our discovery of a low-dimensional simplex geometry associated with the
leading eigenvectors of A. Using linear algebra, we establish an explicit connection between
this simplex and the target quantity II. It leads to a fast spectral algorithm for estimating II.
Compared with the existing methods of mixed membership estimation (Airoldi et al., 2008;
Zhang et al., 2020), Mixed-SCORE successfully deals with degree heterogeneity and allows
for an arbitrary fraction of mixed nodes. Furthermore, we also give a characterization of the
error rate of Mixed-SCORE and show that it is rate-optimal for a wide range of settings.
In comparison, the competitors either have no theoretical guarantees (Airoldi et al., 2008)
or have non-optimal error rates (Zhang et al., 2020). Given II from Mixed-SCORE, we also

propose estimates of other parameters of DCMM.

1.3 Applications in network econometrics

We give a few examples of using our model and method in network econometrics.
Example 1: Economic outcomes are often affected by social influence. For example, a
high school student’s academic performance might depend on the attitudes and expectations
of his/her friends and family. Such a social influence is not directly observed, and a popular
solution is to collect network data and hope the unobserved social influence is revealed by
linking behavior in the network (e.g., students with similar reported friendships may have
similar family expectations (Auerbach, [2022)). Let y; € R be the outcome (e.g., academic
performance of a student) and X; € RP the observed features (e.g., school rating, family

income, etc.). Consider an unobserved social influence such as the family expectation. We



assume there are K extreme types of family expectation and the family expectation of a
student is represented by a mixed membership vector m; € RX. We model the network by
DCMM and the outcome by a regression y; = X6+ f(m;) + €;. This model is similar to the
model in |Auerbach (2022), except that he models the network by graphon but we model it
by DCMM. We can apply Mixed-SCORE to obtain 7; and plug them into the regression.
Compared with the method in |Auerbach (2022), our approach has some advantages: First,
we allow the social feature m; to have an arbitrary dimension K, but in a graphon, m; is a
scalar in [0, 1]. Second, our approach deals with severe degree heterogeneity and guarantees
that the estimated social feature is not biased by the student’s own friendship popularity.
Example 2: Understanding the social interactions or ‘peer effects’ in decision making is
of great interest in economics. To estimate the peer effect, we propose a new linear-in-means
model based on DCMM: Given a network generated from DCMM, let y = (y1,y2,---,Yn)’
store the response at each node and X = [X1, Xo, ..., X,] € R"*P store the feature vectors.
Define G € R™" by G;; = mim; /(D p.si Ti7k), for i # j, and Gi; = 0. For some parameters
a,B € R and 7,0 € RP, we model that y = al, + Gy + Xv + GXd + ¢, where € is the
noise vector. This model differs from the standard linear-in-means model (Manski, (1993) in
the definition of G. In the standard form, G is chosen as the normalized adjacency matrix.
However, the adjacency matrix itself has stochastic errors. For example, two friends in real
life may or may not be each other’s Facebook friend. Our G allows for a possibly nonzero
peer effect between two nodes even when they are not directly connected by an edge. Under
this model, we can apply Mixed-SCORE to obtain 7;’s and then plug them into the model
for y;. A similar idea has been considered by |Chen et al.| (2020) for vector autoregression.
They model the network with SBM, but we use the more general DCMM model.
Example 3: The dyadic regression model (Grahaml [2020) is a popular network model.
When there are unobserved covariates, how to make accurate parameter estimation is not
fully understood. Inspired by |Graham| (2015), we assume that an unobserved dyadic co-
variate is a function of unobserved nodal covariates and propose a dyadic regression model
with a DCMM-like structure. Let X € R™*"™ be the adjacency matrix of a weighted network
(e.g., in the international trade network, Xj;; is the trade flow from country i to country
7). Suppose X;; ~ Poisson(\;;), with In(A;) = M v, In(Znij) + BIn(w,Prj) 4 ci + ¢
Here Zy,...,Zy are the observed dyadic covariates, ¢; is the fixed effect of node ¢, and
Uij := m,Pm; is an unobserved dyadic covariate, with (m;, P) similar to those in DCMM (to
be introduced in Section . This model is connected to the model in |Graham| (2015): In

his model, U;; = g(&;,&;;00), where & € R is an unobserved nodal covariate and g(-, -; dp)



is a symmetric distance function; in our model, the latent covariate m; can take an arbi-
trary dimension K. We introduce a practical algorithm in Section We first construct a
network from the residuals of fitting a dyadic regression with only observed covariates; we
then apply Mixed-SCORE to obtain ﬁij = frépfrj; last, we plug in ﬁij and re-fit the dyadic
regression. Although this approach is mainly from a practical perspective, it points out a
new direction, that is, using spectral algorithms to learn unobserved covariates. Compared
with the existing approaches such as Markov Chain Monte Carlo and triad probit (Graham)
2020), the spectral approach is computationally fast and allows for multidimensional ;’s.

Since the main focus of this paper is estimation of m;, we leave a careful study of these
examples to future work. One of the key requirements for plugging 7; into a downstream
economic model is that the error on 7; can be well-controlled. In this paper, we provide
not only a method for estimating 7; but also the explicit error bounds. In the case that the
network is properly dense, the error bound reduces to E[n=! Y"1 | ||#; —m]|?] = O(n 1 K3),
suggesting that the errors on 7; are negligible for downstream tasks (please see the discus-
sions following Theorem |3.2)).

The remaining of this paper is organized as follows. In Section [2| we formally introduce
our model and method. In Section [3, we state the theoretical results. In Sections we
present the simulations and real data, respectively. We conclude the paper with discussions

in Section [6] The technical proofs are relegated to the online supplementary material.

2 A spectral method for network membership estimation

2.1 The DCMM model

Consider an undirected network with n nodes. Suppose the network contains K communi-
ties. Each node has a mixed membership vector m; = (m;(1), m;(2),...,m(K))’, where the
entries of 7; are nonnegative and sum to 1. We interpret 7;(k) as the fractional weight that
node i puts on community k. If node ¢ puts 100% weight on community k, then m;(k) = 1
and 7;(¢) = 0 for all other ¢ # k; we say that m; is degenerate and call node i a pure node
of community k. If node i is not a pure node of any community, we call it a mixed node.
Each node also has a degree heterogeneity parameter ; > 0. Let P € RXK be a symmetric
nonnegative matrix. Recall that A € R™*™ is the adjacency matrix of the network. Since we
do not allow for self-edges, the diagonal entries of A are all zero. We assume that the upper

triangle of A (excluding the diagonal) contains independent Bernoulli variables, where for
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any 1 <i4,5 <n andi# j,
P(Aij = 1) = 6:6; x Y Y mi(k)m;(0) Peg = 0:6; x w,P. (2.2)

Take Model for the political blog network for example. It is a special case with K = 2,
= (%, %)’ and P being a 2 x 2 matrix whose diagonal entries are equal to a+ 5 and
the off-diagonal entries are equal to @ — 3. The parameters in are not identifiable.
For identifiability, we assume that the diagonal entries of P are equal to 1 (see Section
of the supplementary material for a proof of model identifiability).

We call the degree-corrected mixed membership (DCMM) model. DCMM includes
several popular network models as special cases. The stochastic block model (SBM) is a
special DCMM where 6;’s are equal to each other (i.e., no degree heterogeneity) and all m;’s
are degenerate (i.e., no mixed membership). The MMSBM model (Airoldi et al., 2008) is
a special case with equal 6;’s (but m;’s can be non-degenerate). The DCBM model (Karrer
and Newman, 2011) is a special case where all 7;’s are degenerate (but 6;’s can be unequal).
DCMM can also be viewed as an equivalence to the OCCAM model (Zhang et al., 2020),
except that 7;’s are re-normalized by their #2-norms in the OCCAM model.

It is convenient to express in a matrix form. Write © = diag(6y, 602, ...,0,) € R™"
and II = [y, 7, ..., 7] € R%E. Introduce an n x n matrix Q = OIIPII'O. It is seen that

Oy = 0;0; - m,Pm;. By Model (2.2)), E[A;;] = ;; for all 1 <14 # j < n. It follows that
A =Q — diag(Q) + W, with W :=A—-E[4] and Q:=OIPII'O. (2.3)

We call , diag(€2), and W the “main signal”, “secondary signal” and “noise” respectively.
Remark 1: DCMM distinguishes from the latent space models (Handcock et al., 2007)
or graphons (Lovasz and Szegedy, [2006; [Pensky, [2019) by not requiring exchangeability of
nodes. In DCMM, we have no assumptions saying that 6;’s and m;’s are i.i.d. drawn from
some distributions. We treat all of them as unknown parameters.
Remark 2: DCMM has an interesting connection to the dyadic regression model. In
DCMM, we can view 6; and 6; as nodal covariates, and 7/ Pm; as a dyadic covariate, but a

major difference is that these covariates are unobserved.

2.2 The simplex structure in the spectral domain

We first consider an oracle case where we observe the “main signal” matrix 2 in (2.3]). We
would like to construct an estimate of II from 2. Note that 2 is a rank-K matrix. For

each 1 <k < K, let A\x be the kth largest eigenvalue of ) in magnitude, and let & € R™ be
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the associated eigenvector. Write A = diag(A1,...,Ax) and E = [£1, &2, ..., &x]. Jin (2015)
proposed a normalization of eigenvectors called the SCORE normalization. It constructs a

matrix R € R"*(E=1 containing the entry-wise ratios of eigenvectors, where
R(i, k) = &ki1(3)/&1(0), 1<i<n, 1<k<K-1. (2.4)

Let r; € RE~! denote the i-th row of R. Viewing each r; as a point in the (K —1)-dimension

Euclidean space, there is a simplex structure for the point cloud {7 }1<i<n:

Lemma 2.1 (The simplex geometry in R). Consider Model and assume that P s
non-singular, P(I'©211) is irreducible, and each community has at least one pure node. The
following statements are true: (1) All entries of & are strictly positive, so that the matriz R
n is well-defined. (2) There exists a K-vertex simplex S C RE~1, whose vertices are
denoted by vi,vs, ..., Vg, such that each r; is contained in S and that r; falls on one vertex of
S if and only if node i is a pure node. (3) Let w; € ]Rff contain the barycentric coordinates of
ri in S. The vector w; is connected to m; through the equation w; = (m;oby)/||miob1]|1, where
by € RE is the vector defined by by (k) = [\ + v diag(Ag, . . . ,)\K)Uk]*l/z, A, A2, ..., Ak are

the nonzero eigenvalues of 2, and o denotes the entrywise product between two vectors.

We call S the Ideal Simplex. Lemma[2.1]inspires a method to recover II from . Step 1:
Obtain R from . Step 2: By the second claim of Lemma we can retrieve the vertices
v1,...,vk by computing the convex hull of the point cloud {r;}i<i<n. Step 3: Given the
vertices, we obtain the barycentric coordinate vector w; for each node i (by solving a simple
linear equation); we also compute the vector by using the definition in Lemma by the
third claim of Lemma we can recover m; from w; o< m; 0 by and ||m;]|; = 1.

Remark 3 (Why the simplex exists and the crucial role of the SCORE normalization).
In the proof of Lemma 2.1, we will see that the rows of = are contained in a simplicial cone
with K supporting rays, where all the pure nodes in one community are on one supporting
ray, and the mixed nodes are in the interior of the cone. The SCORE normalization
transforms the simplicial cone to a simplex and provides a direct link between the simplex
and II. Interestingly, other normalizations of eigenvectors (e.g., to normalize each row of =

by its own £!-norm) fail to produce a simplex structure. See Figure

3By definition, the simplex S spanned by v1, va, . .., vk is the set of points r such that r = Ele Brvy for
some nonnegative vector S with ||8|l1 = 1. If v1,v2,...,vk are affinely independent, S is non-degenerate;
and we call v1,...,vk the vertices of S and 8 the barycentric coordinate vector of 7.
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Figure 2: Tllustration for why the simplex exists and the role of SCORE normalization (K = 3).
Left: rows of Z (blue points). The point cloud is contained in a simplicial cone, and it is desirable
to normalize the cone to a simplex. Middle: rows of R (red: pure nodes; green: mixed nodes). It
shows that the SCORE normalization successfully produces a simplex. Right: rows of = normalized
by row-wise ¢!-norm (for visualization, we have projected these points to R?). This normalization
fails to produce a simplex.

2.3 The Mixed-SCORE algorithm for estimating II

We extend the aforementioned method of recovering IT to the real case where A, instead of €2,
is observed. For 1 < k < K, let j\k be the kth largest eigenvalue of A in magnitude, and let

&, € R™ be the associated eigenvectors. Write A = diag(A1,..., Ag) and Z = [&1, ..., k).

We propose the following algorithm:
Mized-SCORE algorithm for estimating II. Input: A, K. Output: 7;, 1 <i < mn.

e SCORE step. Fix athreshold T > 0 (T = log(n) by default). Obtain (A,£&)), ..., (A, Ex)

and define R = [F1, 72, ..., 7] as the matrix where for 1 <i<nand 1 <k < K —1,

R(i, k) = sign(é1(0)/61(6)) - min{|&1 () /61 (0)], T}. (2.5)

o VH (vertex hunting) step. Use the rows of R to estimate the vertices of Ideal Simplex
(details below). Denote the estimated vertices by 01, 02, ..., 0k.

e MR (membership reconstruction) step. Obtain an estimate of b; by
bi(k) = [\ + tpdiag(Aa, ..., A)ok] V%, 1<k < K. (2.6)

For each 1 < i < n, solve w; € R¥ from the linear equations: 7#; = Zle w; (k) O,
S i(k) = 1. Define a vector 7 € RX by 77 (k) = max{0, (k) /b1 (k)}, 1 < k <

K. Estimate m; by 7t; = 7} /||77]1, 1 <i < n.

In Step 1, R is an estimate of the matrix R in (2.4). In Step 3, by is an estimate of by
in Lemma These two steps are similar to those in the oracle case. Step 2 is however
very different from in the oracle case: The point cloud {7;}1<i<;, is noisy. It is no longer

possible to retrieve the vertices of the Ideal Simplex by simply computing the convex hull
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Figure 3: Left: rows of R (many rows are equal so a point may represent many rows). Middle:
each point is a row of R (it is seen that we have strong noise and many outliers, so we may have
poor results if we hunt for vertices directly). Right: same as the middle panel except that a triangle
(solid blue) estimated by SVS is added. In all panels, dashed triangle is the Ideal Simplex, and
red/green points correspond to pure/mixed nodes respectively. The figure suggests (a) the rows of
R are quite noisy, with many outliers, and (b) SVS works reasonably well.

Table 1: Comparison of four versions of SVS (for completeness, we analyze all versions theoretically.
Numerically, we recommend SVS and SVS* for they have better performances).

Using exhaustive search in 2nd stage | Using SP in 2nd stage
L<n SVS SVS*
L=n CVS SP
of these points. We call the estimation of v, ve, ..., vk the vertex hunting (VH) problem.

We introduce several VH algorithms. A summary of these algorithms is in Table

The first possible VH approach is to use Successive Projection (SP) (Araijo et al., 2001).
SP is a greedy algorithm. It starts by setting v; as the data point #; that has the largest
Euclidean norm among 71,72, ...,7,. Then, for 2 < k < K successively, it projects 7;’s to
the orthogonal complement of Span(?1,...,0,_1) and finds the data point with the largest
Euclidean norm after projection; the estimated kth vertex vy, is set as the corresponding #;.

However, the SP algorithm frequently underperforms numerically. The Ideal Simplex is
highly corrupted by noise and outliers (see Figure , but SP is well-known to be sensitive
to outliers. To overcome the challenge, we propose Sketched Vertex Search (SVS). SVS is a
two-stage algorithm. In the denoise stage, we cluster n points into L clusters by k-means,
for a tuning integer K < L < n. The center of each cluster (called a “local center”) is
the average of many nearby points and thus robust to outliers. In the second stage, we
estimate K vertices from these L “local centers”. The full algorithm is as follows:

Sketched Vertex Search (SVS) for vertex hunting. Input: K, a tuning integer L > K,

A~

the point cloud 71,79, ...,7,. Output: vertices 01, 0o, ..., Vk.

e Denoise. Apply the classical k-means algorithm to {7;}1<;<, assuming there are L

clusters. Denote the centers of the clusters by my, e, ..., M, € RE-L
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o Vertex search. For any K distinct indices 1 < ji < ... < jg < L, let H(1ij,, ..., M, )

be the convex hull of 7, ..., M., and
dr(jr, -+ jK) = lrgja%deistance(mj, H{rm,, - ,mjK}) (2.7)

Find 1 <71 < j2 < ... < jg < L that minimizes (2.7). Output v = ms 5 1< kE<K.

The tuning integer L can be chosen in a data-driven fashion. For each L € [K + 1,3K], let
dL(R) = dL(j'l, . ,jK) be the same as in (2.7]) and 5L(R) =ming, i} (maxlSkSK{H@](-kL)—

{),E/,Lfl)H}), where the minimum is taken over all permutations of {1,2,..., K}. The quan-

tity dr(R) tracks the change of estimated vertices when we increase the tuning parameter

from (L — 1) to L. We select L by (if there is a tie, pick the largest integer):

L;(A) = argming 1< p <3 {00(R)/(1+ dr(R))}. (2.8)
We also consider three variants of SVS. The first is SVS*, where in the second stage we
apply SP to the L “local centers”. The second is Combinatorial Vertex Search (CVS), where
we take L = n in SVS (i.e., the denoise stage is skipped, so in the second stage, each 7; is
viewed as a local center). In the last variant, we take L = n in SVS*, so it reduces to SP.
For practical use, we recommend SVS and SVS*; they have the denoise step by k-means,
which is crucial for good numerical performance.

We view Mixed-SCORE a generic algorithm and treat VH as a “plug-in” step. For each
VH approach, we can plug it in and obtain a different version of Mixed-SCORE. We denote
them by Mixed-SCORE-X, e.g., for X € {SVS, SVS* CVS, SP}. Mixed-SCORE can also
be used with other possible VH approaches.

The complexity of Mixed-SCORE mainly comes from obtaining the first K eigenvalues
and eigenvectors of A, which is O(nK?), and the VH step, which is O(nK?) if we use the SP
algorithm. Hence, Mixed-SCORE-SP is a polynomial-time algorithm. Mixed-SCORE-SVS
is also a polynomial-time algorithm if (K, L) are both finite.

Remark 4 (Comparison with the standard PCA). The standard PCA approach creates
a K-dimensional vector x; = = e; for each node i. These vectors do not have real meanings
and are hard to interpret; moreover, each z; is determined by all the parameters of DCMM
and cannot faithfully represent the community structure among nodes. In comparison, the

7;’s from Mixed-SCORE have clear interpretations.

“For a point v and a set H, distance(v, H) is the Euclidean distance from v to H. When H is a simplex,
this distance can be easily computed via a standard quadratic programming.
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2.4 Estimation of © and P

We are also interested in estimating the other parameters of DCMM. Among all the param-
eters, II is the hardest to estimate. Once I is obtained, estimation of (0, P) is comparably
easy. Therefore, as a byproduct, we use the output of Mixed-SCORE to construct estimates
of (©,P). Recall that A1,..., A\g are the nonzero eigenvalues of Q and &;,...,{k are the
associated eigenvectors. Let vy, ve,..., vk be the vertices of the Ideal Simplex and b; be as

in Lemma The next lemma is proved in the supplementary material.

Lemma 2.2. Let A = diag(A\1,..., k), V = [v1,...,vk], and B = diag(by)[1x, V']. If the
conditions of Lemma 2.1 hold, then P = BAB' and 6; = &,(i)/(m}b1), 1 < i < n.

After running Mixed-SCORE, we collect the following quantities: (i) the leading eigen-

vector &1 (ii) the estimated vertices V= [01,D2,...,0k]; (iii) a vector by; (v) the estimated
mixed membership vectors in 1= [71, T2, . - ., 7). Inspired by Lemma IQ', we let
P=BAB', and 0;=£(i)/(7b), 1<i<n. (2.9)

3 Theoretical properties

We state some regularity conditions. Recall that 0;’s are the degree parameters in Model (12.2]).

Let Omax = max; 0, Omin = min; 6;, 0 =n=1Y""  6; and 6, = /n~1 31, 62. Define
erry = errn(0) = [(03/2.6%%) ) (0min6?)] - \/log(n)/(nb?). (3.10)

Assumption 1. 6, < C, and err, — 0.

Here, the interesting range for 6; is from O(n~/2) (up to a multi-log(n) term) to O(1),
so the first condition is mild. To appreciate the second condition, note that when 6, <
COuin, erry < /log(n)/(nf?), where nf? is the order of the expected average node degree.
Therefore, the condition of err,, — 0 is the same as that the average node degree grows to
oo faster than log(n), which is mild. Introduce a K x K matrix G = K||0||=2(II'©21I).
Assumption 2. ||P|max < C, |G| < C, and |G| < C.

The first one is seen to be mild. For the other two conditions, it is instructive to consider
a special case where all nodes are pure. In this case, G = K||]|~2-diag (|0 ||, . .., |8 |?),
where [[0®)]* = 37, ¢,
C miny, |8 |2, which is only mild. Denote by A\,(PG) the k-th largest right eigenvalue of

62. Therefore, the two conditions reduce to that of maxy [|§*)]|? <

PG, and by n;, € R the associated right eigenvector, 1 < k < K.
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Assumption 3. [M\2(PG)| < (1 — ¢1)M\(PG), and ¢1 6, < |Ax(PG)| < [A2(PG)| < 1 fn,

where (3, € (0,1) and ¢; € (0,1) is a constant.

The first item is a mild eigen-gap condition. In the second item, the quantity [3,, captures
the ‘distinction’ between communities and can be interpreted as the “signal strength” of
the DCMM model, where 3, = O(1) is the case of “strong signal” and 3, = o(1) is the
case of “weak signal” (3, is a component in the error rate to be introduced). We assume
A2, ..., Ak are at the same order. This is only for convenience and can be relaxed (e.g.,

A2, ..., Ak split into several groups and those in the same group are at the same order).

max <p<x N1 (k) C
miny<p<x M (k) —

Assumption 4. min;<;<x m (k) > 0, and

In Section of the supplementary material, we show that this assumption is satisfied
in either of the following cases: As n — oo, (a) all entries of PG are lower bounded by a
constant, (b) K is fixed and P tends to a fixed irreducible matrix Py, (c¢) K is fixed and G
tends to a fixed irreducible matrix G, and (d) the maximum and minimum row sums of P

are at the same order and m;’s are i.i.d. generated from a Dirichlet distribution.

3.1 Large-deviation bounds for R

The following entry-wise large-deviation bounds for matrix R plays a key role in our anal-

ysis. Let R = [f1,79,...,7,] be as in (2.5). Let R = [r1,79,...,7,] be as in 1}

Theorem 3.1 (Large-deviation bounds for IA%) Consider the DCMM model where Assump-
tions 1-4 hold. Suppose \/Klog(n) < T < oo for T in . Let erry, be as in and
By as in Assumption 8. With probability 1 — o(n=3), there exists an orthogonal matriz H €
RE-LE=1 sych that max)<i<y, || H7s — || < CK3/28, Yerr,,. If, additionally, Omax < COmin,
then with probability 1 — o(n™3), maxi<;<y, | H#; — ri|| < CK32(nf?82)~1/2/log(n).

In Theorem (K, Bn,0) may all vary with n. Among them, 3, captures the “strength
of community signals”, where we either have 3, = O(1) or 8, — 0 reasonably fast, so the
claims applies to both the cases of “strong signals” and “weak signals”.

The proof of Theorem is based on a row-wise large deviation bound for the eigenvec-
tors of the adjacency matrix (Lemma in the supplement). In the literature, there were
few results about row-wise deviation bounds for eigenvectors of a network adjacency matrix
(Abbe et al., 2020; Fan et al., 2022} [2020). They focused on moderate degree heterogeneity
and assumed that the nonzero population eigenvalues are at the same order, so they do not

apply to our setting. We need non-trivial efforts to prove Lemma and Theorem [3.1
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3.2 Rates of Mixed-SCORE with a generic but efficient VH step

Mixed-SCORE has a plug-in VH step, and the goal of the VH step is to estimate the vertices
v1,...,vk of the ideal simplex. In this section, we present the rate of Mixed-SCORE for
a generic but efficient VH step. Next in Section we discuss the rate of Mixed-SCORE
for all 4 proposed VH step in Table [1| (where the rate can be much faster in some cases).

Definition 1 (Efficient VH). We call a VH step efficient if it satisfies that max;<p<x || H0p—
vg]| < Cmaxi<i<y ||[H7; — r4||, where H is the orthogonal matrix in Theorem

For our proposed VH methods in Table [l CVS and SP are efficient under Assumptions
1-4, and SVS and SVS* are efficient if some additional conditions hold; see Section

For any estimate II = [y, 72, ..., 7y,]’ for II, we measure the error by the mean squared

error (MSE) E[2 37 | ||#; — m;]|?]. Recall that err, is defined in (3.10).

n

Theorem 3.2 (Error of Mixed-SCORE). Consider the DCMM model where Assumptions
1-4 hold. Let II be the estimate of I1 by Mized-SCORE with a generic but efficient VH step.
Then, E[2 >0 | ||7: — m||2] < CK3B,2err? + o(n™2). If additionally Omax < COmin, then

Ely Yy 7 — mil?] < CKP(nf83) " log(n) + o(n~?).

n

We now discuss the implication of Theorem on economic applications. For simplicity,
we consider a case where Oyax < Omin, K = O(1) and S, > C. By Theorem the MSE is
O((nf?)~!log(n)). For a dense network, # < 1, and the MSE becomes O(n~!log(n)), which
is quite negligible. Suppose we have a downstream economic model y; = a + 7T1/-(71) B+ €,
where y; is an outcome of interest and m;_1) is the sub-vector of m; by dropping the last
coordinate (to remove co-linearity). We plug in the 7;’s from Mixed-SCORE and let /3 be the
least-squares coefficient. It can be shown that |3 — ]2 = O(n P30 |7 —mil|?) +Op(n~1h).
Therefore, as long as nf? > log(n), we have consistency on ﬁ . Furthermore, using the faster
rates in Section we can further remove the log(n) factor in MSE; as a result, when the
network is dense, we also have root-n consistency of B.

Remark 5 (Rate optimality). |Jin and Ke| (2017) derived a minimax lower bound for
the case where K is finite and that 6;’s are equal. They showed that for any estimate I,
there is a constant co > 0 such that = Y% | ||#; — m||? > C/(n6?B2) with probability > co.
Comparing it with Theorem the error rate of Mixed-SCORE is optimal (up to a log(n)
factor) for DCMM with Opyax < COpin.

Remark 6 (Comparison with the rate of the OCCAM algorithm (Zhang et al., |2020)).
Since the theory of OCCAM does not allow /3, = o(1) or K diverging with n, we compare
two methods only in the case that K < C' and 5, > C. The rate of Mixed-SCORE reduces
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to (nf2)~1/2, but the rate of OCCAM cannot be faster than (n62)~'/5, which is strictly
slower. Also, OCCAM works only if the fraction of mixed nodes is properly small (hinged
in Assumption-B of |Zhang et al.| (2020)). For example, when K = 3, P = 0.913 + 0.11315,

1
and m; = 7

Remark 7 (Comparison with theory of community detection). Community detection is

13 for all mixed nodes, the fraction of mixed nodes has to be < 1/4.

a less challenging problem, where m;’s are known to be degenerate. It has exponential rates
(Gao et al., [2018), but membership estimation only achieves polynomial rates (Jin and Ke,
2017). Consider an example with K = 2, ; b Dirichlet(ay), and P(4;; = 1) = n~ 17/ Pr;,
where Py, = a-1{k =m}+b-1{k # m}. Asn — oo, ayp is fixed but (a,b) can depend on n.
This is equivalent to a DCMM with 6 =< n='/2\/a and $,, < (a —b)/a. Write I = (a—b)?/a.
The rate of Mixed-SCORE is O(I~/2,/log(n)), but when 7;’s are all degenerate, the rate
of community detection is exp(—O(I)).

Given the results for II, we further study the estimates (6, P) defined in Section

Theorem 3.3 (Estimation of (8, P) in DCMM). Under the conditions of Theorem|3.2, with
probability 1—o(n=2), |P—P|| < C(K*+ K328, Yerr, and |0 —-0|% < C||0|2K38; %err?

n-

3.3 Rates for Mixed-SCORE with proposed VH steps, and faster rates

Section analyzes a generic Mixed-SCORE algorithm with an efficient VH step. In this
subsection, we discuss Mixed-SCORE with each specific VH approach in Table[ll First, we
consider CVS and SP. The following theorem shows that CVS and SP are both efficient,
and Mixed-SCORE-CVS and Mixed-SCORE-SP attain the rate in Theorem B.2]

Theorem 3.4. Consider the DCMM model where Assumptions 1-4 hold and each commu-
nity has at least one pure node. Let H be the orthogonal matriz in Theorem[3.1. If we apply
cither CVS or SP to rows of R, then with probability 1 — o(n™3), maxj<p<f ||[Hop — vg| <
Cmaxi<i<p |H7i — ril|, so both CVS and SP are efficient. Moreover, for Mized-SCORE-
CVS or Mized-SCORE-SP, E[+ >"" | ||%: — m||?] < CK3B,,%err2 + o(n™2).

1

n
Next, we consider Mixed-SCORE-SVS and Mixed-SCORE-SVS*. SVS and SVS* use
a denoise stage, which provides a significant advantage in numerical performance, but also
makes them harder to analyze. For this reason, we only consider two settings. In the first
setting, we assume all 7;’s for mixed nodes are iid drawn from a continuous distribution. In
the second setting, m;’s form several loose clusters. Owing to space limit, we only present

Setting 1 here. Setting 2 is in Section |B| of the supplementary material.
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Setting 1. Let Sp = Sp(ei,e2,...,ex) be the standard simplex in RX, where the vertices
e1,e,...,ex are the standard Euclidean basis vectors of RX. Fix a density ¢ defined over
Sp. Let R = {7 € Sy : g(m) > 0} be the support of g. Suppose there is a constant ¢ > 0
such that R is an open subset of Sy, and distance(ex, R) > ¢o, 1 < k < K. Let d,(m) be the
point mass at m = v. Fixing constants €1, ...,ex > 0 with Z?Zl € < 1, we invoke a random
design model where ;’s are iid drawn from f(7) = SI0_| e - 0, (1) + (1- Zle ex) - g(m).
The following is similar to err, in , and quantifies the “faster rate” aforementioned.

errt = err’(0) = [(0~2.6%/%) ) (0mind,)] - (n6?)~Y/2. (3.11)

max

Theorem 3.5. Consider the DCMM model where Assumptions 1-4 hold and m;’s are as in
Setting 1. Let H be as in Theorem . There exists a constant Lo(g,e€1,...,€x) > 0 such
that, if we apply SVS or SVS* to rows of R with L > Lo, then with probability 1 — o(n=3),
maxi<p<i |[Hop — vl < C(n~ ' 30, |HP — ri\|2)1/2. Moreover, for Mized-SCORE-SVS
or Mized-SCORE-SVS*, B[ S0 | |17, — mi||2] < CK3B;,2(err)? + o(n™2).

n

By Theorem the rates of Mixed-SCORE-SVS and Mixed-SCORE-SVS* are faster
than those of Mixed-SCORE-SP and Mixed-SCORE-CVS. In fact, by —, we have
err}: Jerry, = [0x/(Omax+/10og(n))]. Since O, /Omax < 1 and 0, /Omax may tend to 0 rapidly, we
have the following observations: 1) The rate here is faster than that of Theorem by at
least a factor of log(n). 2) The rate here can be much faster than that of Theorem if
0. /Omax — 0 rapidly. As an example, suppose 01 = ... =0, 1 = a,, and 0,, = n”a,,, where
0 < v < 1/2 is a constant; in this case, err:/err, = 0./(0maz+/log(n)) < n=7/y/log(n),
and so the rate here is much faster than that of Theorem [3.2l Once we have a faster rate
for II, we also enjoy a faster rate for the proposed (0, P) in Section (proof is omitted).

Remark 8. The faster rates here are because SVS and SVS™* use a denoise stage, which
improves the accuracy in vertex hunting and so in membership estimation. The improved
rate is not due to the more strict setting considered here (in fact, in Setting 1 and Setting
2, if we use SP and CVS for VH in Mixed-SCORE, then we do not have a much faster
rate). For more general settings, Mixed-SCORE-SVS or Mixed-SCORE-SVS* continue to

enjoy this faster rate, as supported by numerical experiments in Section

4 Simulations

Experiment 1 (Comparison of VH approaches). We view Mixed-SCORE as a generic
algorithm, where we can plug in any VH approach. In Table |1, we list four VH approaches.
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Figure 4: Comparison of VH methods (black: truth; blue: SP; yellow: CVS; red: SVS). Left: The
case of weak noise. CVS and SVS perform well, but SP performs less satisfactorily (possible reason:
SP is a greedy algorithm). Middle: The case of strong noise. SVS performs well, but SP and CVS
perform unsatisfactorily. This is because SVS is much less sensitive to outliers. Right: Robustness
of SVS to the choice of L (y-axis is maxy, |[Hox — vg||?).

We now compare SP, CVS and SVS (the performance of SVS* is very similar to SVS, thus
omitted). Fix (n, K) = (500, 3). P is a matrix whose diagonals are 1 and off-diagonals are
0.3. Each community has 50 pure nodes. For 7;’s of the remaining 350 nodes, half of them
are iid drawn from Dirichlet(0.6, 0.2, 0.2), and half are iid drawn from Dirichlet(0.3,0.4,0.3).
We consider two cases: (a) Weak noise (6; = 0.7, and the network is denser) (b) Strong noise
(0; = 0.4, and the network is sparser). We choose L as in , but we also investigate SVS
forall L € {4,5,6,...,15}. We report the average of maxy, || Hoy —v||? over 100 repetitions.
The results are in Figure 4. We observe the following: (i) In the strong signal case, three
methods perform similarly. (ii) In the weak signal case, CVS and SP are significantly worse
than SVS. (iii) The performance of SVS is insensitive to the choice of L. The results confirm
our claims in Section and Section that the de-noise stage in SVS plays a crucial role
in improving the numerical performance.

Experiments 2-4 (Performance of Mized-SCORE-SVS). From now on, we fix the VH
approach as SVS. The tuning integer L is chosen from data using . In the literature,
other mixed membership estimation approaches only work for MMSBM. The only exception
is OCCAM |Zhang et al. (2020). OCCAM assigns to each node a non-negative “membership”
vector with unit fo-norm; we renormalize them by their /1-norms and use them as the
estimated m;. Fix n = 500 and K = 3. For 0 < ng < 160, let each community have
no number of pure nodes. Fixing = € (0,1/2), let the mixed nodes have four different
memberships (z,z, 1 —2x), (z,1—2z,2), (1—2z,2,z) and (1/3,1/3,1/3), each with (500 —
3np)/4 number of nodes. Given p € (0,1), P has diagonals 1 and off-diagonals p. Fixing
z > 1, we generate the degree parameters such that 1/6; u U(1, z), where U(1, z) denotes
the uniform distribution on [1, z]. The tuning parameter L is selected as in . For each

parameter setting, we report n=! " | ||&; — m;||? averaged over 100 repetitions.
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Figure 5: Estimation errors of Mixed-SCORE and OCCAM (y-axis: n=* Y |7 — m)%)-

Experiment 2 (fraction of pure nodes). Fix (z,p, 2z) = (0.4,0.1,5) and let ny range in
{40, 60, 80,100, 120,160}. As ng increases, the fraction of pure nodes increases from around
25% to around 95%. See Figure 5| (left). When the fraction of pure nodes is < 70%, Mixed-
SCORE significantly outperforms OCCAM; when the fraction of pure nodes is > 70%, the
two methods have similar performance.

Experiment 3 (purity of mixed nodes). We call maxj<g<x{m;(k)} the “purity” of node
i. Fix (ng,p,z) = (80,0.1,5) and let = range in {0.05,0.1,0.15,--- ,0.5}. In our settings,
there are four types of mixed nodes. For the first three types, their purity is (1 — 2z)1{z <
1/3}+x1{x > 1/3}. Therefore, as = increases to 1/3, these nodes become less pure; then, as
x further increases, these nodes become more pure. See Figure |5/ (middle). It suggests that
membership estimation is harder as the purity of mixed nodes decreases. Mixed-SCORE
outperforms OCCAM in almost all settings, especially when x is close to 1/3.

Experiment 4 (degree heterogeneity). Fix (x,ng,p) = (0.4,80,0.1) and let z range in
{1,2,---,8}. Since 1/6; i U(1,z), a larger z means the lower average degree and more
severe degree heterogeneity (so the problem is harder). See Figure (right). Mixed-SCORE
uniformly outperforms OCCAM. Interestingly, when z is small (so the problem is “easy”),
Mixed-SCORE is very accurate, but the performance of OCCAM is unsatisfactory.

Experiments 5-8. For space limit, we have relegated them to the supplement. Exper-
iment 5 studies settings where the matrix P varies. Experiment 6 studies settings where
m;’s drawn from a continuous distribution. Experiment 7 further investigates robustness of
Mixed-SCORE-SVS to the choice of L. Experiment 8 compares Mixed-SCORE with the
latent space modeling of networks [Handcock et al.| (2007).
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5 Real data applications

5.1 The international trade networks and the trade triangles

There are two lines of literature on the analysis of international trade networks. The first is
the gravity model (Anderson and Van Wincoop, 2003). It fits a generalized linear model for
trade flows using countrywise ‘size’ covariates and pairwise ‘trading cost’ covariates. The
second is in physics, which studies the topology of trade networks (Serrano and Boguna,
2003). Mixed-SCORE is useful in both approaches.

Combination of Mixed-SCORE and gravity models. Let X (i, j) be the trade flow
from country i to country j. The (general) gravity model assumes X (i, j) ~ Poisson(A(, 7)),
with In(A(i, 7)) = Yooy @mGm(i) + ooy BnGm (i) + Yooy s Ds(i 1) + ¢ + ¢;, where
G1,...,Gy are the (log) ‘size’ covariates, Dy, ..., Dg are the (log) ‘trading cost’ covariates,
and ¢;’s are the fixed effects of countries. We fit this model using Poisson pseudo maximum
likelihood and let A(4, j) denote the fitted value. We define two ‘p-values’ for each country
pair: Q1(i,§) = P(Poisson(\(i, 7)) > X (i,4)) and Qa(i,j) = P(Poisson(A(i, 7)) < X (i, 7))
A small value of Q1(i, j) implies that the observed trade flow is significantly higher than the
fitted one, and a small value of Q2(i, j) indicates the opposite. We construct two undirected
networks. In the first one, there is an edge between nodes i and j if min{Q1 (4, 7), Q1(4,7)} <
0.05. In the second network, edges are defined similarly except that @)1 is replaced by Q5.
We call them the gravity-under-shooting (GUS) network and gravity-over-shooting (GOS)
network, respectively. For each network, we apply Mixed-SCORE to obtain (ﬂ, e, ]5) and
then construct a new nodal covariate, U (i) = In(A(4)), and a new dyadic covariate, H (i, j) =
ln(frgpfrj). We use them as surrogates of those unobserved covariates in the gravity model
and plug them back to re-fit the gravity model. As explained in Example 3 of Section
we assume here that the unobserved covariates have a DCMM-like structure, which has the
same spirit as the model in |Graham| (2015)). Our proposed ‘Mixed-SCORE + refitting’ is a
proxy approach to fitting the model we introduce there.

To test the performance of our approach, we use an edited version of the gravity data set
in Head et al. (2010) (available in the R package gravity). The original data set contains
the bilateral trade flows for 166 countries in 1948-2006. We only use the data in 2006. This
edited version includes a nodal covariate, gdp, and five dyadic covariates, distw, rta, contig,
comlang_off and comcur (their meanings are in Column 2 of Table . Compared with the
original gravity model fitting in Head et al. (2010), this edited version does not provide all

covariates, so it serves as a good example of unobserved covariates. Since there is only one
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Table 2: Combination of Mixed-SCORE and gravity model. The bigger model has two new covari-
ates created by Mixed-SCORE. The F statistic for model comparison is 928.56 (p-value < 2.2e-16).
We note that these coefficients are not supposed to be directly compared with the fitted coefficients
in Column 2 of Table 2 in|Head et al.| (2010)), because they use panel data but we only use one year’s
data (this also explains why our standard errors are considerably smaller).

Before After

Covariate Meaning Coef. Pval Coef. Pval
distw weighted distance -.832 (.012) <2e-16 *** | 722 (.011) <2e-16 ***
rta regional trade agreement dummy | .429 (.026) <2e-16 *** | 429 (.022) <2e-16 ***
contig contiguity dummy 415 (.022)  <2e-16 *** | 403 (.019) <2e-16 ***
comlang-off ~common official language dummy | .242 (.022) <2e-16 *** | 181 (.019) <2e-16 ***
comeur common currency dummy -167 (.031)  Te-08 *** | 005 (.027) .852

dyadic.GUS new trade cost covariate (GUS) 1.294 (.033) <2e-16 ***
dyadic_.GOS new trade cost covariate (GOS) -.337 (.037)  <2e-16 ***

year of data, we did not include any nodal covariate, because their effects will be absorbed
into the fixed effect ¢;; all five dyadic covariates were included. We constructed the GUS
and GOS networks as above and ran Mixed-SCORE separately on these two networks. We
set K = 3 for both networks It gave rise to two new dyadic covariates HGUS and HGOS
(again, we did not include the new nodal covariates because of the fixed effects ¢;). The
results are in Table [2] where both new covariates created by Mixed-SCORE are significant.
The other coefficients have mild changes and slightly smaller standard errors after re-fitting,
except the coefficient of comcur. Initially, the coefficient of comcur is negative, with a very
small p-value. This contradicts our common sense: sharing common currency should not
have a significantly negative impact on trading. After adding the Mixed-SCORE covariates,
the coefficient of cumcur becomes positive and insignificant. It suggests that our proposed
approach is potentially useful in correcting the bias caused by unobserved covariates.

To appreciate what information Mixed-SCORE captures, we check the rows of R for the
GUS and GOS networks. Owing to space limit, we only discuss the GUS network here but
relegate the results of the GOS network to the supplementary material (see Section . The
edges in the GUS network indicate significant under-estimation of trade flows in the initial
gravity model. Therefore, if 7; and 7; are close, the two countries may have unmodeled
connections that benefit trade. The rows of R and the estimated simplex (which is a triangle
since K = 3) for GUS are shown in Figure@ We have some observations: (a) The 3 vertices
may be interpreted as Caribbean (top), Former Soviet Union (bottom left), and Western
African (bottom right). (b) United States, Canada and Mexico are close. These countries
are in the North American Free Trade Agreement (NAFTA). The benefit of NAFTA cannot
be fully captured by the regional trade agreement dummy rta (Anderson and Yotov, 2016])

SWe also tried other values of K. For different K, the networks and Mixed-SCORE output are different,
but the newly created covariates and the subsequent gravity model fitting are similar.
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and is further revealed in the covariates created by Mixed-SCORE. (c) United States and
Russia are far away from each other - a consequence of the historical confrontation between
two countries (Hufbauer and Oegg, |2003). (d) High-GDP countries tend to be in the interior
of the triangle (i.e., they have low ‘trading costs’ with many countries). This is consistent
with economic theory that good ‘tradability’ can boost economic growth (Waugh, 2010).
(e) United States (with the highest GDP) is not in the deep interior of the triangle but on
an edge. Interestingly, this position is farthest from the Former Soviet Union vertex.

Remark 9. In re-fitting the gravity model, an alternative approach is replacing H (i, j)
by ln(ﬁij), where Q is an arbitrary estimate of . Using the output of Mixed-SCORE, we
can obtain an estimate QMS by ﬁi\;{s = ézé] . 7%1{157%3 Since 6; and 9j will be absorbed into
the fixed effects, this approach is equivalent to the approach we have used above. However,
we may plug in a different estimate of €2, such as QFCA — 25:1 kakfk, where )\, and fk
are the kth eigenvalue and eigenvector of A. In Section [I| of the supplementary material, we
compare the two estimates of {2 and find that OMS has much better numerical performance.
The reason is that QMS utilizes the DCMM model structure, not just low-rankness of 2.

Remark 10. In the recent literature of gravity modeling of trade data, it has become
common to use panel data and to include the importer-year and exporter-year fixed effects
(Weidner and Zylkin, [2021)). We did not use panel data because Mixed-SCORE only applies
to static networks. In a working paper, we extend Mixed-SCORE to dynamic networks. It
will be useful for analysis of panel data. We leave this to future work.

Remark 11. In the analysis of panel data, an interesting approach is using the pairwise
fixed effects (Weidner and Zylkin, 2021) to account for unobserved covariates. However, for
our example here where we only use one year’s data, this approach will introduce n(n—1)/2
free parameters, but we only have n(n — 1) observed trading flows; therefore, this approach
will have the issue of over-fitting. In comparison, our Mixed-SCORE approach only allows
for O(nK) free parameters and does not have this over-fitting issue.

Using Mixed-SCORE for network analysis of the world trade web. Studying
the network topology of the world trade web is a problem of interest (Serrano and Bogunal,
2003). These works do not require observing any covariates. They build networks directly
from trade flows and study the topology of these networks (e.g., power law degree distri-
bution, latent community structure, centrality metric, clustering coefficient, etc.). We will
show that Mixed-SCORE is useful for creating low-dimensional embeddings of countries in
these networks. We downloaded the trade in services data from https://data.wto.org/.

For each pair of economies (i, j), we aggregated the total service export from economy i to
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(a) The GUS network after gravity model fitting. (b) The trade in service (TIS) network

Figure 6: Rows of R and the estimated simplex (K = 3, so the simplex is a triangle). Left: Orange
dots are top 15 countries with highest GDPs. Right: Green dots are 35 manually-picked economies.

economy j during 2014-2018 (we used the numbers reported by economy 7). There are 202
economies in total, but we removed Furopean Union and Extra EU Trade, as their data
partially overlap with the data of individual countries. This gave rise to a 200 x 200 weight
matrix X. We symmetrize X to Y = (X + X’)/2. Let u = (u1,ug,...,up)" contain the
row sums of Y. Define Z = [diag(u)]~'/2Y [diag(u)]~'/2, where each entry of Z is in [0, 1]. ﬁ
Let p and o be the mean and standard deviation of all nonzero entries of Z. We construct
an undirected network, where each economy is a node and there is an edge between ¢ and
j if and only if Z(i,j) > p+ o. We restrict it to the giant component, which has n = 116
nodes. We call this network the trade-in-service (TIS) network. We applied Mixed-SCORE
with K = 3 The rows of R are displayed in Figure This creates an embedding of all
economies into a 2-dimensional latent space. We have some noteworthy observations. (a)
The point cloud fits well with a triangle, which we call the ‘trade triangle’. The three ver-
tices may be interpreted as three different regions: ‘North Africa’ (top vertex in Figure ,
‘Southeast Asia’ (bottom left vertex), and ‘Central/South Europe’ (bottom left vertex).
(b) It agrees to economic theory that geographic proximity plays a key role in trade. In

Figure countries that are geographically close tend to cluster together; e.g., countries in

50ne may use GDP or population to normalize, but here we are primarily interested in the case with no
observed covariates. We follow the literature to use total trade flows to normalize.

"For the adjacency matrix, the scree plot shows the elbow point is either at K = 3 or K = 4. We applied
Mixed-SCORE with both K = 3 and K = 4. It turns out that for K = 3, the plot of the rows of R (see
(2.5)) fits better with the simplex structure, and the results are easier to interpret, so we choose K = 3.
Furthermore, we set T' = 2log(n) and L = 25 in Mixed-SCORE.

8The point associated with Montenegro is far away from the data cloud, which we treat as an outlier and
do not show in the figure.
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Southeast Asia ( Thailand, Vet Nam, Malaysia, etc.), East Asia (China, Japan, Korea, etc.),
North America (USA, Canada, Mezico, etc.), West Europe (UK, France, Germany, etc.),
East Europe and West/Central Asia (Russian, Kazakhstan, Turkey, Bulgaria, etc.) and so
on. (¢) The node embedding contains more information than geographical proximity. For
example, Singapore is geographically close to Southeast Asian countries, but it is closer
to East Asian countries in the trade triangle; West European countries are geographically
closer to East European countries, but they are closer to North American countries in the
trade triangle. These can be explained by trading agreements and historical trading rela-
tionships. The above supports that Mixed-SCORE is useful for node embedding. Imagine
that we are given the trade flows of a new product or service, with little known information;
we can apply Mixed-SCORE to visualize the locations of countries in the embedded space

and gain useful insights for next-step modeling.

5.2 The coauthor and citee network of statisticians, and Fan’s group

The study of coauthorship networks and citation networks is common in applied social sci-
ence (Barabasi et al., [2002). The goal is using scientific publications in a field to study the
development of the field itself. It is useful for discovering whether all sub-areas (‘communi-
ties’) are developed in a healthy and balanced way and whether any particular sub-area is
under-developed and needs more allocation of resources (Foster et al., [2015). For example,
Andrikopoulos et al. (2016)) studied the coauthorship network for Journal of Econometrics.
In this subsection, we use a data set from |Ji and Jin| (2016). It consists of bibtex and cita-
tion data of 3,248 papers published in four top-tier statistics journals, Annals of Statistics,
Biometrika, Journal of American Statistical Association, and Journal of Royal Statistical
Society -Series B, during 2003-2012.

The coauthorship network. |Ji and Jin (2016) defined a coauthorship network, where
each node is an author, and two authors have an edge if they coauthored 2 or more papers in
the data range. The giant component of the network contains 236 authors. Ji and Jin (2016])
suggest that this is the “High Dimensional Data Analysis” group, which has a “Carroll-
Hall” sub-group (including researchers in nonparametric and semi-parametric statistics and
functional estimation) and a “North Carolina” sub-group (including researchers from Duke,
North Carolina, and NCSU). In light of this, we consider a DCMM model assuming (a) there
are K = 2 communities called “Carroll-Hall” and “North Carolina” respectively, and (b)
some nodes have mixed memberships in two communities. We applied Mixed-SCORE, and

the results are in Table[3| It was argued in|Ji and Jin (2016)) that the “Fan” group (Jianging
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Fan and collaborators) has strong ties to both communities. Our results confirm such a
finding but shed new light on the “Fan” group: many of the nodes (e.g., Yingying Fan, Rui
Song, Yichao Wu, Chunming Zhang, Wenyang Zhang) have highly mixed memberships, and
for each mixed node, we can quantify its weights in two communities. For example, both
Runze Li (former graduate of UNC-Chapel Hill) and Jiancheng Jiang (former post-doc at
UNC-Chapel Hill and current faculty member at UNC-Charlotte) have mixed memberships,
but Runze Li is more on the “Carroll-Hall” community (weight: 73%) and Jiancheng Jiang

is more on the “North Carolina” community (weight: 62%).

Table 3: Left and Middle: high-degree pure nodes in the “Carroll-Hall” community and the “North
Carolina” community. Right: highly mixed nodes (data: Coauthorship network).

Name Deg. || Name Deg. || Name Deg. Estimated PMF

Peter Hall 21 Joseph G Ibrahim 14 Jianging Fan 16 54% of Carroll-Hall
Raymond J Carroll 18 David Dunson 8 Jason P Fine 5 54% of Carroll-Hall

T Tony Cai 10 Donglin Zeng 7 Michael R Kosorok 5 57% of Carroll-Hall
Hans-Georg Muller 7 Hongtu Zhu 7 J S Marron 4 55% of North Carolina
Enno Mammen 6 Alan E Gelfand 5 Hao Helen Zhang 4 51% of North Carolina
Jian Huang 6 Ming-Hui Chen 5 Yufeng Liu 4 52% of North Carolina
Yanyuan Ma 5 Bing-Yi Jing 4 Xiaotong Shen 4 55% of North Carolina
Bani Mallick 4 Dan Yu Lin 4 Kung-Sik Chan 4 55% of North Carolina
Jens Perch Nielsen 4 Guosheng Yin 4 Yichao Wu 3 51% of Carroll-Hall
Marc G Genton 4 Heping Zhang 4 Yacine Ait-Sahalia 3 51% of Carroll-Hall
Xihong Lin 4 Qi-Man Shao 4 Wenyang Zhang 3 51% of Carroll-Hall
Aurore Delaigle 3 Sudipto Banerjee 4 Howell Tong 2 52% of North Carolina
Bin Nan 3 Amy H Herring 3 Chunming Zhang 2 51% of Carroll-Hall
Bo Li 3 Bradley S Peterson 3 Yingying Fan 2 52% of North Carolina
Fang Yao 3 Debajyoti Sinha 3 Rui Song 2 52% of Carroll-Hall
Jane-Ling Wang 3 Kani Chen 3 Per Aslak Mykland 2 52% of North Carolina
Jiashun Jin 3 Weili Lin 3 Bee Leng Lee 2 54% of Carroll-Hall

The citee network. |Ji and Jin| (2016) also defined a citee network: there is an edge
between two authors if they have been cited at least once by the same author (other than
themselves). The giant component of this network contains 1790 authors. |Ji and Jin| (2016])
suggested that the network has three meaningful communities: “Large Scale Multiple Test-
ing” (MulTest), “Spatial and Nonparametric Statistics” (SpatNon) and “Variable Selection”
(VarSelect). We thereby set K = 3 and apply Mixed-SCORE. Figure|7| (left) plots the rows
of R € R™2, where a simplex (triangle) is clearly visible in the cloud. Table 4 shows the
estimated PMF of high degree nodes (please also see Table |7|in the supplementary mate-
rial). The results confirm those in |Ji and Jin (2016)) (especially on the existence of three
communities aforementioned), but also shed new light on the network. First, high-degree
nodes in VarSelect are frequently observed to have an interest in MulTest, and this is not
true the other way around (e.g., compare Jianging Fan, Hui Zou with Yoav Benjamini,
Joseph Romano). Second, the citations from SpatNon to either MulTest or VarSelect are
comparably lower than those between MulTest and VarSelect. This fits well with our im-
pression. Conceivably, a node with higher degree tends to be more senior and so tends to

be more mixed. Figure |7| (right) is the plot of the node purity, maxj<g<g{7i(k)}, versus

28



09 1.0
|

0.8
|

\
Node purity
0.7

0.6

05
I
—
——t
—e—i
—e—i

0.4

Figure 7: Left: rows of R and the estimated simplex. Right: node purity v.s. degree; z-axis is é(z)
(grouped with an interval of .2; we plot the mean and standard deviation of ||7;||« in each group).

Table 4: Estimated PMF of the 12 nodes with the highest degrees in the Citee network.

Name Deg. | MulTest SpatNon VarSelect | Name Deg. | MulTest SpatNon VarSelect
Jianging Fan 977 | 0.365 0.220 0.415 Peter Buhlmann 742 | 0.527 0.121 0.352
Raymond Carroll | 850 | 0.282 0.294 0.424 Hans-Georg Muller 714 | 0.413 0.237 0.350
Hui Zou 824 | 0.348 0.225 0.427 Yi Lin 693 | 0.417 0.137 0.446
Peter Hall 780 | 0.501 0.032 0.467 Nocolai Meinshausen | 692 | 0.462 0.125 0.413
Runze Li 778 | 0.282 0.226 0.491 Peter Bickel 692 | 0.529 0.216 0.255
Ming Yuan 748 | 0.391 0.166 0.444 Jian Huang 677 | 0.572 0 0.428

the estimated degree heterogeneity parameter é(z) The results show a clear negative cor-
relation between two quantities (especially on the right end, which corresponds to nodes

with high degrees), which indicates that nodes with higher degrees tend to be more mixed.

6 Discussion

There have been independent interests on networks from both the econometric literature
and the statistical literature. Recently, the use of statistical network models in economic
problems has received increasingly more attention. However, the statistical models used in
network econometrics are largely limited to the classical models, such as SBM and graphon.
Recent developments in statistical network analysis have suggested new ideas in network
modeling, but such ideas are largely unknown in the area of network econometrics. In this
paper, we make two contributions: 1) We provide a new tool for estimating community
structure and creating nodal features from network data. 2) We offer a new network model
that accommodates severe degree heterogeneity and mixed memberships and is more suit-
able for real data; we also equip it with a fast spectral algorithm for estimating parameters
of this model. For many existing works in network econometrics that use SBM or graphon
as the network model, we may improve the results by using the more realistic DCMM model
introduced here. This will inspire interesting future research.

The design of our algorithm includes several novel ideas, e.g., discovering the simplex

structure in the spectral domain and the correct steps to estimate II from the simplex.
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We have also proposed new vertex hunting algorithms, which have much better numerical
performance than the existing algorithms such as successive projection. Theoretically, we
derive the explicit error bounds for I1 and show that it is rate-optimal under some conditions.

For future research, first, it is unclear how to estimate K from data. |Jin et al. (2022)
proposed a stepwise goodness-of-fit procedure for estimating K when there is no mixed
membership (i.e., the DCMM model reduces to DCBM). It is an interesting question how
to combine Mixed-SCORE with this approach for estimating K under DCMM. Second,
we mention several applications of our work in network econometrics (see Section . It
is of great interest to study each application more carefully. For example, can we get a
theoretical guarantee for using Mixed-SCORE in these problems? We briefly discuss it in
the paragraph below Theorem but more rigorous theoretical studies are needed. We

leave these open problems to future work.

Data and code: The code for implementing Mixed-SCORE and different VH algorithms
is available at https://github.com/ZhengTracyKe/MixedSCORE. This link also contains

all the real networks used in this paper.
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A Identifiability and Regularity Conditions

We prove the identifiability of DCMM and discuss Assumption 4 (where we give sufficient

conditions for this assumption to hold).

A.1 The Identifiability of DCMM

The following proposition shows that the DCMM model is identifiable if each community

has at least one pure node.

Proposition A.1 (Identifiability). Consider a DCMM model as in (2.2]), where P has unit
diagonals. When each community has at least one pure node, the model is identifiable: For

eligible (0,11, P) and (©,11, P), if OIIPII'O = OIIPII'O, then © = ©, I =11, and P = P.

Proof of Proposition[A.1: Let G = K||0||~II'©II be the same as in Section 3| We consider
two cases: (1) PG is an irreducible matrix. (2) PG is a reducible matrix.

First, we study Case (1). When PG is irreducible, the matrix R is well-defined (see
Lemma. Additionally, by Lemma there exists the Ideal Simplex, which is uniquely
determined by the eigenvectors 1, &2, . . ., {x of Q. For either (0,11, P) or (é, 11, ﬁ), we have
an Ideal Simplex. The two Ideal Simplexes can be different only when there are multiple
choices of &1,&9,...,&x. By Lemma the first eigenvalue of 2 has a multiplicity 1, so
by basic linear algebra, [£1,&2, ..., k] are uniquely defined up to a rotation matrix of the

form

a 0
0o S

, where a € {—1,1} and S € RE-LK-1 i5 an orthogonal matrix.

Recalling R = [diag(&1)] 7 o, €3, . . -, €k, it is seen that the property of “a row of R falls
on one of the vertices of the Ideal Simplex” is invariant to the above rotation. Therefore,
a row of II equals to the corresponding row of ﬁ, as long as one of them is pure.

We now proceed to showing (0,11, P) = ((:), 11, ﬁ) By the above argument and that
each community has at least one pure node, we assume without loss of generality that for
1 <k < K, the k-th node is a pure node in community k. Comparing the first K rows and
the first K columns of OIIPII'O with those of OIIPII'®, it follows that

diag(6s,...,0k) - P - diag(0y,...,0x) = diag(fy,...,0x) - P-diag(fs, ..., 0k).

As both P and P have unit diagonal entries, P = P and Op = 0p, 1 <k < K.
Moreover, note that PII'© has a full row-rank. Since OIIPII'O = OIIPII'O, it is seen
that OI = OIIA, where A = PI'OX’(XX')"!, with X = PII'© for short. We compare
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the first K rows of ©II and (:)ﬁA, recalling that the first K rows are pure and that 0, = Oy
for 1 < k < K. It follows that A equals to the K x K identity matrix. Therefore,

OIl = OTI.
Since each row of II or II is a PMF, © = ©, II = II, and the claim follows.
Next, we study Case (2). By Lemma[C.1]

(1]

= OIIB, for a non-singular matrix B.

Row i of = equals to 6; times a convex combination of rows of B. It follows that all rows of
= are contained in a simplicial cone with K supporting rays, where a pure row falls on one
supporting ray, and a mized row falls in the interior of the simplicial cone. Note that = is
uniquely defined up to a K x K orthogonal matrix. The effect of this orthogonal matrix is
to simultaneously rotate all rows of =. Such a rotation does not change the property that
“a pure row falls on one supporting ray”. Therefore, a row of II equals to the corresponding
row of II, provided that one of them is pure. The remaining of the proof is similar to that

of Case (1). O

Remark (Comparison with the identifiability of other models). Compared to other models
(e.g., MMSB, DCBM), DCMM has many more parameters (for degree heterogeneity and
for mixed memberships). These parameters have more degrees of freedom than those in

MMSB or DCBM, and so DCMM requires stronger conditions to be identifiable.

e The assumption that P has unit diagonals is not needed for identifiability of MMSB,
but it is necessary for identifiability of DCMM. Consider a DCMM with parameters
(6,11, P). Given any K x K diagonal matrix D with positive diagonals, let

P=DPD, 7 =(D'm)/|D w1, and 6; = | D 'mill: - 6.

It is seen that OIIPII'O = OIIPII'O. This case will be eliminated by requiring P to

have unit diagonals.

e The assumption that P has a full rank is not needed for identifiability of DCBM, but
it is necessary for identifiability of DCMM. If the rank of P is < K, there exists a
nonzero vector 3 € R¥ such that P38 = 0. As long as there is a 7; such that 7;(k) > 0

for all k, we can change (m;,6;) to (7;,6;) but keep Q unchanged. To see this, let
i = (mi+eB)/|Imi + eBlll, and 6; = ||m; + €81 - 6;,

for a sufficiently small € > 0. Since the two vectors, 6; - Pr; and 6; - P7;, are equal, Q

remains unchanged.
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A.2 Sufficient conditions for Assumption 4 to hold

We give two propositions showing examples where Assumption 4 is satisfied. Below, for a

matrix M, let A\p(M) denote the k-th largest eigenvalue in magnitude.
Proposition A.2. Consider a DCMM model where Q@ = OIPI'O and ||Pl|lmax < C.
Write G = K||0||~2(I'©%M). Let m; be the first (unit-norm) right singular vector of PG.

Asn — oo, suppose at least one of the following conditions hold, where ¢ > 0 is a constant:

e mini<y<x P(k,0) > ¢, and ming{>"" 02m;(k )} > emaxp{> ", 02mi(k)}.

o K is fized, ming G(k,k) > ¢, and |\1(PG)| > ¢+ |M2(PG)|. For a fized irreducible
matriz Py, ||P — Py|| — 0.

o K is fized, and |\ (PG)| > ¢+ |\2(PG)|. For a fized irreducible matriz Gy, |G —
Go” — 0.

Then, we can select the sign of n1 such that all its entries are strictly positive. Furthermore,
(maxy<k<r m(F)]/[mini<p<rem (k)] < C.

Proposition A.3. Consider a DCMM model where Q@ = OIIPII'O. We assume that
maXlgkgK{Zle Pk, 0)} < Cmink{zg{zl P(k,0)}. Suppose m;’s are i.i.d. generated from
Dirichlet(a), where a = (a1, Qa,...,ax) satisfies C1 < a < Cy for two constants Co >
C1 > 0. Write G = K||0||~2(I'©%I). Let m; be the first (unit-norm) right singular vector
of PG. Asn — oo, [maxi<g<g 1 (k)]/[mini<p<x m1 (k)] < C, with probability 1 — o(1).
Proof of Propositions [A.2{A.3: First, we prove Propositions Consider the first case.
Let xp = K072 1, 02m;(k). It is seen that Zle xr = K. The assumption says that
ming ry > cmaxyxy. Therefore, x =< 1 for all k. At the same time, Zle G k) =
K|0|~ 22@ 3 02 (0)mi(k) = zp. It follows that

mgx{z G(t,k)} = mkin{z G(t,k)} =
12 ¢

For any 1 < m,k < K, the (m, k)-th entry of PG equals to >, P(m,{)G(¢, k), which is
between ¢y, G(¢, k) and C')_,G(¢, k) by the assumption on P. It follows that

mac{ (PG) (k. 0)} = min{(PG)(k.0)} = 1. (A.12)

In particular, PG is a positive matrix. By Perron’s theorem (Horn and Johnson, [1985|
Theorem 8.2.8), the first right singular value \; (PG) is positive and has a multiplicity of 1,
and the first eigenvector 7, is a positive vector. Write A\ = A (PG) for short. By definition,

A = (PG)m
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It follows that

mason () < W max( (PG)(k, 0}, minm (k) = 1 ming(PGY R 0} (A13)

Combining (A.12)-(A.13) gives maxy 11 (k) =< ming 71 (k). The claim follows.

Consider the second case. We first state and prove a useful result:

Let A and B be two nonnegative matrices with strictly (A14)

positive diagonals. If A is irreducible, then AB is irreducible.

The proof uses the definition of primitive matrices (a subclass of irreducible matrices; see
(Horn and Johnson, 1985, Section 8.5)). We aim to show AB is a primitive matrix. By
(Horn and Johnson, {1985, Theorem 8.5.2), it suffices to show that there exists m > 1, such
that (AB)™ is a strictly positive matrix. By the assumption, A is an irreducible matrix
with positive diagonals; it follows from (Horn and Johnson, 1985, Theorem 8.5.4) that A is
a primitive matrix. By (Horn and Johnson, 1985, Theorem 8.5.2) again, there exists m > 1
such that A™ is a strictly positive matrix. Let o« > 0 be the minimum diagonal entry of
B. Since A and B are nonnegative matrices, each entry of (AB)™ is lower bounded by o™
times the corresponding entry of A™; hence, (AB)™ is also a strictly positive matrix. It
follows that AB is a primitive matrix, which is also an irreducible matrix.

We then show the claim. Note that P and G are both nonnegative matrices with positive
entries. Since |P — Fy|| — 0, the support of P has to be a superset of the support of Py for
large enough n; as a result, when P, is an irreducible matrix, P has to be an irreducible
matrix for sufficiently large n. We apply to obtain that PG is an irreducible matrix.
It follows that A\; (PG) > 0 and it has a multiplicity 1; additionally, the first right eigenvector
71 is a positive vector.

It remains to show maxy n1(k) =< ming n; (k). We prove by contradiction. Write 11 =
ngn), P = P™ and G = G™ to emphasize the dependence on n. If the claim is not true,

then there is a subsequence {n,}>; such that

ing )
i { 22 (A15)
570 Lmaxy 1y (k)

Since K is fixed, all the entries of G(™) are bounded. It follows that there exists a sub-
sequence of {ns}52,, which we still denote by {ns}>2,; for notation convenience, such that

Gs) — G* for a fixed matrix G*. Therefore,

H(PG)(”S) - POG*H — 0, as s — 00. (A.16)
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Let nf be the first right eigenvector of PyG*. Since |[\1(PG)| > ¢+ [X2(PG)|, by the
sin-theta theorem (e.g., see Lemma |D.3)), it follows from (A.16) that

™) — ;]| = 0, as s — 0o. (A.17)

We now derive a contradiction from (A.15)-(A.17). On the one hand, combining (A.16)-

(A.17) and noting that 7] is a fixed vector, we conclude that the minimum entry of n} is
zero. On the other hand, the assumption of ming G(k, k) > ¢ ensures that G* has strictly
positive diagonals. We apply to conclude that PyG* is a fixed irreducible matrix.
By Perron’s theorem, 1] should be a strictly positive vector. This yields a contradiction.
Consider the third case. The proof is similar to that of the second case, except that
we switch the roles of P and G. Note that we do not need additional conditions on the

diagonals of P, since P always has unit diagonals.

Next, we prove Propositions By (A.12) and (A.13), we only need to show that
rrllﬁzzx{(PG)(k,E)} = n,%ign{(PG)(k,E)}.

Since the maximum row sum and minimum row sum of P are at the same order, it suffices
to show that the maximum and minimum entries of G are at the same order. Let Gy =
B Dirichlet(a)[77']. As n — 00, it is easy to show that |G — Gol|r = o(1). Therefore, we
only need to show that the maximum and minimum entries of G are at the same order.

By direct calculations,

Go = (E[x])(E[x])" + Cov(II)
1 , 1 I 1 /
= aa’ + diag(a) — —5ax
eI 1+ [ledlx Lllely ) eI
1

el @+ fledly)

[diag(a) + aa/].

Since all entries of o are bounded above and below by constants, it is easy to see that the

maximum and minimum entries of Gy are at the same order. This completes the proof. [

B Faster Rates of Mixed-SCORE (Setting 2)

In Section we discuss Mixed-SCORE with each specific VH approach in Table |1l For
Mixed-SCORE-SVS and Mixed-SCORE-SVS*, we consider two settings where they enjoy
faster rates than the generic Mixed-SCORE algorithm. Due to space limit, we only present
Setting 1 in Section We now present Setting 1.
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Setting 2. Let N} be the set of pure nodes of community &, 1 < k < K, and let M be the
set of all mixed nodes. Suppose there are constants ¢y, ca € (0, 1) such that ming << g |Ng| >
cin and min<g<k D i, 62(i) > co||0||>. Furthermore, for a fixed integer Ly > 1, we
assume there is a partition of M, M = M;U---UMyp,, a set of PMF’s vq,--- ,7vr,, and
constants c3,cy > 0 such that (eg: k-th standard basis vector of R¥) {minlgj#SLo v —
Yell, miny<p<ro1<k<i |70 — ekH} > cs3, and for each 1 < ¢ < Ly (note: err, is the same as

that in (3.10)), |[M| > ca| M| > nf3; ?erry; and maxiem, [ — vel| < 1/log(n).

In this setting, 7;’s form several loose clusters, where the 7;’s in the same cluster are

within a distance of O(@) from each other. Since m is much larger than the order

of noise, maxj<i<p ||[H7; — 4|, the assumed clustering structure is indeed “loose”. ﬂ

Theorem B.1. Consider the DCMM model where Assumptions 1-4 hold and 7;’s are from
Setting 2. Let H be as in Theorem . Suppose we apply SVS or SVS* to rows offi with

L=1Ln(A):=min{L > K +1:¢(R) < e_1(R)/log(log(n))}.

With probability 1 — o(n™3),

n
Hig — ol < C, [0t |[Hiy — 742
max |[Hop — v < €y n 2 [HP; — i

Moreover, for Mized-SCORE-SVS or Mized-SCORE-SVS*,

ST IS -
B[~ 3 i — mil?| < CK382(err;)? + o(n™).
=1

C The Oracle Case and Ideal Mixed-SCORE

We consider the oracle case where (2 is observed. In Section we state a useful lemma,
which is the key for analysis of the oracle case. In Section [C.2, we prove Lemmas in
the paper, which inspire Ideal Mixed-SCORE. In Section we prove Lemma [2.2] which
is about recovering (P, #) from II. In Section @, we study eigenvalues and eigenvectors of

Q2 and the matrix R; these results are useful for the proofs in Sections [DHF.

°In fact, by a slight modification of the proof, we can replace (1/log(n)) in Setting 2 by any o(1) term,
or an appropriately small constant ¢s > 0 (this constant ¢z will depend on the constants in Setting 2 in a
quite complicated way). We present the current version for its convenience.
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C.1 A useful lemma and its proof

Let G = K||0||~2(II'G%1) is as in Section [3| Let A1, Aa, ..., Ax be the nonzero eigenvalues
of €, sorted in the descending order of magnitudes. Let &1,&o, ...,k be the corresponding

eigenvectors. We have the following lemma:

Lemma C.1. Consider the DCMM model, where PG is an irreducible matriz and there is

at least one pure node for each community. The following statements are true:

e There is a non-singular matriz B € R¥K such that OIIB = =, and B is unique once

= s chosen.

o Forl <k <K, denote by ay the kth largest (in magnitude) eigenvalue of PG. Then,

ay’s are real, and the nonzero eigenvalues of Q are A\ = (K~ 1|0]|*)ar, 1 <k < K.

o forl <k < K, denote by by the kth column of B. Then, by is a (right) eigenvector
of PG associated with ay.

e A\ > 0 and it has a multiplicity 1 (so & is uniquely determined up to a factor of £1).

&1 can be chosen such that all of its entries are positive. For this choice of &1, all the

entries of the associated by are also positive.

Proof of Lemma Consider the first claim. Denote by Span(M) the column space of
any matrix M. It suffices to show that Span(OII) = Span(Z). Then, since &1, - - - , x form
an orthonormal basis of this subspace, there is a unique, non-singular matrix B such that
OII = =B. We then take B = B L.

We now show Span(©II) = Span(Z). By the assumption that there is at least one pure
node in each community, we can find K rows of II such that they form a K x K identity
matrix. So II has a rank K. Since © and P are both non-singular matrices, €2 also has a

rank K. By definition, Q& = A\p&, for 1 < k < K. It follows that
OII(PIT'O&k) = A&k

Hence, each & is in the column space of OII. This means the column space of = is contained
in the column space of OII. Since both matrices have a rank K, the two column spaces are
the same.

Consider the second claim. Note that P is symmetric and G is positive definite. Let G/2
be the unique square root of GG. For any matrices A € R™" and B € R™™ if m > n, then

the nonzero eigenvalues of AB are the same as the nonzero eigenvalues of BA (Horn and
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Johnson| (1985, Theorem 1.3.22). As a result, eigenvalues of PG are the same as eigenvalues
of the symmetric matrix GY/2PGY/2. Tt implies that a1, a9, ..., ax are real.

Furthermore, the nonzero eigenvalues of Q) = (OII)(PII'O) are the same as the nonzero
eigenvalues of (PII'©)(OI1) = (K~!|0||?)(PG). Hence, the nonzero eigenvalues of 2 are
(EK10))ar, (K 01)as, ..., (K]0 )axc.

Consider the third claim. Write G = K~'||6?G = I'©2I1. Note that Q& = A&, and
&k = OIlbg. Hence, (OIIPII'O)(OIIb;) = A, (OIlbg). Multiplying both sides by II'O from
the left, we have

GPGby, = \.Gby.

Since G is non-singular, PGbj, = \;b;. Pluggingin G = (K~10|2)G and A\, = (K~1(|0]|?)ax,
we obtain PGby, = apbi. This shows that by is a (right) eigenvector of PG associated with
ar. Additionally, since 71 is the first unit-norm right singular vector of PG, it yields that
m = b1/[ba]l.

Consider the fourth claim. Since A\; = (K~1||0||*)a1, it suffices to show that a; > 0 and
that it has a multiplicity 1. This follows immediately from the Perron-Frobenius theorem
(Horn and Johnson, (1985, Theorem 8.4.4) and the assumption that PG is an irreducible
matrix.

Consider the last claim. Note that b7 is the eigenvalue of PG associated with aq. Since
ay has a multiplicity 1, by /||b1|| is unique up to a factor of +1 (depending on the choice of
¢1). By Perron-Frobenius theorem again, b;/||b1]| can be chosen such that all the entries
are positive. Recalling that = = OIIB, we immediately have & = ©Ilb;. Since OII is
a nonnegative matrix with positive row sums and b; has strictly positive entries, all the

entries of & are also positive. O

C.2 Proofs of Lemma [2.1

Consider the first claim. We have shown in Lemma [C.T that
= =0IIB, for a non-singular matrix B = [by,...,bx] € REK,

Furthermore, by the last two bullet points of Lemma if we pick the sign of & such that
Yo, &i(i) > 0, then & and by are uniquely determined and have strictly positive entries.
This proves the first claim.

Consider the other two claims. We first show there are K affinely independent vectors

v1,v2,...,V such that each r; is a convex combination of them. For 1 < k < K, define
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U € RE-1 by

vE(0) = bey1(k)/b1(k), 1</<K-1. (C.18)
The vectors v1,v9,...,vx are affinely independent, if and only if the following matrix
1 ... 1
Q =
V1 e VK

is non-singular. By (C.18]), we observe that Q" = diag(b;)B. Since B is non-singular and
b1 is a positive vector, @) has to be a non-singular matrix. This proves that vy, vo, ..., vk

are affinely independent. We then study each r;. Since = = OIIB, we have
=0(i) > _mi(k)be(k) = 0(0)lbeomillh, 1<L<K.

By definition of R, r;(¢) = &4+1(2)/£1(3). It follows that

K

r(f) — ()Zk 1 i (k)beyr (K T bg+1(k:): .
O = g e o il ZHblomul by (h) ; i (R)oi (6).

This proves that r; = Zﬁil w;(k)vg, with w; = (by o m;)/||b1 o m;||1. Since by is a positive
vector and 7; is a nonnegative vector, we have that w; is a nonnegative vector and ||w;||; = 1.
Therefore, r; is a convex combination of vy, ve, ..., vk.

We now show the second claim. Each r; is in the convex hull of v1,vs,...,vK. Since
these K vectors are affinely independent, their convex hull is a non-degenerate simplex
with K vertices. Recall that w; = (b o 7;)/||b1 o 7;||1, where by is a strictly positive vector.
Therefore, for each 1 < k < K, node 7 is a pure node of community k if and only if m; = e,
which happens if and only if w; = e; and w; = e means r; is located at the vertex vy.

We then show the last claim, which is the formula for b;. Write A = diag(A1,- -, Ak).
Then, Q = ZAZ’. First, plugging in = = OIIB, we find that Q = OII(BAB')II'O©. Multiply-
ing both sides by II'© from the left and OII from the right, we have I'OQOII = G(BAB')G,
where G = II'O2II is a non-singular matrix. Second, since Q = OIIPII'®’, we have

I'ONOII = GPG. Combining the above gives
GPG =G(BABG — P=BAB. (C.19)

It follows that

K
Z A (k) = 07 (k) [\ + ) Afog(¢ = 1).
=2

Noting that by (k) is positive, the above gives the formula for computing b;. O
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C.3 Proof of Lemma [2.2

Write V' = [v1,v2,...,vk]. By (C.18), B = diag(b1)[1,V’]. Moreover, by (C.19), P =
BAB’. Combining them gives the formula of recovering P. Note that Z = ©OIIB. It follows
that & (¢) = 6(i) - m.by. This gives the formula of recovering 6. O

C.4 Spectral analysis of ()

First, we study the leading eigenvalues of 2. Let Ay, ..., Ax be the nonzero eigenvalues of €2,

listed in the descending order in magnitude. The following lemma is proved in Section [C.4.1}
Lemma C.2. Under conditions of Theorem 3.1, the following statements are true:

o CTIKY0)2 < A\ < C|0|%. If B = o(1), then A < ||0))%.

o A\ — Ao X AL

o | \u| < B . K710]?, for2<k < K.

Next, we study the leading eigenvectors of 2. For 1 < k < K, let & be the eigenvector
of Q) associated with \,. Write Zg = [£2,&3,- -+ ,&x] € RPE 1 and let Egﬂ- be its i-th row,
1 <¢ < n. The following lemma is proved in Section

Lemma C.3. Under conditions of Theorem[3.1], the following statements are true:

o If we choose the sign of & such that > | &1(i) > 0, then the entries of &1 are positive
satisfying C10(1)/||0]| < €1(3) < COE)/]10]], 1 <i < n.

o [IZ0ill < CVEO@)/1I0], 1 <i<n.

Last, we study the entry-wise ratio matrix R. Recall that w; is the barycentric coordi-

nate vector of r; in the Ideal Simplex. The following lemma is proved in Section
Lemma C.4. Under conditions of Theorem|[3.1], the following statements are true:

e The vertices of the Ideal Simplex satisfy that max;<p<x ||vg]l < CVK and mingp ||k —
vel| > C K.

o O Mmi —milly < lwi —wjlly < Cllmi = mjlly, for all1 < i,5 <mn.
° Cilx/fi(Hwi —wj|| < || =7l < C\/?Hwi —wj||, for all1 <i,j < n.

Lemmas are useful for proofs in Sections [DHF. Below, we prove these lemmas.
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C.4.1 Proof of Lemma [C.2]

By Lemma all nonzero eigenvalues of Q are (K ~!|0)|*)ay, ..., (K~1|0]|*)ax, where ay,
is the k-th largest eigenvalue (in magnitude) of PG. By Assumption 3,

ay — lag| > C7lay, C7 '8, <lak| < |az| < CBa.

The second and third claims follow immediately.

It remains to show the first claim, which reduces to studying a;. For any two matrices
A and B, the nonzero eigenvalues of AB are the same as the nonzero eigenvalues of BA.
Hence,

1A /2 pa/2
= 0\ (GV2PGY?) = ay TG PG
a1 = M (PG) = M (G/*PG/7) I;l;é( Tk

By Assumption 2, |G| < C and ||G™!|| < C. Tt is easy to see that a; < CA(P). Addi-
. 'p 'G1/2pGl/2? . —
tionally, A\ (P) = max,g W = max,-( %. Since |GY2z||? = 2/Gz > C~|z||?,

it follows that A (P) < max,-g % < CA\i(PG). Together,

C™'M\(P) < M (PG) < CA\(P).

Note that A (P) < K||P||max = O(K) and A\ (P) > P(k,k) > 1. We plug them into the
above inequality to get

C™'<a <CK. (C.20)

This inequality holds in all cases. If, additionally, 8, — 0 as n — oo, we can get a stronger
result. Note that P and G are nonnegative matrices, and for each 1 < k < K, P(k, k) =1
and G(k,k) > Amin(G) > C~L. It follows that (PG)(k,k) > P(k,k)G(k, k) > C~L. We
thus have

trace(PG) > C'K.

At the same time, trace(PG) = a1 + 2522 ag = a1+ O(KpB,) = a1 + o(K). It follows that

C'K <a; <CK, if B, =o0(1). (C.21)
The first claim follows from (C.20)-(C.21)) and the equality A\; = (K ~1(|0]|%)a. O

C.4.2 Proof of Lemma [C.3]

Consider the first claim. From the last item of Lemma [C.I, we can choose the sign of &

such that both (&1, b1) have strictly positive entries, where this choice of sign corresponds
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to S &(i) > 0. Note that = = OIIB, which implies & (i) = 0(i) Y, mi(k)bi (k). Since

each 7; is a PMF (a nonnegative vector whose entries sum to 1),

) i < ) < ) <1< n.
0() min,_bi(k) < () <0G) max bi(k),  1<i<n

Hence, to show the claim, it suffices to show that
cHeIt <o(k)<clg™t, foralll <k <K. (C.22)

Write G = K~1|6]?°G = IT'©211. Since E = OIIB and X'X = I, we have B'II'©%IIB =
I, or equivalently, B'GB = Ix. Multiplying both sides by B from the left and B’ from
the right, we obtain BB'GBB' = BB'. Since BB’ is non-singular, it implies

BB' =G = K|0]|2G~L. (C.23)
We note that BB’ = Y1 b, = biby. So, ||bi]? < ||B|I> < K[|6]72||G~'||. By our
assumption of ||G~1|| < C. It follows that

o1l < Cllo) = VE.

At the same time, 1 = [|&||? = ||©I1b;||%. By direct calculations, ||©I1b;[|2 = 3, 62(mlb1)? <
5, 0210112 < 0]211b1 % Tt follows that

b1l > CTHl6lI "

In Lemma [C.1} we have seen that b; is the first right singular vector of PG. Hence, by o 11,
where 71 is the same as in Assumption 4. By Assumption 4, all the entries of 7; are at the

same order. Hence, all the entries of b; are at the same order. It follows that
bi(k) = [|b1]loe = (1/VE)|ba]].

This gives (C.22)) and completes the proof of the first claim.

Consider the second claim. Since = = OIIB, for 1 <i < n,
Z04ll < 6(0)||Bms]| < CO(i) v/ Amax(B'B) < CVE 0] 7160(3),

where the last inequality is due to (C.23) and and the condition |G~} < C. O

C.4.3 Proof of Lemma [C.4]

First, we prove the claim about the connection between |w; — wj||; and ||m; — 7j||1. Let
So C RE be the standard simplex whose vertices are eq, e, ..., ex. Define a mapping

xob
TI . SO — SO, Where Tl(x) - m
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Then, w; = Ti(m;), for 1 < i < n. To show the claim, it suffices to show that 77 and Tl_1

are both Lipschitz with respect to the ¢'-norm, i.e., for any z,y € S,
CHe —ylh < |Ti(x) = Ti(w)llr < Cllz = ylh. (C.24)

We now show (C.24). Fixing any =,y € Sp, write * = T} (x) and y* = T1(y). By definition,
x*(k) = x(k)bi(k)/||z o b1||1 and y*(k) = y(k)bi(k) /||y o b1||1. We write

. ey lz(k) = y(k)]bi (k) 1 1
= D )y + L E (o bl — e obill).
|z o b1l [z o bl

First, by (C.22), b1(k) < ||0]|~" for all 1 < k < K. It follows that |b1(k)| < C||0]~! and
[0 biflr = [lzfls - CH0] 7 = CH|0] 7', Hence,

bi(k)
————|z(k) — y(k)| < Clz(k) — y(k)|.
(k) = (k)| < Cla(h) = y(0)
Second, by the triangle inequality, |||y o bi|j1 — ||z o bi|l1] < ||(y — x) 0 b1]]1. Moreover, since
bu(k) = 61| for all k, we have |[(y—=)obylly < CJI6] " z—yly and [woby]y > C~16] 1.

It follows that
y* (k)

Twop ol —llwebila] < Oy () - o~ ylh.

Combining the above gives
2% (k) =y (k)| < Cla(k) —y(k)| + Cy*(k) - [z =yl
We sum over k on both sides and note that ), y*(k) = 1. It gives
2" =yl < Cllz = ylh-
This shows that T} is Lipschitz with respect to the £'-norm. We then consider 7;'. Define

by € RE by by (k) = 1/b1(k), 1 < k < K. We can rewrite

;
T (o) = ——2*

lzobi|l

T, ! has a similar form as T, where the vector by satisfies that by (k) < [|6]| for all k. Hence,
we can similarly prove that 7" 1'is Lipschitz with respect to the ¢'-norm. This proves
(C24).

Next, we prove the claim about the connection between ||r; — r;|| and ||w; — wj||. Let

So be the same as before, and let Sied = Sideal(vl,vg, .o VK) C RE-1 denote the Ideal
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Simplex. Let B = [b1, bg,...,bk] be as in Lemma @ Define a mapping:

. ideal 1 _ 1 e 1
T5:S50— S , where = x.

Ty (x) v o UK

=Q
By Lemma r; = To(w;), for all 1 < ¢ < n. To show the claim, it suffices to show that

T5 and T}, L are both Lipschitz with respect to the £2-norm, whose Lipschitz constants are

VK and 1 / VK, respectively. In other words, we want to prove, for any z,y € So,
CWVEK|z —y|| < |Ta(z) - To(y)l| < CVE]|z — y]. (C.25)
We now show ((C.25)). Note that Qz = (1xx,Tz(x))’. Since 12 = 1%y = 1, we have
IT2(z) = Ta(y)[1? = 1Qz — Qyl* = (z — 9)'Q'Q(z — ).
It suffices to show that
QI <CVK, and  [|Q7Y < C/VK. (C.26)

By (C.18), we can re-write
Q' = [diag(b1)] ' B.

By (C.22)), by(k) =< ||0||7! for all k. By (C.23), BB’ = K||f||"2G~'; we note that by
Assumption 2, |G| < C and |G~ < C; it follows that ||B|| < CVK||#||~' and ||[B~Y|| <

C||0||/VK. Combining them gives (C.26). Then, (C.25) follows.

Last, we prove the claims about the Ideal Simplex (IS). Let ey, g, ..., ex be the standard
basis vectors of R¥. It is seen that vy = Ta(eg), 1 < k < K. By (C.25)), for k # ¢,

vk — vel| =< VK ||ey — e < VK.
By definition of @ and (C.26)), for all 1 <k < K,
loel| < lQI = O(VK).

The above give the desired claims. O

D Spectral Analysis of A and Large-deviation Bounds for R

We conduct spectral analysis for A. In Section we give the large deviation bounds for
eigenvalues of A. In Sections we study the eigenvectors of A and state a key technical
lemma. In Section we prove Theorem [3.1|in the paper, which is about the row-wise
large deviation bound for R. In Section we give the ¢?-norm large deviation bound for
R. In Section we give a useful property of the rotation matrix H.
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D.1 The eigenvalues of A

Let A1, Ao, ..., Ak be the K largest eigenvalues of A (in magnitude), sorted descendingly

in magnitude.

Lemma D.1. Under conditions of Theorem with probability 1—o(n=3), mMax<k<i \Xk—

Ak‘ < C\/ HmaxHOHL

Proof of Lemma |D.1: By Weyl’s inequality, maxi<p<x [\ — M| < |4 — Q||. To show the
claim, it suffices to show that with probability 1 — o(n=3),

HA_Q” < C\/ Hmaxue”l- (D'27)

The following inequality is useful:

(Omax||0]]1)/ log(n) — oc. (D.28)

To see why (D-28) is true, we rewrite erry, = (Omax/Omin)[|0]] 2/ Omax||f]|1 log(n). Since

Omax > Omin and Oax||0]]1 > [|0]]?, we immediately have err,, > ||0]|~'1/log(n). Therefore,

the assumption err,, — 0 implies that ||0||?/log(n) — co. Then (D.28) is also true because
Omax 0]l > [10]%.
We now prove (D.27). Write

A— Q=W +diag(Q), where W = A — E[A].
Note that mPrj = 3 ,mi(k)m;(€) Pee < || Pllmax/|mill1[7j][1 < C. It follows that
Q(i,5) < CO(1)0(7)-
Note that Q(i,4) = 62(i) (7. Pm;) < CH*(i). As a result,
Idiag(Q)]] < COax < C/Omaxf]1, (D.29)

where the last inequality follows from and 62, < C < \/logﬁ) . We then apply
the non-asymptotic bounds for random matrices in [Bandeira and Van Handel (2016) to
bound ||[WW]|. By Corollary 3.12 and Remark 3.13 of Bandeira and Van Handel (2016), for
the n x n symmetric matrix W whose upper triangle contains independent entries, for any

€ > 0, there exists a universal constant ¢, > 0 such that for every ¢ > 0,

P(|W| > (14 €)2V25 +t) < ne /(2 (D.30)
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where
G =max > E[W(i,j)%, & =max|W(,j)c
) - )
J
We fix e = 1/2 in (D.30) and write ¢ = & for short. For t = 26,+/¢log(n), it follows from
(D.30) that with probability 1 — o(n=3),

W] < 3\f2miax /Z E[W (i, j)2] + C5./log(n).

Note that &, < 1 and max;{}_; E[W (i,5)%]} < max;{>; Q(i, j)} < Cmax; {3, 0(i)0(j)} <
COmaxl||0]]1. We plug them into the above inequality and apply (D.28). It follows that, with
probability 1 — o(n™3),

W1 < CVlmax 6]l + C/log(n) < Cv/Omax 011 (D.31)
Combining (D.29) and (D.31) gives (D.27). O

D.2 The eigenvectors of A

We state a main technical lemma about the eigenvectors of A. For 1 < k < K, let ék be the
eigenvector associated with ;. Write = = [52,53, - ,fK] e R™K=1 and let éf),i denote

its ¢th row, 1 <7 < n.

Lemma D.2. Suppose the conditions of Theorem hold. With probability 1 — o(n=3),
there exist w € {1} and an orthogonal matriz X € RE=VE=1 (both w and X depend on

A and are stochastic) such that
() |lwér =&l < CIOIK \/Omax 011
() [E0X = Eollr < CBM 012K/ Buna 011
(¢) llwér = Eulloo < 0]~ OuticE /0TI Tog ()
(d) maxicicn | X', — B0l < CB 01|00t/ [0 Tog(n).

If B = o(1), then the factor K in the bounds for |wé — & and ||wér — €1llse can be

removed.

Proof of Lemma|D.2: We first prove claims (a)-(b). The proof is based on the the classical
sin-theta theorem Davis and Kahan (1970), where below is a simpler version (Cai et al.|

2013 Theorem 10).
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Lemma D.3. Let M and M be two n xn symmetric matrices. For 1 <k <mn, let dj be the
k-th largest eigenvalue of M, ng and 7y, be the eigenvector associated with the k-th largest
etgenvalue of M and M respectively. Suppose for some § > 0 and 1 < k1 < ko < n, we
have dy,_1 > dy, + 0, dpyyr < diy — 6 and |G — G| < 6/2. Write U = [ng,, - ,0k,) and
O = [y, vin). Then, |07 — UU'|| < 2671 G — G|,

We divide all eigenvalues of € into four groups: (i) A1, (ii) positive eigenvalues among
Ao, ..., Ak, (iii) zero eigenvalues, and (iv) negative eigenvalues among Ao, ..., Ag. Define
=1 and Zgo as the submatrices of = by restricting to columns corresponding to eigenvalues
in groups (ii) and (iv), respectively. By dividing the empirical eigenvalues and eigenvectors
in a similar way, we can define ém and éog. Now, &1, Zg1 and =g2 contain the eigenvectors
associated with eigenvalues in groups (i), (ii) and (iv), respectively. By Lemma the
gap between eigenvalues in group (i) and those in other groups is A\; — [Ao| > C71N\; >
C~'K~1|0||?, and the eigen-gap between any two remaining groups is > C S, K ~!(|0||%. It
follows from Lemma [D.3] that

(KHA—QII KA - Q|

6 -l =0(=gm ). mas (1Z0Zh — S} = 0(Z5 g ) (D:32)

By elementary linear algebra, (éléi — &1€]) has two nonzero eigenvalues £[1 — (f{§1)2]1/2,

where [1 — (€/£,)2] > mins |1 + &&;| = (minx [|€; £ & |?)/2. It follows that
min|[& £ &1 < V2]6€ — &l (D.33)

Moreover, by (Jin and Wang, 2016, Lemma 2.4), there always is an orthogonal matrix X3
=~ —_ -— =~ —_ = . - =~ —_ = .
such that ||Zo1 — Z01X1l|r < [|20126; — Z01Z6; ||F- Since the rank of (Zg1Z(; — Z01Z0,) is

at most 2K, we then have
1201 — Ea1 X1||F < V2K||Z01 — ZEo1 X1]|.

Similarly, there exists an orthogonal matrix Xy such that ||Zo2 — ZgaXo||r < V2K | Z02 —
Z02X2]||. As a result, for the orthogonal matrix X = diag(Xy, X2),

10X — ~0\|F<2\th{1?x {1Z0:=0; — Z0eZhe 1 }- (D.34)

Plugging (D.33)-(D.34) into (D.32) gives that with probability 1 — o(n™3),
KA - QH) _ O<K\/9max\|9H1>

min & £ &) = O( e e

N _ K\/T(HA—QH> (x/K?’emax!HIIl)
ZoX — = =0\ ——F75— | =0 —%m— |
[Z0X = =0l ( AT ATIE
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where we have used . This proves the first two items.

We then prove claims (c)-(d). We borrow the techniques and some results from Abbe
et al. (2020)). The following lemma is adapted from (Abbe et al., [2020, Theorem 2.1) and
is proved below. A direct use of (Abbe et al., 2020, Theorem 2.1) will lead to sub-optimal

dependence on (3, in the resulting bound, so we have to modify that theorem accordingly.

Lemma D.4. Let M € R™" be a symmetric random matriz. Write M* = EM and
Ko = rank(M™). For each 1 < k < Ky, let di, and dj, be the k-th largest nonzero eigenvalue
of M* and M, respectively, and let n;, and ny be the corresponding eigenvector, respectively.
Let s and r be two integers such that 1 < r < Ky and 0 < s < Kg—1r. Write D =
diag(ds+1,ds+2, - -, dsr), D* = diag(dy, 1, dsyo, .- dosr),

U= [ns+1a Ns+25 -+ 775+r]a and U = [n:—i-la 77:—4—2’ cee 777:4-7”]'

Define A* = min{d;—d;_,d;,—ds,,_,mini<j<, |ds, |} and define k = (maxi<j<, |dg,;|)/A*.
Below, the notation || - ||l2—seo Tepresents the mazimum row-wise £2-norm of a matriz, and
My, . is the m-th row of M*. Suppose for a number v > 0, the following assumptions are

satisfied:

o A1 (Incoherence): maxi<m<n | My, .|| < vA*.

o A2 (Independence): For any 1 < m < n, the entries of the m-th row and column of

M are independent with the other entries.

e A3 (Spectral norm concentration): For a number §y € (0,1), P(||M — M*|| < yA*) >
1 — do.

o A4 (Row concentration): There is a number 61 € (0,1) and a continuous non-
decreasing function ¢(-) with p(0) = 0 and ¢(x)/x being non-increasing in R* such

that, for any 1 < m <n and non-stochastic matriz Y € R™",

* * Yir
P (107 = M), Yo < &Y oo (i) ) 2 1= 0u/m

Let Iy = ({1,...,8 — 1} U {S +7r+ 1,...,K0}) N {] : |d;<| > maxi<i<r ‘d:+T’} and Af =
min{min;ep, |d;‘ — d}|, minjep, |d’]k —d;,.|}. Define U* = M, NK,] and
maxjer, (|d;[/AS), if Io # 0,

0 otherwise.

K =

Then, with probability 1 — §g — 201, for an orthogonal matriz O € R™",
U0 ~ MU*(D*) ™ lasse < Cla(s + (1) (y + (1) + 7] - [U [ (D-35)

50



Proof of Lemma |D.4: Fix 1 < m < n. Let M) be the matrix by setting the m-th

row and the m-th column of M to be zero. Let n%m),ném), .. .,n,(Lm) be the eigenvectors
of M. Write UM = [n{™) . g™ Let H = 0'U*, HM = (UMY U* and VM) =

UM M) _ 7*. We aim to prove

1M VO <6(k + R)YA™|T*|200

+ A%p(7) (46U H 25500 + 6] U [|2500)- (D.36)

Once is obtained, the proof is almost identical to the proof of (B.26) in |Abbe et al.
(2020), except that we plug in instead of (B.32) in |Abbe et al. (2020). This is
straightforward, so we omit it.

What remains is to prove . Without loss of generality, we only consider the case
where Iy # (). In the proof of (Abbe et al., [2020, Lemma 5), it is shown that

1Mo VIO N < M VI (1M = M) V),

J(M = M) VO | < A7) (48U H 3300 + 6] |3500)
Combining them gives
| Mo V| < (M2, VO |+ A% () (451U Hllas00 + B11U* l2500). (D.37)

We further bound the first term in (D.37). Recall that Ij is the index set of eigenvalues

that are not contained in D* and have an absolute value larger than ||D*|. Let M* =
> jer, dim;(ny)'.
|GV < M VD 4 [ (M5, = My, )V
< M VDN 4 [M = M 3oV

< | My V| 4 69| M = M |2-500,

where the last line uses ||V (™| < 6+, by (B.12) of|Abbe et al. (2020). Note that M* —M* =
> a1, 45m; (7). By definition of Io, for any j ¢ Io, |d}| < maxi<i<, |di,| < kA*. It follows
that

YT 1200 < KA T [2-soc.

M* — M* < d;
I 200 < (max |d;

Combining the above gives
M, VO] < ([, VO 4 657 A" ([T 2500 (D.38)

Write Dy = diag(dpjéfm Uy = [n;]j€107 Uo = [nj]jefm Uém) = [nj(m)]jefov and Hém) =
(Uom))’ U;. We similarly have HUém)H(gm) — U\l < 640, where g is defined in the same
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way as v but is with respect to the eigen-gap A§. It is not hard to see that vy = yA*/A{.
Hence,

IUS™ HE™ — Ug || < 6vA* /A,

By mutual orthogonality of eigenvectors, (Uém))’ U™ =0 and (U5)'U* = 0. It follows that

182, VO = Jleb [Ug A (U)) U™ B — U]
= ||}, [T A (U) | U™ HOW)|
< |leh [Ug A5 (UG 10|
= el U A (UG — US™ HE™ YU ™|
< e UsAG (UG — US™ HS™MY |
<N T*lasoo - IAG] - 10U — U™ HE™ |
< 6([Aoll*/23) - YA [T |2-500-

We plug it into (D.38) and note that & = ||Ag||*/Af. It gives
1M, VO < 6(k + R)YA™|T*|2s00- (D.39)

Combining (D.37) and (D.39) gives (D.36). O

We now come back to the proof of Lemma We have divided nonzero eigenvalues
of  into four groups: (i) A1, (ii) positive eigenvalues in Mg, ..., Ag, (iii) zero eigenvalues,
and (iv) negative eigenvalues in Ag, ..., Ax. We shall apply Lemma to each of the four
groups. To save space, we only consider applying it to group (ii). The proof for other
groups is similar and omitted.

Now, M = A and M* = Q = diag(Q2) + (A — EA). We check conditions Al-A4. By
Lemma [C.2, A* > CB,K~|6]?> and x < C. For an appropriately large constant C' > 0,

we take
7= CB, 017 K/ Omax 0]
< COnmax||0]]. From

Consider Al. Since Q(i,j) < CO(i)0(j), we have maxj<i<p ||| <
the universal inequality ||0]] < \/fmax||@||1 and the assumption Opax = O(1), this term is

O(\/Omax||0][1), which is bounded by yA* when C is appropriately large. Hence, Al is
satisfied. A2 is satisfied because the upper triangle of A contains independent variables.

By (D.27), A3 is satisfied for 5o = o(n~3). We then verify A4. Since ||diag(Q)|| < C,

||diag(2);.Y|]2 < C|Y||2— 00, 1<i<n. (D.40)
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Fix1<i<mnand1l<k<r. Let yp € R” be the k-th column of Y. Using the Bernstein’s

inequality, for any ¢ > 0,

/ t2/2
P(|lyp(A—EA);.| > t) < 2exp <— ST 06 )00) ¢ tHkaoo/3> . (D.41)

Note that > Q3, )y (5) < Cllyel%Omax|l0]l1. Moreover, Omax||0]|1 > log(n) by (D-28).
We take ¢ = C||yk||oo\/Omax||0]|1 log(n) for a large enough constant C' > 0. It follows that

with probability 1 — o(n™%),

(A = EA)i. ] < klloo - Cv/Omax|0]l1 log(n).

Combining it with the probability union bound and (D.40), with probability 1 — o(n~3),

H(A — Q)%Y”Q S C\/QmaxHGHI IOg(n) : HYH2—>00

C'V/Ormax 10]11 log ()
K=15,]1012

< A l2s00 - (D.42)

Moreover, in (D.41), if we use an alternative bound } Q3, j)yi () < |lvkl|?02

< ax> We obtain

a different bound as follows: With probability 1 — o(n™%),

[y (A = EA); | < Cmax{||ye]|fmaxv/10g(n), [[yk/loc log(n) }-
Due to the probability union bound and (D.40), with probability 1 — o(n=3),

1A = Q). Ylls < Crmax{ [V || Ohmax /08, [V ll2-s00 log(n)}

Omax /1 log(n) Y |lr log(n)
< AY||Y |l2m 00 max , . (D.43)
- K=18,012 VnllY llasee™ K18,]10]12

Let t1 = C(K7B,]10/1%) 1/ Omax |01 log(n), t2 = C(K18,0]?)  0max+/nlog(n), and
ts = C(K~13,]|0]|?)"11log(n). Define the function

o(z) = min{t;, max{tox,t3}}.
Then, (D.42)-(D.43) together imply that with probability 1 — o(n=3),

~ Y
(4~ EAY Y2 < ATV s () (D.44)
We look at the function $(z). Note that (v/n]|Y|l2—00) 1|V ]| F takes values in the interval
[n*1/2,1]. By , t1 > t3. Moreover, since ||0||1 < nbmax, when x = 1, tox > Ct;.
Last, when z = n= /2, tyz < t3. Combining the above, we conclude that in [n~/2, 00), the

function ¢(z) first stays flat at ¢3, then linearly increases to ¢; and then stays flat at ¢;.
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Hence, we construct a function ¢(z), which linearly increases from 0 to t3 for z € [0, n=1/2],
then linear increases from t3 to t; for z € [nfl/ 2 ty/t1], and then stays constant as t; for
x € [ta/t1,00). It is seen that ¢(0) = 0, ¢(x)/z is non-increasing, and @(x) < p(z) <t in
the interval [n='/2,1]. By and that @(z) < p(x), A4 is satisfied with &, = o(n™3).

Furthermore, since ¢(x) < t1,

C'y/Omax]|0]]1 1og ()
<

So far, we have shown that Al-A4 hold.

We now apply Lemma As mentioned, we only study the eigenvectors in group (ii),
which correspond to positive eigenvalues among Ao, ..., Ax. Let A; be the diagonal matrix
consisting of these eigenvalues and let Zp; be the matrix formed by associated eigenvectors.
Define their empirical counterparts, A and ém, in the same way. In Lemma we take
U = ém, U* = =1, and U* = Z. Since A2, ..., Ak are at the same order, Kk < C. Also,
K < A1/(M — |A2]) < C by our assumption. It follows from that there exists an

orthogonal matrix O such that

OB T o)
K5

12010 — AZg1 AT 25500 <

By Lemma @, IZ]l22500 = O(VK]|0]| *0max). Plugging it into the above inequality, we

find that )
CONEE3/2, /0] log(n)

12010 — AZ01 AT 200 < (D.45)
b Bnll0]?
By definition of eigen-decomposition, 2Zg; = Zg1A1. It follows that
AEOlAII = QEQlAfl + (A — Q)EOlAfl =01 + (A — Q)EOlAfl.
Plugging it into (D.45) yields
- _ o2 K32, /0] log(n o
H1010—501||2ﬁoo > 3 H9H3H1 g( ) + ||(A—Q):01A11||2ﬁoo. (D.46)

To bound the second term on the right hand side, we apply the first line of (D.42) by letting
Y = Zg;. It turns out that with probability 1 — o(n3),

(A = 2)Z01A7 oo < (max (A= 2);. Zorl) - AT

< CV/bmax|0]l1 1og(n) - [[Zotfl2oc - AT
< C/bmax|fll1 log(n) - VE 0] bmax - K5, 6] 72, (D.47)
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where in the last inequality, the bound of |[A[!| is from Lemma and the bound of

201|200 is from Lemma [C.3. Combining (D.46)-(D.47) gives
OOl K32\ /16]]1 log(n)

Z010 — Zo1lf2 <

Note that the left hand side only involves eigenvectors in group (ii). We can prove similar
results for the other three groups of eigenvectors. For group (i), A* > CK~1||f]|~! and
1U*]|2500 < C||6]| *0max, and the resulting bound is
CONa K \/]]0]]1 log(n)

161> '
Furthermore, if 3, = o(1), by Lemma A — |Ao] > C~I\ > C71K|0))?. Compared

H"Jél —&illo <

with the case of 3, > ¢, the A* of group (i) is larger by a factor of K, so all the bounds

concerning él are reduced by a factor of K. O

D.3 Proof of Theorem [3.1

Without loss of generality, we assume T" = oo, so that no thresholding is applied in obtaining
R. Note that max; ||r;| < maxy |lvx]| < CVK by Lemma For any threshold VK <
T < o0, the threshold always reduces errors. Therefore, the error bounds for the case of no
thresholding immediately imply the error bounds for the case of thresholding.

The second claim is straightforward. We only show the first claim. By Lemma [C.3] we
can choose the sign of £; such that it is a strictly positive vector. By definition of err,, we

can re-write 3/2

o Dol 6 /Tol Tog(n)

n — .
Ormin |03

Then, the statements (c)-(d) of Lemma can be re-expressed as

£ _ Hmin =y —- . Hmin 3/2 p—1
lw€ = €lloo = O( ol Kerrn), 121%)% | X'Zi0 —Eioll = O< 9] K°“p, errn>. (D.48)

We now show the claim. Let (w, X') be the same as in Lemma and define H = wX’ €
RE-LK=1"Fix 5. By definition of (r;,#;) and H,

1 1 N
r; = —=i0, Hf; = wX't; = — =
1 61(1) 'L,O 1 1 wgl(’l/) 170
It follows that
1 A 1 1
Hr;—r;, = — X'=0—-Z0)4+ | — — =
7 7 w§1 (2) ( %,0 Z,O) wfl (2) €1 (Z) 2,0
1 PO wé (i) — &1 (i
L (x—m) - S10) _51( )0
wé1(i) wé1(i)



First, by Lemma [C.3, €(1) > Ctuin/[0]; also, by (DA8), |wé (i) — £1(7)| < Ounin/||0]]. We
thus have wé (i) > €1(i)/2 > COmin/||0]]. Second, using the first bullet point of Lemma

we have ||r;|| < maxg ||vg]| < CV K. Plugging these results into the above equation gives

. C| o )

1e— vl < V00 x020 - 2]+ VEIWEG) - 61)). (D.49)
mln

The claim follows by plugging (D.48)) into (D.49). O

D.4 The /2-norm deviation bound for R

Theorem is about the row-wise large deviation bound for R. For completeness of theory,
we also present the ¢2-norm deviation bound for R. This result will be useful in the proofs

of Theorems B.1 about faster rates of Mixed-SCORE. Recall the following definition:
x 1012 53/2Y /(0. ] - (nf2)~1/2
erry, = [( max )/( min *)] (Tl ) .
Lemma D.5. Under conditions of Theorem with probability 1 — o(n™3),
n
nUY | HE = ril|P < CKPB P (erry ).
i=1
Proof of Lemma[D.5: As explained in the proof of Theorem [3.1 we only need to prove the
claim for the special case of T' = oo in obtaining R (i.e., no thresholding is applied). By
definition of err), we can re-write it as
181 Bl
" 9min\/ﬁ H9H2
Then, the first two bullet points of Lemma can be re-expressed as

lwé — ¢]| = O( mﬁ;ﬁrKerr ) 120X — ol = O( myréﬂng/zﬁ >

err.

Combining it with (D.49) gives

92

min

e . clol?, .~ N . 3 i
w5 HE - 2 < U 20x - 203+ K wéy - 6]12) < OB (errt)?.
This proves the claim. O

D.5 A property of the rotation matrix H

Lemma D.6. Let H be the orthogonal matriz in Theorem . With probability 1 —o(n=3),
[Hdiag(Aa, . .., Ax) — diag(Xa, ..., Ag)HI| < C\/Brnaxl0]]1-
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Proof of Lemma |D.6: Write for short Ay = diag(j\g, e ,5\[(). Let 2o, 2o, w and X be the
same as in Lemma In the proof of Theorem we have seen that

H=wX, where w € {£1}.

It follows that

|HAo — AoH|| = ||[(HAg — AgH)'|| = || X Ao — Ao X||
= |I(
< [[(EhZ0)Ao — Ao(E(Z0) || + 2[1E6Z0 — X || - | Ao]|. (D.50)

[I]>

0Z0) Ao — Ao(E)Z0) + (H — Z4Z0)Ao — Ao(H — E(Z0) ||

We shall apply (Abbe et al., 2020, Lemma 2): in our setting, their notations H and sgn(H )

correspond to our notations of = _OHO and X. By their Lemma 2,
1Z0Z0 — X[|V/2 < CllA - QI /A%, [[(EpZ0)Ao — Ao(ZpZ0) || < 24— €, (D.51)

where A* is the eigen-gap quantity defined in the proof of Lemma and satisfies A* >
CB, K162 Additionally, by Lemmal|C.2Jand Lemmal|D.1} [|Ao|| < [[Ao|| < CB. K ~||0]|2 <

CA*, with probability 1 — o(n™3). Combining these with (D.50)-(D.51), we have: with
probability 1 — o(n=3),

|HAg — Ao H|| < [[(E6Z0) Ao — Ao(E6Z0)|| + 2/1Z6Z0 — X - [| Ao

< 2[4 - Q| +C(|lA-Qll/A")? - CA*

<ClA-af
S C(\/ HmaXHQHM
where the third line is because ||A — Q|| < A* and the last line is from (D.27). O

E Vertex Hunting

Mixed-SCORE as a generic algorithm, where the VH step is a plug-in step. To analyze the
errors of Mixed-SCORE, we must first understand the errors of different VH approaches.

Definition E.1 (Efficiency and strong efficiency of Vertex Hunting). A Vertex Hunting
algorithm is said to be efficient if it satisfies maxi<p< ||HOp—vk|| < Cmaxi<i<y [|[HP—1il|,
and it is said to be strongly efficient if maxi<p<x ||Hop—vg| < C(n=t Y0 [|HF—r4| )1/2

where H is the same orthogonal matriz as in Theorem [3.1]
Consider all 4 VH approaches: SVS, SVS*, CVS, and SP in Table|l. We show
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e All approaches are efficient under some regularity conditions.

e SVS and SVS* are also strongly efficient in some settings (however, CVS and SP are
generally not strongly efficient; this is because SVS and SVS* use a denoise stage

while CVS and SP do not).

E.1 Efficiency of SP and CVS
The next lemma gives the efficiency of CVS and SP.

Lemma E.1 (Efficiency of CVS and SP). Suppose conditions of Theorem hold. Suppose
we apply either CVS or SP algorithm to the n rows of R. With probability 1 — o(n™2), the
estimated 01, . . ., Uk satisfy that maxi<p< ||HOp—vg|| < Cmaxi<i<p ||H7i—r;||. Therefore,

both the C'VS and SP algorithms are efficient.

Proof of Lemma|[E.1: Without loss of generality, we only consider the case that H equals to
the identity matrix. When H is not the identity matrix, noticing that max;<p<g ||H0; —
vg|| = maxy<p<x ||0x — H'vg||, we only need to plug H'vi, ..., H'vk into the proof below.

We first prove the efficiency of the CVS algorithm. Write h = max;<j<y, ||F; — ri]|. We

aim to show

min_|jvg — o] < Coh, forall 1 <k < K. (E.52)
1<I<K
It means for each true vertex vy, there is at least one of {0;1,09,...,0x} that is within a

distance of Coh to vy,. At the same time, since b = o(v/K) and the distance between any two
vertices is > CvK (see Lemma @, each ¥y cannot be simultaneously within a distance
Coh to two vertices. The above imply that there is a one-to-one correspondence between
true and estimated vertices such that for each true vertex the corresponding estimated
vertex is within a distance C’oﬁ to it. The claim then follows.

It remains to show ([E.52)). Fix 1 < k < K. Recall that w; is the unique weight vector

such that r; = Zﬁil w;(s)vs, 1 <i < n. For a constant C; > 0 to be decided, let
Vor = {1 <i<n:wi(k)>1-Cr K 2h}.
Let i, be such that o, = f'is, 1 < s < K. We shall first prove that
{i1,39,. .. ik} N Vor # 0. (E.53)

This means at least one of the estimated vertices has to come from the point set {7; : i €

Vor}. We shall next prove that

max |7 — vg|| < Coh. (E.54)
1€Vok
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Then, the estimated vertex which comes from {7; : i € Vi } is guaranteed to be within a

distance Coh to the true vy, i.e., holds.
It remains to show (E.53)-(E.54). First, consider (E.53). In the proof of Lemma

we introduce a one-to-one linear mapping 75 from the standard simplex Sy to the Ideal
Simplex S such that Tp(w;) = 7; for all 1 < i < n. We have shown that both 75 and
Ty L are Lipschitz with the Lipschitz constants at the order of v/K and 1 /V K, respectively.

As a result, there is a constant Cy > 1 such that, for any w,w € Sy,
C{lﬁﬂw — || < ||Ta(w) — Ta(w)|| < C’Q\/EHw — . (E.55)

Below, we first use (E.55)) to show the distance from vy to the convex hull of {r; : i & Vo }
is sufficiently large, and then prove (E.53)) by contradiction. We take C7 = 5C5. Take an

arbitrary point z* from the convex hull H{r; : i ¢ Vo }. Since T, is a linear mapping,

y* = TQ_I(:B*) is a convex combination of {w; : i ¢ Vyr}. By definition, for each i ¢ Vo,

0 < w;(k) <1—C1K1/2h. As aresult, y*(k), as a convex combination of {w;(k) : i & Vo },
also satisfies that 0 < y*(k) < 1 — C1K~Y/2h. This implies

HTQ_l(x*) —ex|l = lly* — ekl > CLK~/2, for any «* € H{r; : i & Vor}.
Combining it with , we have
l2* — ol = ITo(y") = Toer)| > C5 'VEK - LK ?h > 5h.
Since z* is taken arbitrarily from the convex hull H{r; : i ¢ Voi}, we have
d (v, H{ri :i ¢ Vor}) > 5h. (E.56)

Come back to the proof of (E.53). When this claim is not true, the estimated simplex & is
contained in the convex hull of {7; : i & Vyi }. It follows that

d(vg, S) > d (v, H{7i i & Vor})

> d(vk,’H{ri i ¢ VOk}) —h
4h.

>
Let ji be a pure node of community k. Then, ||7;, —vgl| = |7, — 7. < h. Tt follows that
max d(7;, S) > d(#j,,8) > d(v, S) — h > 3h. (E.57)
1<i<n
At the same time, consider the simplex S* formed by 7,7y, ..., Tk, Where jg is a pure
node of community s, for 1 < s < K. Note that r;,,r,,...,7;, form the Ideal Simplex S*

99



and maxj<j<, d(r;, §*) = 0. It follows that

max d(7;,S*) < max d(r;,S*) + 2h < 2h. (E.58)

1<i<n 1<i<n

Note that S is the solution of the combinatory search step. It has to satisfy

7, S) < P, S*).
1??3}% d(r;,S) < lrgiag)% d(r;,S)

This yields a contradiction to (E.57)-(E.58). Hence, (E.53) must be true.
Next, consider (E.54). It is easy to see that

Sl < o i,
gg;l!n vk\l_ggggi!!m vkl +

= max [|T2(w;) — Ta(ex)| + h
1€V

< CyVK max ||w; — eg|| + h,
1€Vok

where we have used (E.55) in the last line. For any i € Vo, ||wi — ex]|®> = [1 — wi(k)]? +

max ||7; — vg|| < (5v2C2 + 1)h.

1€Vok

Hence, (E.54) is true by choosing Cy = 5v/2C% + 1.
We then prove the efficiency of the SP algorithm. For space limit, the exact description

of the SP algorithm is not given in the main paper. We include it here:
e Initialize V; = (1,7)) € RE for 1 <i < n.

e At iteration £ = 1,2,..., K: Find iy = argmax;;,[|Yi|| and let uj, = Y;, /[|Y;,[|. Set

the k-th estimated vertex as 0y, = 7;,. Update Y; to (1 — uzu},)Y;, for 1 <i <n.

This algorithm has been analyzed in various literature. We only need to adapt the existing

results. The next lemma is from (Gillis and Vavasis, 2013, Theorem 3).

Lemma E.2. Fizxm > r and n > r. Consider a matrix Y = SM + Z, where S € R™*"
has a full column rank, M € R"™ "™ is a nonnegative matriz such that the sum of each
column is at most 1, and Z = [Zy,...,Z,] € R™*™. Suppose M has a submatriz equal

to I,. Write ¢ = maxi<i<y ||Z;|. Suppose € = O(\U/‘;:;((?)), where omin(S) and k(S) are

the minimum singular value and condition number of S, respectively. If we apply the SP
algorithm to columns of Y, then it outputs an index set I C {1,2,...,n} such that || =17

and maxi <<, minjex |Sk, — Yj|| = O(ex*(S)), where Sy is the k-th column of S.
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Given K, the estimated vertices by SP are {Y}};cx. Hence, the above lemma says the
maximum ¢2-error on estimating vertices is O(ex*(S)) = O(k?(S) maxi<i<y, || Zi|).

In our setting, we apply SP to Y; = (1,#})/, 1 <i < n. We shall re-write the data in the
same form as in Lemma Recall that H is the orthogonal matrix in Theorem and

v1,...,VK are vertices of the Ideal Simplex. By definition,
1 . 1 1
w; =
H v -+ H log H 'r;

Let 0 = (1, (H 'wy)'), 7 = (L, (H )Y, 2z = (0, (7 — H '), 1< k< K, 1<i <n.
It is seen that
(L,7) =Y = [01,...,0x]wi + 2.

Write Y = [V1,...,Y,] e REX" V = [y, ..., 0x] € REXE W = [wy,...,wy] € REX" and

Z =[z1,..., 2] € REX" The above can be re-written as
Y =VW+ Z (E.59)

This reduces to the form in Lemma with m = K. To apply Lemma we note that

V can be re-written as

- 1 - 1
V = diag(1,H %) - Q, where @ =

Ul e UK
Since diag(1, H') is an orthogonal matrix, the singular values of V are the same as the
singular values of Q. Moreover, by ((C.26)), all the singular values of @ are at the order of
VK. Tt follows that

omin(V) = VK,  k(V)=1. (E.60)

In particular, V has a full rank, and % = 1. By Lemma the maximum £?-error on
estimating vertices is O(maxlgign HZZH) = O(maxlgign ||7A’Z'—H_1T‘Z'||) = O(Inaxlggn ”H’ﬂ—

ri||). The claim follows immediately. O

E.2 Strong efficiency of SVS and SVS*

SVS and SVS* both have a denoise stage, where we use k-means to reduce the n rows of R
into L “cluster centers”, with an L that is (usually a few times) larger than K. We have
seen that the denoise stage makes SVS and SVS* more accurate numerically (see Figure [4)).
We now give a theoretical justification, where we show that SVS and SVS* are strongly
efficient (see Definition [E.1)). Without loss of generality, we focus on SVS. The analysis of

SVS* is very similar, which is discussed in the remark in the end.
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First, consider Setting 1. Let So = Sp(e1, e, ...,ex) be the standard simplex in RX,
where the vertices eq, es,...,ex are the standard Euclidean basis vectors of RX. Fix a
density ¢ defined over Sy and let R = {7 € Sp : g(7w) > 0} be the support of g. We suppose

there is a constant ¢y > 0 such that
R is an open subset of Sy, and distance(eg, R) > ¢, 1 <k < K. (E.61)

Let d,(m) denote the point mass at 7 = v. Let €1,...,ex > 0 be constants such that

Zle €r < 1. We invoke a random design model where m;’s are iid drawn from a mixture

K

f(m) = Zek 0, () + (1 - Z ek) - g(m). (E.62)
k

k=1 —1
Lemma E.3 (Efficiency of SVS, Setting 1). Suppose conditions of Theorem hold. Ad-
ditionally, suppose K is fixed and rows of Il are iid generated from —. We
apply the SVS algorithm to rows off? with an L that does not change with n. Then, there
exists Lo = Lo(g, €1,...,ex) such that, as long as L > Lg, with probability 1 — o(n™3), the
estimated 01, . ..,0k satisfy maxij<p<g ||HOp — vl < Cmaxi<i<p ||H7 — 7]]. As a result,

the SVS algorithm is efficient.

Lemma is proved in Section Its proof utilizes the Borel-Lebesgue covering
theorem to characterize the local centers produced in the denoise stage.

Remark. A noteworthy implication of Lemma [E.3]is that the performance of SVS is
robust to the choice of L: an overshooting of L only has negligible effects (so as long as
computation is not a serious issue, we can choose a larger L in SVS). This is intuitively
explained as follows. As L increases, more local centers emerge, and we have two represen-
tative scenarios. In the first scenario, new “local centers” emerge in the interior of the Ideal
Simplex, while “local centers” that fall close to one of the vertices of Ideal Simplex remain
unaffected. In this case, as “local centers” that fall in the interior of the Ideal Simplex won’t
be selected in the second stage of SVS, the estimated vertices remain roughly the same as L
increases. In the second scenario, near a vertex of the Ideal Simplex, the number of “local
centers” increases as L increases. However, all these “local centers” remain close to the
vertex, and in its second stage, SVS selects one of these “local centers” as the estimated
vertex. In this case, the estimates of vertices also remain roughly the same as L increases.
The above heuristic explanation is made rigorous in the proof of Lemma [E.3

Next, consider Setting 2. Let N = {1 <i < n:m(k) = 1} be the set of pure nodes of

community k, 1 <k < K, and let M = {1 <7 <n:max;<x<x m(k) < 1} be the set of all

62



mixed nodes. We assume there are constants ¢y, co € (0, 1) such that

min |N;| > ein, min 0%(i) > ca| 0] (E.63)
1<k<K 1<k<K

Furthermore, for a fixed integer Ly > 1, we assume there is a partition of M, M =
MiU---UMyp,, aset of PMF’s v1,--- ,7r,, and constants ¢z, cs > 0 such that (eg: k-th
standard basis vector of R¥)

; C i — > E.64
{lgjglélgr%%ll% Yell, 1gegf§fflgkgz<‘|w ekll} > c3, (E.64)

and for each 1 < ¢ < Ly (note: err, is the same as that in (3.10)),
(Mol > cal M| > %erry, max |[m —l| <1/log(n). (E.65)
€My

In this setting, we assume that the true m;’s form several loose clusters, where the m;’s in

the same cluster are within a distance of O(@) from each other. We note that @ is
much larger than the order of noise, maxj<;<yp ||H7; — ri|| (see Theorem [3.1)). Hence, the

assumed clustering structure is “loose”.

Lemma E.4 (Strong efficiency of SVS, Setting 2). Suppose conditions of Theorem hold.
Additionally, suppose K is fizred and (©,11) satisfy -. For any integer L > 1,
denote by eL(R) the sum of squared residuals of applying k-means to rows of R to get L
clusters. We apply the SVS algorithm to rows of R, with a data-drive choice of L:

N

Ln(A) =min{L > K +1: e;(R) < ez_1(R)/ log(log(n))}. (E.66)
With probability 1 — o(n™2), the estimated ©1,...,0x satisfy

n 1/2

N 1 . 2

| max |Ho, — v < C(n E 1 |H7; — 7| ) . (E.67)
1=

As a result, the SVS algorithm is strongly efficient.

LemmalE.4]is proved in Section The proof requires unconventional analysis of k-
means. The challenge comes from that the clusters of m;’s are loose. Using the conventional
analysis of k-means, the VH error is governed by the largest within-cluster variance, which
can be as large as O(@) for loose clusters (see (E.65)). The key of the proof is to show
that the loose clusters in the interior have negligible effects on the estimated vertices.

Remark. Lemmas [E.3 can be easily extended to SVS*. Let h = max; | H#; — 7).
In the proofs of these lemmas, we have shown the following properties of the k-means cluster

centers: With high probability, (a) all k-means centers are within a distance of O(h) to the
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Ideal Simplex, and (b) for each vertex vy, there is at least one k-means center that is within
a distance of O(il) to vi. SVS* applies SP to these k-means centers. Therefore, we can
apply Lemma [E.1| pretending that the k-means centers are the data points. This gives the

desired claims for SVS*.

E.2.1 Proof of Lemma [E.3]
Lemma follows directly from the next lemma:

Lemma E.5. Suppose the conditions of Lemma hold. We apply the SVS algorithm
to {7}, with L being a properly large constant. Write h = maxi<;<n |H7 — 7i]|. The

following statements are true.

e In the local clustering sub-step, all the local centers output by k-means are within a
distance of Ch to the Ideal Sitmplex. Moreover, for each true vertex vy, there is at

least one local center that is within a distance of Ch to i, 1 <k<K.

o The combinatorial search sub-step selects exactly one local center among those within
a distance of Ch to a true vk, 1 < k < K. As a result, up to a permutation of

estimated vertices, maxi<p<g || H0p — vg| < Ch.

Proof of Lemma|E.5: As explained in the proof of Lemma we can assume H = [
without loss of generality.

We first argue that, once the first bullet point is proved, the second bullet point follows
directly. Let 1y, Mo, ..., mr be the local centers by k-means. The combinatorial search step
of SVS is an application of CVS on these local centers, and we hope to apply Lemma [E.1

Note that when the first bullet point of the claim is true, we have:
o d(ij, Sy < Ch, 1< j < L.
e For each 1 < k < K, there exists jj such that ||m;, — vl < Ch.

By Lemmal|C.4, the distance between two different v, and vy is lower bounded by a constant

times VK, while A = o(V/K). As a result, any m; cannot be simultaneously within a

distance of Ch to two vertices, which implies that j1, jo, ..., jx are distinct. Define
argmianSideal ||ZL' - m]”? ] ¢ {j17j27 e ajK}v
mj =
Uk J:]kvlngK

We then have
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e The points mq,ma, ..., my, are in the Ideal Simplex Side®
o |1 —mjyl| < Ch,1<j < L.
e For each 1 <k < K, there is at least one m; located at the vertex vy.

If we view 711,12, ...,Mm, as the data points and view mj,,..., m;, as the “pure nodes”,

we can apply Lemmato get maxi<p<i |0k — vl < Cmaxi<j<r ||y — m;|| < Ch.
Therefore, it suffices to prove the first bullet point of the claim. For any L > 1, let

RSS(L) be the objective achieved by applying k-means to mixed r;’s assuming < L clusters:

RSS(L) = min Z ||r; — (closest-cluster-center) ||?.

L cluster centers | .
mixed nodes 17

In preparation, we study RSS(L) as a function of L.

We provide an upper bound of RSS(L) by constructing a feasible solution to the k-
means problem. In the proof of Lemma [C.4, we see that there is a one-to-one mapping
T =Ty o T} from the standard simplex Sy to the Ideal Simplex S such that r; = T'(m;)

and that (note: we have used that K is a constant)

Cllz =yl < |T(2) = T(y)ll < Cllw —yll,  for any z,y € So. (E.68)

1
For an integer s = |L¥-1 — 1], we consider the following choice of centers:

1 —1
{T(a:) :x € 8y, entries of x take value on {0, ey i ,1}}.
s s

The total number of centers is bounded by (s 4+ 1)X~! < L. We then assign each r; to the
nearest center. The (*°-distance from each 7; to the nearest = above is at most 1/s, so
the Euclidean distance is at most v K /s; combining it with , the Euclidean distance
from 7; = T(7;) to the nearest T(x) above is at most Cv/K /s. It follows that

RSS(L) < n(CVK /s)>.

The choice of s guarantees that s > LET —2 Asa result, for a constant ¢ that does not
depend on L,
RSS(L) < n- &L %1, (E.69)

We are now ready to prove the first bullet point. Note that each 7; is within a distance
Ch to the corresponding r; and that all the r;’s are in the Ideal Simplex. Hence, all data
points {7} ; are within a distance Ch to the Ideal Simplex. It is easy to see that all local
centers output by k-means must also be within a distance Ch to the Ideal Simplex. What
remains is to show that there is at least one local center within a distance of C'h to each

true vertex vg. Fix vg. Our strategy is as follows: for a constant ¢y to be decided,
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(a) We first show that there exists at least one local center within a distance £y to vy.

(b) We then show that, for each local center within a distance ¢y to v, the associated

data cluster consists of only pure 7; from community k.

Then, by the nature of k-means, such a local center equals to the average of all the 7;
assigned to this cluster. Since each 7; corresponds to a pure node of community k, it is
within a distance Ch to vk. As a result, the local center must also be within a distance Ch
to vg. This gives the first bullet point.

What remains is to prove (a) and (b). Fix vi. Consider (a). Suppose there are no local
centers within a distance £y to vg. Then, each pure r; from community k has a distance
> fy to the nearest local center; hence, the distance from #; to the nearest local center is at
least o — Ch > £y /2. At the same time, by the generating process of m;’s, with probability
1 — o(n™3), the number of pure nodes of community k is at least neg/2. These pure nodes

contribute a sum-of-squares of
> (ne/2) - (fo/2)* = n(£Ger/8).

Additionally, the mixed 7;’s are assigned to at most L clusters. Since ||f; — z||> > ||r; —
z||2/2 — O(h?) for any point z, we immediately know that the sum-of-squares contributed
by mixed 7;’s is

> —RSS(L) — O(nh?).

DO =

Combining the above, the objective attained by k-means is

> —RSS(L) + n(l3er/9) (E.70)

1
2
At the same time, we construct an alternative solution by letting (L — K) of the local centers
be those associated with RSS(L — K), letting the remaining K centers be vy, v, ..., vk,
and assigning each #; to the center closest to the corresponding 7;. Since ||7; — x> <

2||ri — z||2 + O(h?), the sum of squares attained by this solution is
< 2RSS(L — K) + O(nh?). (E.71)
A contradiction is obtained as long as
ARSS(L — K) — %RSS(L + K) < n(t2e/9) — O(nh?)
n(£3/10).
According to (E.69), the above is true if we choose L > (205/63)%. This proves (a).
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Consider (b). Fix k. Let m* be a local center such that ||m* — vg| < €. By the
assumption (E.61), for any m; # ey, its distance to e (e is the k-th standard basis of
RX) is at least ¢y. Combining it with (E.68)), for any node 4 that is not a pure node of

community k, the distance from r; to vy is at least C~lcg. As a result, for any such node,
|7 — m*|| > Cteg — by — Ch.
By taking o = C~1co/4.1, for any node i not pure of community F,
the distance from 7; to the center m™* is at least 3¢p. (E.72)
We shall also show that, for any node 7 not pure of community k,
the distance from 7; to the nearest center is at most 2.5¢y. (E.73)

By (E.72)-(E.73), these nodes cannot be assigned to m*. Therefore, the cluster associated

with m™* consists of only those 7; such that i is a pure node of community k. This proves
(b).

What remains is to prove (E.73). If i is a pure node of a different community ¢, then
by (a) above, the distance from r; = vy to the nearest center is ¢y + Ch < 2.5¢y. Hence, we
only need to consider i that is a mixed node. Since max; ||7; — ;|| < Ch < 0.500, it suffices

to show that
the distance from a mixed r; to the nearest center is at most 2/y. (E.74)

Let So = So(et, - .,ex) € RE be the standard (K — 1)-simplex, and denote by B(z;c) an
open ball in &y centered at x with a radius ¢; we notice that here an “open ball” means
the intersection of Sy and an open ball in RX. Let R be the closure of R, where R is the

support of f(-). We consider the open cover of R:
{B(z,C ) : x € R}.

Since R is closed and bounded, it is a compact set. According to the Borel-Lebesgue

covering theorem, the above open cover has a finite sub-cover:
{B(z1,C ), B(x2,C ), ..., B(zp, C~ )}, where z1,...,z, € R.

This means each 7; # ey, is contained in one B(x;, C~'4y). Recalling that T is the mapping

in (E.68), define

Bf =T(B(z;,C '), 1<j<p.
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Then, r; = T'(m;) is contained in B}. Moreover, for any y, 7 € B}, [ly—7l| < Cmax, sep@;,c-14) <

20g. Therefore, if we can show that
each B} contains at least one local center,1 < j < p, (E.75)

then the distance from r; to this local center is bounded by 2¢y. This gives (E.74), and in
turn gives (E.73).

What remains is to prove (E.75). Note that R is an open set. By definition of open sets,
for each of x1,x2,...,xp, there is a 7; > 0 such that the closed ball B(:):j,Tj) is contained

in R. We define the closed balls
BB; = B(xj,min{Tj,C_lﬁo/Q}), 1< <p.

Let wj = [ f(m)1{r € BBj}dr = (1 — S5 &) [g(m)1{r € BB;}dr, 1 < j < p. Note
that each of these closed balls is contained in the support of g with a nonzero radius and
that g as a probability density is measurable. We immediately know that w; > 0. From
the assumption (E.62) and elementary large-deviation inequalities (e.g., the Hoeffding’s
inequality), we know that with probability 1 — o(n™3), for 1 < j < p,

the number of 7;’s contained in BB, is at least nw;/2. (E.76)

With (E.76), we now prove (E.75) by contradiction. Suppose (E.75) does not hold, i.e.,

there exists B}‘ such that

B‘;‘(m{ml)mQV"amL}:@?

where 1M1, M2, ..., M, are the local centers output by k-means. By definition of Bj and the

fact that T is a one-to-one mapping, we have
B(:L'j, C_lfo) N {T_l(ml), T_l(mQ), ce ,T_l(mL)} = 0.

Note that BB; is a ball also centered at x; but with a radius no larger than half of the
radius of B(:cj,C_lfo). As a result, for any x € BB;, its distance to the nearest one of
TY(my), -, T (1) is at least C~14y/2; combining it with (E.68)), the distance from

T(z) to the nearest one of 71, Mo, ..., 1My is at least C~2(y/2. Tt follows that
for any m; € BB;, lrgriiélL 7 — 1hs|| = C24o/2.
Note that max; ||7; — ]| < Ch = o(1). We further conclude that

for any m; € BB;, the distance from 7;
(E.77)
to the nearest local center is > C =2/ /3.
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Combining (E.76) - the sum-of-squares attained by k-means is
> (0_250/3)2 . (nwj/2) > n(wminC’_4£(2)/18),

where wyi, = min{wy, ... ,wp}. At the same time, the objective attained by k-means should
be
< RSS(L) 4+ n(Ch?).

A contradiction is obtained as long as
RSS(L) < n(wminC~42/18) — n(Ch?). (E.78)

Comparing it with (E.69), as long as L > ( 100" _C) , the inequality (E.78) will be true.
We then have a contradiction, which 1mphes that (| must hold. The proof is now
complete. O

E.2.2 Proof of Lemma [E.4

Lemma follows directly from the next lemma:

Lemma E.6. Suppose the conditions of Lemma|E.4 hold. We apply the SVS algorithm to

{7}, with L = Ly, (A), where Ly, (A) is defined in (E.66). Let h* = \/n=1S 1 [[HF; — 4|2
and h = maxi<j<y, |[H?; — ri||. With probability 1 — o(n™3), the following statements are
true.

o Ln(A)=1Lo+K.

e The local clustering sub-step identifies (Lo + K) local centers, where there is a unique
(K —1)-simplex such that K of these centers (denoted by 1,02, ...,V ) are its vertices,
and all other centers are within a distance of Ch to this simplex. These K local centers

will be identified by the combinatorial search sub-step.

e The above K local centers satisfy o, = |Nj| ™ ZiENk 7, 1 <k < K. As a result, up

to a permutation of estimated vertices, maxi<k<r || H0p — vg]| < Ch*.

Proof of Lemma |E.6: As explained in the proof of Lemma we can assume H = Iy
without loss of generality. By Theorem and Lemma with probability 1 — o(n=3),

R Cerry, £\ 2 2 o Cn(err )2
h= max |7 = i < 5 n(h*) § 175 — 74| < : (E.79)
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where we have absorbed the factors of K into the constants. We also note that err) <

erry/+/log(n). Below, we restrict to the event of (E.79).
First, we study Ly (A). Recall that 1,72, ..., 7z, are as in (E.64). Let T be the mapping

as in (E.68); note that T'(m;) = r; for 1 <4 < n. Introduce
mj:T(FYj)v 1§]§L0

By (E.68), the assumptions (E.64)-(E.65) imply that the distance between any two of
{v1,v2, ..., vk, M1, Mo, ..., mpy} is at least ¢, and max;eq; |7 — mjl| < C1/log(n), where

¢ > 0 and C; > 0 are constants. In particular,

Lo
C|M| B
0 gy e @R =Tt 3 P
j=lieM;

A~

We now study €7, (R). When L = Lo+ K, by choosing this choice of centers {v1, ..., vg,mq,...

it is easy to see that

. L. C|M
crori(B) <nod + O3 [ —rifp < SM

og(n)’ (E.80)
=1

where the last inequality is due to and the assumption that |M| > nj; 2err? >
nB;, 2 (err)?log(n). When K < L < Lo + K, suppose there are L; of {v1,v2,...,vx} and
Ly of {my,ma,...,mr,} such that no local centers are within a distance of ¢/3 of them.
Since the distance between any two of {vi,ve,...,vK, m1,m2,...,mr,} is at least ¢, we

have that (L1 + Lo) is at least (Lo + K) — L. For any such vy and ¢ € N}, or such m; and

i € Mj, the distance from 7; to the nearest local center is at least ¢/3 — h> c/4. Tt follows

that
er(R) = (¢/4) - (I min [Ng| + Ly min [M;]) = CJMY], (E.81)
J
where the last inequality is due to ming |[Ny| > ¢in and min; M| > cs| M|. At the same
time, by choosing the centers to be {v1,v2,...,vx} and (L — K) of {m1,ma,...,mg,},
eL(R) < C(Lo+ K — L)IM|+CD_ ||#i — ri|> < CIM. (E.82)
i=1

By (E50)-(E52),

. . | <£C/log(n), L=Ly+ K,
eL(R)/er—1(R)
> C, K+1<L<ILy+K.

Hence, the definition of L,(A) in yields Ly,(A) = Lo+ K. This proves the first bullet

point.
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Next, we consider the second bullet point. Suppose for Li of {vi1,vs,..., vk} and Lo
of {my,ma,...,mr,}, there are no local centers are within a distance of ¢/4 of them.
When L; + Ls > 1, using similar arguments as those for proving , we can see that
the associated sum-of-squares is lower bounded by C|M]|. However, in , we have
seen that the sum-of-squares attained by k-means is at most C|M]|/log(n). Hence, the
above situation is impossible, i.e., for each of {v1, va,...,vK, m1,...,m,}, there is at least
one local center within a distance ¢/4 to it. Since that the distance between any two of
{vi,v2, ..., 0K, m1,...,mr,} is at least ¢, these (Lo + K) local centers must be distinct.

Noting that there are at most f)n(A) = Lo + K cluster centers in total, we find that

there is exactly one local center within a distance c¢/4 (5.53)

to each of {v1,va,..., v, M1, M2 ..., mL,}.
Denote by fnz‘k_) the local center nearest to vy and by ;) the local center nearest to
mj, 1 <k < K,1<j< Ly Foranyi € Ny, the distance from 7; to m;k) is at most
¢/440(h) < ¢/3, but its distance to any other local center is at least ¢ —¢/4—O(h) > 2¢/3;
hence, 7; can only be assigned to the cluster associated with 7y,
) + O(h) < ¢/3, but the distance to

O(h) > 2¢/3; so #; must be assigned

k) Similarly, for any i € Mj,

A

the distance from 7; to 7y is at most ¢/4 + O (557

7) log(n)

any other local center is at least ¢ — ¢/4 — O(log(n))

to ;). We have proved that

the cluster associated with 7, is {fiieNgh1<k<K, (E.84)

the cluster associated with ;) is {7; 1 i € M}, 1 < j < Lo.

Then, it is easy to see that

e All the local centers are within a distance & to the Ideal Simplex.
e Each m=(‘<k) is within a distance Ch to v, 1 <k < K.

e Each m(])

is within a distance C'/log(n) to m;, 1 < j < Ly.

We now show that ma),m&), e ,'fan) will be selected by the combinatorial search. The
proof is similar to that of Lemma but is simpler. Suppose one mz‘k) is not selected by
the combinatorial search. By ([E.84), the other local centers are contained in the convex
hull H{# : i ¢ Ny}. Hence, the estimated simplex & € H{#; : i ¢ N;}. We notice that

the distance from ey to the convex hull of all m; # e is lower bounded by a constant, as a

result of the assumptions (E.64)-(E.65). Using (E.68), we know that the distance from vy
to the convex hull H{r; : i ¢ N} is also lower bounded by a constant. Then,

Ay, S) > d(mfyy, H{fi:i ¢ Ni})
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> d(vy, H{ri i ¢ Ni}) — O(h)
> C.

* ok

At the same time, if we pick the K local centers m(l), Mgy, - - ,m K)

Jax d(ii, S(iny, iy, 1)) < Ch.

* o0k

This yields a contradiction since h = o(1). As a result, all of m(l),m 9y ,Th’("K) will be
selected by the combinatorial search.
Last, we prove the third bullet point. So far, we have seen that 0 = m’(*k) (up to a label

permutation). By (E.84) and the nature of k-means solutions,

be=|Ne[ P> A, 1<E<K.
€N},

We note that 0 < 37, ze 17—l = e ny, {17 —vrll* —2(0k —vr)' (7 —vk) + |0 — vk |*)} =

>ien; 176 — vEl|? — [Nil||or — vi||?. As a result,

1 1 <&
1ox = okll? < T D s =kl < e DI —ril®, 1<k < K.
|Nk‘ 1€ENE |Nk| i=1

Since |[Ng| > cin, it follows that

n
b — v < -1 P — 1|2 < Ch*. :
@%{Hvk el < C | n 2”” ril|2 < Ch (E.85)
1=
This proves the third bullet point. O

F Rates of Convergence of Mixed-SCORE

We prove the main results about Mixed-SCORE, including Theorems B.1.

F.1 Proofs of Theorem [3.2

Let H be the orthogonal matrix as in Theorem We aim to show that, with probability

1—o(n=3), forall 1 <i<n,
|7rs — mill1 < C|HF —ri|| + Clg}cagXK |Ho — vg|| + CKerry,. (F.86)

Once (F.86) is true, by efficiency of the VH algorithm (see Definition [E.1)) and the bound
in Theorem [3.1] we immediately have that, with probability 1 — o(n~3),

max ||7; — mlly < CK328 Yerr,,. (F.87)

1<i<n
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Note that Hﬁ'i_ﬂ'iH2 < ”ﬁ'i—ﬂ'iHooHﬁ'i—ﬂ'iHl < Hﬁ'z—ﬂ'lu% It follows that %Z?:l Hfl'i—ﬂ'i”2 <
maxi<;<n || — mi||? < maxi<;<n || — mi||? < CK3B,2err?, with probability 1 — o(n=3).

ns

Moreover, > & ||#; — m;]|? < 2 always holds. Combining these arguments gives
1 n
E[ﬁ >l - wfﬂ < CK382%err2 + o(n™3).
i=1

This proves the first claim. The second claim follows directly by noting that err? < (nf?)~!
if gmax < C1(9min-
Below, we show (F.86). In the Membership Reconstruction (MR) step, we compute w;

and 131, then use them to construct
7 (k) = max{0, w;(k) /b1 (k)}, 1<k<K, (F.88)

and then estimates m; by 7; = #}/||77|1. We shall study @w; and by separately and then
combine their error bounds to get (F.86).
First, we study w;. By definition,

1 - 1 1 1 ... 1 R 1
v o UK T Hv, .-+ Hog Hr;
= =0
We thus write
R 1 1
Wi —w; = Q7 -Q
Hﬂ' T3
R 1 1 1
- Ql[( -] erean
Hr; T T;
R 0 R 1
S ( ) Q@ -QQ!
Hr;—r; T;
R 0 R
= - R - 71(@ - Q)w;
HT‘Z‘ — T
It follows that
i — wil| < Q|- (I1HF: — il + (Q — Q)wl]). (F.90)

This matrix () is studied in the proof of Lemma @, where we prove |Q7!| = O(1/VK);
see . This means the minimum singular value of Q is lower bounded by CVK.
Moreover, ||Q — Q|| < [|Q — Qllr < VK maxi<p<f |[Hop — vi]| = o(VK). As a result, the
minimum singular value of Q is also lower bounded by CvK. It leads to

Q™' < ¢/VK.
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We note that (Q —Q)w; € RX is a vector whose first entry is 0 and whose remaining entries
are equal to S g, w; (k) (0, — vy) € RE~L. Since w; contains the coefficients of writing r;

as a convex combination of vy, ..., vk, we have ||w;||; = 1. Therefore,

K K
1@ = Quwill = ||> - wi(k) (How = vi)| < D wilW)l| How = vgl) < max || Hoy, = vy
k=1 k=1 -

Plugging in the above results into (F.90) gives
[; — wil| < CKY2(||Hpy — ]| + max ||Hoy, — vg]). (F.91)
1<k<K

Next, we study b1. Recall that

~

bi(k) = [\ + Vpdiag(Xa, -+, Ag) 0] "2

By Lemma b1 (k) has the same form except that (5\;6, 0) are replaced with their popu-
lation counterparts. Letting Ag = diag(As, - - - , Ax) and Ag = diag(j\g, e ,;\K), we write

1 - A 1
= =\ + Aoy, = A\ + v, Agui.
b3 (k) ’ bi (k) '
By direct calculations,
1 1 3 AT A A /
|A7 — 7| < ’)\1 — )\1| + |UkA0Uk — U].;A(]Uk’

D2(k)  bi(k)

= |\ — A\i| + [0, H'H Aoy, — viAoug|

< A1 = M|+ |0 H' AgH oy, — vl Aoy | + |04, H' (HAg — AgH )dg| + [vf, (Ao — Ag)ug]
<A\ = M| + [0 H' Ao Hiy — vj Agvg| + || k[P H Ao — Ao H || + [|vg]|*[| Ao — Ao]

< (14 g ][*) [ max Ao = M| + [0 H Ao Hity — viAoug| + (|05 |1*| HA — Ao H .

First, by Lemma maxy [A¢ — M| < C\/Omax||0]]1. Second, by Lemma |HA —
AoH|| < C/Bumax]l0]l1. Third, by Lemma[C.4, |jug|| < CVE; since maxg |6, —ve|| = o(vE),
it follows that ||0]| < CvV/K. Combining the above gives

1 1 N .
— 7| < ‘QA};CH,Aon)k — U];A()UH + CK~/ HmaxHHHl- (F92)

) BH

Since ’IA);H//A\()H’LA)]{ = ’U;f[\(ﬂ}k + 2”2[\0(1{6}: - ’Uk;) + (H’f)k - Uk)/AQ(H@k — ’Uk), we have
|03 H' Ao Hoy, — vj, Aovr| < 2[|op|l| Aoll| Hiw — vell + || Aol | Hox — vx .

By Lemma [C.2 and Lemma [D.1] [|Ao| < C8,K6]% and [|A¢ — Ao|| < C/Bmax||0]l1 =

o(KB;71|0]1?). It follows that ||Ag|| < CB.K'|0]2. Also, as we have argued before,
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okl < CVK and |[Hoy — vg|| = o(vVK). Plugging these results into the above inequality
gives

|0} H' Ao Hoy, — vj, Rovy| < CK™Y28,]|0)1 || Hig — vg)-

We then plug it into (F.92) to get

1 1

|% - bz(k)! < CK 728,017 How — vrll + CK /Omax 0] (F.93)
1 1

In the proof of Lemma |C.3, we have shown by (k) =< [|0]|~'; see (C.22). Then, -~ = ||0]>.

RS
Combining it with (F.93), we have B%%k) = b%%k) [1+0(1)] < ||0]|?. Tt follows that
et = e b T — |
bik) bi(k)" Tby(k)  bi(k) p2(k)  bi(k)

1 _ 1,
p2(k)  bi(k)

< CK 2B, |0 How — vrll + ClOII ™ K v/ Gumax 0]
< CK7Y28,1|0|||Hoy, — vi|| + CK||0]|err,, (F.94)

<Clo)|

where the last line is because erry, = (fmax/Omin)-||0]] 72/ Omax||0]]1 log(n) > |0]| 72/ Omax10]]1-
Last, we combine the results for (i0;,b1) to prove (F.86). Recall that 7 is as defined in
(F.88). Introduce its non-stochastic counterpart 7 by

(k) = wi(k)/by(k), 1<k<K. (F.95)

(2

Since 7}(k) > 0, in (F.88), the operation of truncating at zero can only make it closer to
m} (k). It follows that

|77 (k) — i (k)] < |ai(k) /b (k) =} (k)|

= [w@i(k) /b1 (k) — wi(k) /by (k)|

L () — wi)] + wi (k) — —

=W Bk bR

. (F.96)

>

We sum over k on both sides and note that by (k) =< ||0]|~* (see the paragraph above (F.94))
and |lw;||; = 1. Tt yields

1 1
77 — 7| < C||0)|||w; — will1 + |——~ — ——
I =l < OO = il + s = -
1 1
< OOV Kllw; — wil| + max |-—< — ——]|
1<k<K bi(k)  by(k)
< Hi; — i Hiy, — Kerry), F.
< ClON (7 = rill + masx | How— vy + Kerr,) (F.97)
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where in the second line we have used Cauchy-Schwarz inequality and in the last line we have

plugged in and (F.94). By definition, #; = #}/||#7||1. By the triangular inequality,

1 1 1
|7i(k) — mi(k)| < 7= |77 (K) — 77 (B)| + 77 (B) | o — |
[l | Een IO (v 1
1 (k) .
= |7 (k) = mi(R)| + — = A = (]l
”7%'”1 ||7Tz||1
1

(175 (k) — mi (k)| + s (R) |7 — 77 1h), (F.98)

where the last inequality is because |||77||1 — ||7}||1] < ||7} — 7/||1. We sum over k on both

sides and note that ), 7;(k) = 1 by definition. It follows that

By (F.95), [|[7*|l1 > [|wi:|l1 - ming W' In the paragraph above (F.94), we have seen that
bi(k) =< ||0]|7t. This suggests that |7}|l1 > C||f]|. As a result,

17 = milly < CllOI~" - 177 — 7]l

< C(1H? —rill + max [|Hoy — v + Kerry). (F.99)
This gives (F.86). The proof is now complete. O

F.2 Proof of Theorem [3.3
First, consider P — P. Let Q@ and Q be the same as in . Then,
P = diag(by)Q'AQdiag(by), P = diag(b))Q'AQdiag(b;).
It follows that
12— Pl < |Odiag(bn) 1A — Al + | Qdiag(br) — Qdliag(by) A ]| Qdiag(by)]
+ || Qdiag(b1) || All[|@diag(b1) — Qdiag(b)1 ]l (F.100)
Recall that we have the following facts (they hold with probability 1 — o(n™3)):

o [[A] < CJ|6]|7" (by Lemma[C.2); A — Al| < C'/Bunaxllf]] < [0]2erry, (by Lemmal[D.1]

and the definition of erry,).

o |Qll < CVE (by Lemma|C.4); [|Q—Q| < OVE maxi<p<i |Hip—vil| < CK2B; erry,
(by Theorem Iﬂl and the definitions of Q and Q).

o C7H07t < bi(k) < C|8]| 7, for 1 <k < K (by (C.22) in the proof of Lemma |C.3);
525 — k| < CK V28,001 [ iy — ]| + CK Bllerr,. < CK@llerr, (by (ET) in
the proof of Theorem .

76



From the third bullet point, |b1(k) — b1 (k)| < C||0]|~ 2‘1; B bl(k | < CK|6|"terr,. From
the second bullet point, ||Q — Q|| < CK28; Yerr,, and ||Q|| < 2||Q| < CVK. As a result,

|Qdiag(by) — Qdiag(b)1]| < [|Q|||diag(b1) — diag(by)|| + [|Q — Q||||diag(by)]|
< OVK - K||0|| terr, + CK?8; terr, - 10|~
< C(K3? + K26;.Y(16] " Lerr,. (F.101)

It further implies ||Qdiag(by)|| < 2/|Qdiag(b)|| < CvVEK|0|~'. We then plug these results
into (F.100) and use the first bullet point above. It gives

|P — P < [|Qdiag(by)|*|A — A|| + 3||Qdiag(by) — Qdiag(by)||||Al|[|Qdiag (1)
< C(VKIO)™)2 - [10]Perrn + C(K32 + K28, 10| erry, - 0] - VE 0]~
< C(K? 4+ K*28;Yerr,. (F.102)
This proves the first claim.

Second, consider ||© — ©||%, which by definition is equal to Y7, [6(i) — 6(i)|>. Recall
that 6(i) = & (i)/(x/b1) and 0(i) = &,(i)/(#/by). Tt follows that

. ) s 1 1
06) = 00 < ) = O TGO~ 1]
. ~ . |7AI'/1A)1 7T£l71|
< G 60~ GO+ GO T

GO -a@l &)

< x i — il B1lloo + 71111161 = b1loo)-
T |fr§blungb1\(u i — il 101 lloo + |17 ]|1 || [9)

Note that ||7;]1 = 1, by (k) < ||0] 71, and ||by —b1]jec < CK||0] terrn, = o(||0]|1). It further
implies 7}b; =< 7} b1 16]] L. We plug these results into the above inequality to get

10G) = 0(5)| < ClONIEE) — Ea(@)] + ClIONIE @) [17i — milla + CK[0]lerrnlér (B)]-

We take the sum of squares of i = 1,2, ..., n on both sides and note that HéH = 1. Moreover,

by Lemmal[D.2} || — & ]| < O8] 72K \/Brmax]|0]1 < Kerry. Tt follows that
16— O[% < C|0)%[& — & + Cl6]? (max s = mll3) + CK26)Pern?

< C|0|° (K?erry + K*B, %err2 + CK?err?)

<|10|]* - CK3B;%err?. (F.103)

This proves the second claim. ]
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F.3 Proofs of Theorems [3.4, 3.5 and B.1

Theorem is a direct consequence of Theorem and Lemma, For Theorem and
Theorem [B.1, their first claims about the VH step follow from Lemma and Lemma
respectively. We now show their second claims, where we aim to obtain a faster rate for
LS HfrZ — 7;|* when the VH step is strongly efficient.

In , we have shown that for every 1 < k < K,

—_

|7i(k) — mi(k)| < (175 (k) — 5 (k)| + (k) |77 — 7] ][1).-

75 {1

Taking the sum of squares over k on both sides and using the universal inequality (a+b)? <

2a® + 2b%, we have

I7es = ml® < (H7r = |+ Nl - lla = a1

In the paragraph above , we have shown that ||7}[|; > C||0|. Additionally, ||7;]? <
17|l 1|7 |0 < 1. Tt follows that

C
= o

|7 — 7"1”2

(175 = w1 + 177 = w7 [13).- (F.104)

In light of (F.104), we first derive upper bounds for |7} —7}|| and ||7} —7}||1, respectively.
By (F.96) and (F.94),

. L
< ) — B+ s = sl

| < CKT28,0][|H g — o) + Cl0) ™ K/ Bunax[6]1.

Also, by (k) =< by (k) =< ||0]| =" (see the paragraph above (F.94)). It follows that

P A Bull6lNIE 3k — 5]l K /e 6]
m(k)—m(knscneu|wi<k>—wi<k>r+0wz-<k>< T )

Note that
errs, = [[10]1/ (Bminv/r)] - 1011 v/ Bunaxl 10111 = 161> v/ Oumax 6] 1.
We further have
|75 (k) —mk (k)| < C|ye|||wl-(k)—wi(k)|+cwi(k;)||9\|(K*I/%n”mk—uku+Kerr;;). (F.105)
It follows that

I =P < CHOIP s — will® 4 il (587 o, [ — o + K2 (e ) .
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I =il < 0 i —will + il (K8 max. || Hox — vl + Kerrs, ).

Note that ”le1 = 1, szH2 S HwZHIHwIHOO S 1, and H’lf}l — wiHl S \/?H’lf}z — wzH Addi-
tionally, by (F-91),
s — wil| < CK=Y2 (| Hiy — ]| + max || Hor — vi]).

Combining the above gives

7 = w12 < ClOI (KR = vl + K0 max |[Hay — o2 + K2(err)?)),

1<k<K

I =il < ClON (127 = il + max [[Ho, — vl + Kerr}). (F.106)

Next, we plug (F.106) into (F.104) to get

I = ill* < Ol =il + ©( max [Hoy — ]} + CKerry)

Summing over ¢ on both sides gives

—1Z||m—m”2<cn—1Z|\Hn—nH2+c( max ||Hvk—vk||) + CK>(err)’.
i=1 i=1

By strong efficiency of the VH step, maxj<p<s ||Hox — vgl| < /1Y 1 [[HF — 73] (see
Definition [E.1|). It follows that

n n
Y lw = mlP < OnTh Y [ H — )P+ CK (erry)?.
=1 =1

Using Lemma n~ISE [ HF — 1|2 < CK3B,2(err)?. Therefore,

n1 Z |7 — mi||? < CK38, % (err?)? + CK?(err?)? < CK33, % (err?)?.
i=1

Additionally, err} = [||0||/(v/10max)] - errn/+/log(n) < err,/+/log(n). We thus have

C’K?’,B,;lerr2

nt < 3 <————
ZHW 7TZH1 CK"B, (67“7"> > log(n)

=1

(F.107)

This proves the claim.

G More Simulation Results

We present additional simulation results. They are not included in the main article due to
space limit. For most experiments below, we set n = 500 and K = 3. For 0 < ng < 160, let

each community have ng number of pure nodes. Fixing x € (0,1/2), let the mixed nodes
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have four different memberships (z, z,1—2x), (x,1—2z,z), (1—2x,z,2) and (1/3,1/3,1/3),
each with (500—3ng)/4 number of nodes. Fixing p € (0, 1), the matrix P has diagonals 1 and
off-diagonals p. Fixing z > 1, we generate the degree parameters such that 1/6(7) i U(l,z),
where U(1, z) denotes the uniform distribution on [1, z]. The tuning parameter L is selected
as in . For each setting, we report n=! > | ||#; — m;]|? averaged over 100 repetitions.

Experiment 5: Connectivity across communities. Fix (z,ng,2) = (0.4, 80,5)
and let p range in {0.05,0.1,0.15,--- ,0.5}. The larger p, the more edges across different
communities. The results are presented in Figure|8 We see that the performance of Mixed-
SCORE improves as p decreases. One possible reason is that, for p large, it is relatively

more difficult to identify the vertices of the Ideal Simplex. Furthermore, Mixed-SCORE is
better than OCCAM in all settings.

0.05 0.15 0.25
!

T T T T T
01 02 03 04 05

Figure 8: Estimation errors of Mixed-SCORE and OCCAM (y-axis: n=t >0 [|7; — mi]|%).

Experiment 6: Mixed memberships taking continuous values. In this exper-
iment, we generate the mixed memberships from a continuous distribution. Set (n, K) =
(500, 3) and let P have diagonals 1 and off-diagonals 0.3. Each community has ng = 25 pure
nodes. The m; of remaining nodes are iid drawn as follows: We generate m;(1) and m;(2)
independently from U(1/6,1/2) and set m;(3) = 1 — m;(1) — m;(2). The degree parameters
(i) are iid drawn from ay, - U(1,2), where «,, > 0 controls the sparsity of the network. Let
ay, range in {0.02,0.04,0.06, - -- ,0.20}. The results are presented in Table [5. This setting
does not satisfy the regularity conditions — on m;’s, however, Mixed-SCORE
still has a good performance and outperforms OCCAM. It suggests that the regularity
conditions on 7;’s are only for theoretical convenience, and our method indeed works for
broader settings.

Experiment 7: Tuning parameter selection. We first study the choice of the
tuning parameter L in Mixed-SCORE. We aim to see (i) how the estimation errors change

for a range of L, and (i) how the adaptive choice L*(A) in (2.8) performs. Fix (z,p, z) =
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Table 5: Estimation errors in Experiment 6, where 7;’s take continuous values.

o 0.02 | 0.04 | 0.06 | 0.08 | 0.10 | 0.12 | 0.14 | 0.16 | 0.18 | 0.20
Mixed-SCORE | .38 | 35 | .36 | .32 | .30 | .28 | .23 | .18 | .15 | .12
OCCAM 44 | 42 | 41 | 41 | 38 | 36 | 32 | .28 | .26 | .23

(0.4,0.2,5) and let ng range in {60, 80,100}. For each setting, we run Mixed-SCORE with
L e {4,5,---,9} and L*(A). The results are displayed in Figure @ First, when there are
relatively few mixed nodes (e.g., ng = 100), small values of L yield good performance; but as
the number of mixed nodes going up, we favor larger values of L; these match our theoretical
results (Lemmas . Second, under the circumstances of a moderate number of mixed
nodes (e.g., ng = 60, 80), for a range of L (e.g., L € {7,8,9}), the statistical errors of Mixed-
SCORE are similar, and IA/;(A) falls in this range with high probability. Figure |10| shows
the estimated 2-simplex in one repetition (ng = 80), and the simplex changes very little

when L falls in a range.

0.14
I

005 010 015 020 025 0.30
0.10 0.12
I I
0.06 0.07 008 009 010 0.11
| I

-

T T T T T T T T T T T T
4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9

0.08
I

Figure 9: Performance of Mixed-SCORE as the tuning parameter L varies (y-axis: esti-
mation errors; L¥(A) is plotted in red; both mean and standard deviation are displayed).
From left to right, there are 60,80, 100 pure nodes in each community, respectively.

Experiment 8: Comparison with latent space approach. We compare Mixed-

SCORE with the Bayesian method based on LPC |Handcock et al. (2007) (we use the R

Figure 10: Illustration of the Vertex Hunting step. From left to right, L = 7,8,9. Although
the local cluster centers (blue points) are different, the estimated 2-simplex (dashed black)
changes very little, and it approximates the IS (solid red) well.
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package latentnet). In this experiment, we fix n = 120, K = 3, (z,p, z) = (0.4,0.3,5), and
let ng range in {12, 16, 20, - - - , 32,36} (so the number of mixed nodes in each group decreases
from 21 to 3). The results are displayed in Figure We find that, when the fraction of
mixed nodes is comparably small, LPC has a perfect performance; however, as the fraction
of mixed nodes increases to more than 40%, the performance of LPC deteriorates rapidly;
one reason is that, when ng is not very large, LPC often estimates the PMF of all the
nodes as the same. In contrast, the performance of Mixed-SCORE is quite stable. In terms
of computing time, Mixed-SCORE takes only seconds for one repetition while LPC takes

> 20 minutes (both measured in R).

1.0

—— Mixed—-SCQORE
g - LPC

0.4
I

0.2
I

15 20 25 30 35
n_O

Figure 11: Estimation errors of Mixed-SCORE and LPC (y-axis: n= 2> | ||7; — m|?).

H More Real Data Results

We present additional results for the trade networks. First, we plot the rows of R for the
GOS network (see Figure [6a) for a comparison). Recall that edges in the GOS network indi-
cate significant over-estimation of trade flows in the initial gravity model. This embedding
is not as informative as the embedding we obtained for the GUS network. One interesting
observation is that countries with high GDPs tend to cluster together and countries with
low GDPs tend to cluster together.

Next, we present the estimated mixed memberthips of representative countries in the
trade in service (TIS) network.

We also present additional results for the citee network. The following table shows those

“high-degree and relatively pure” nodes in each of the three communities.
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Figure 12: Rows of R for the GOS network after fitting a gravity model. We set K = 3 in
Mixed-SCORE, so the Ideal Simplex is a triangle. Each #; corresponds to a country, whose
ISO3 code is shown (orange color: top 15 countries with highest GDPs). In each plot, the
dashed triangle is the estimated simplex from SVS with L = 40. We note that although
each r; is in the Ideal Simplex, some 7;’s can be outside the estimated simplex due to noise
corruption.

Table 6: The estimated 7; for the 10 countries with largest total service exports. By
Figure the three communities are interpreted as ‘North Africa’, ‘Southeast Asia’ and
‘South/Central Europe’.

Service
Economy export | degree | 7;(1) @ (2) 7i(3)
USA 3,998,419 45 | 0.128 0.424 0.448
UK 1,914,255 34 10.202 0.319 0479
Germany 1,534,393 29 | 0.348 0.215 0.436
France 1,354,407 26 | 0.243 0.193 0.564
China 1,146,845 14 | 0.130 0.606 0.264
Netherlands | 1,064,165 19 | 0.218 0.215 0.567
Japan 882,650 17 ] 0.124 0.611 0.265
India 865,543 6 | 0.033 0.598 0.369
Singapore 830,975 20 | 0.313 0.554 0.134
Ireland 811,105 12 | 0.144 0.269 0.586

Table 7: Estimated PMF of the 100 nodes with the highest degrees in the Citee network, among
which only the 12 purist nodes in each community are reported.

Name Deg. | MulTest SpatNon VarSelect | Name Deg. | MulTest SpatNon VarSelect | Name Deg. | MulTest SpatNon VarSelect
Felix Abramovich 366 | 0.943 0 0.057 Peter Muller 429 | 0.326 0.613 0.061 Lixing Zhu 432 | 0.121 0 0.879
Joseph Romano 377 | 0.868 0 0.132 Jeffrey Morris 452 | 0.146 0.519 0.335 Zhiliang Ying 382 | 0.107 0.027 0.866
Sara van de Geer 372 | 0.834 0 0.166 Michael Jordan 383 | 0.321 0.495 0.184 Zhezhen Jin 361 | 0.134 0 0.866
Yoav Benjamini 478 | 0.821 0 0.179 Mahlet Tadesse 383 | 0.373 0.493 0.134 Dennis Cook 424 | 0.253 0 0.747
David Donoho 484 | 0.819 0 0.181 Naijun Sha 383 | 0.373 0.493 0.134 Wenbin Lu 405 | 0.255 0 0.745
Christopher Genovese | 521 | 0.810 0 0.190 Michael Stein 379 | 0.093 0.449 0.458 Dan Yu Lin 527 | 0.257 0 0.743
Larry Wasserman 535 | 0.800 0 0.200 Adrian Raftery 413 | 0.175 0.446 0.379 Donglin Zeng 489 | 0.270 0 0.730
Jon Wellner 387 | 0.798 0.05 0.152 Robert Kohn 429 | 0.310 0.428 0.262 Gerda Claeskens 404 | 0.247 0.033 0.720
Alexandre Tsybakov | 521 | 0.784 0 0.216 George Casella 430 | 0.303 0.425 0.271 Yingcun Xia 358 | 0.302 0 0.698
Jiashun Jin 441 | 0.780 0 0.220 Marina Vannucci 571 | 0.304 0.418 0.278 Naisyin Wang 586 | 0.283 0.043 0.674
Yingying Fan 410 | 0.741 0 0.259 Bernard Silverman | 577 | 0.514 0.395 0.091 Hua Liang 509 | 0.334 0 0.666
John Storey 544 | 0.737 0 0.263 Catherine Sugar 501 | 0.450 0.360 0.190 Wolfgang Karl Hardle | 456 | 0.343 0 0.657
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I Using Mixed-SCORE for the Estimation of ()

In Remark 9 of Section we mentioned that Mixed-SCORE can be used to estimate
Q, where we let Q) = OIIPII'O by using II from Mixed-SCORE and (0, P) in Section |2_4‘
Alternatively, we may also estimate €2 by the standard PCA, where 0= Z,I::l S\kékék The
following simulation results suggest that the Q by Mixed-SCORE is much better than the
Q) by standard PCA.

Parameters Q:Zszl Mol Mixed-SCORE
07! ~ Unif(5,10), a1=(.6,.2,.2), az=(.3, .4,.3) 78.84 46.63
0,1 ~ Unif(5,10), a1=(.4,.2, .4), as=(.2, .6, .2) 78.78 44.43
07" ~ Unif(5,10), a1=(4, .2, .4), as=(.1,.8,.1) 80.65 44.84
0; ~ Unif(0.05,0.2), a1 =(.4,.2, 4), ay=(.2, .6, .2) 71.83 44.31
0; ~ Unif(0.05,0.2), a1=(.6,.2, .2), ay=(.3, .4,.3) 71.73 38.86

Table 8: Comparison of the Frobenius errors of estimating 2 based on 100 repetitions.
Settings: K = 3, n = 540; There are n/6 pure nodes for each community, and the 7;’s
of the remaining nodes are i.i.d. drawn from a mixture distribution 0.5 Dirichlet(a;) +

0.5 Dirichlet(a2). The diagonals of P are 1 and off-diagonals are 0.3.
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