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Abstract

In a broad Degree-Corrected Mixed-Membership (DCMM) setting, we test whether
a non-uniform hypergraph has only one community or has multiple communities.
Since both the null and alternative hypotheses have many unknown parameters, the
challenge is, given an alternative, how to identify the null that is hardest to separate
from the alternative. We approach this by proposing a degree matching strategy
where the main idea is leveraging the theory for tensor scaling to create a least
favorable pair of hypotheses. We present a result on standard minimax lower bound
theory and a result on Region of Impossibility (which is more informative than the
minimax lower bound). We show that our lower bounds are tight by introducing a
new test that attains the lower bound up to a logarithmic factor. We also discuss
the case where the hypergraphs may have mixed-memberships.

1 Introduction

The hypergraph is a useful representation of social relationships beyond pairwise interactions [5, 11].
For example, the co-authorship hypergraph is often used to analyze the co-authorship topology of
authors, and it provides more information than a co-authorship graph (where an m-author paper is
treated as an m-clique). The community detection on a hypergraph [10] is a problem of great interest
(communities in a hypergraph are clusters of nodes that have more hyperedges within than across). It
has many applications in social network analysis [15] and machine learning [1, 17, 18, 23]. We are
interested in the problem of global testing, where we test whether the hypergraph has one community
or multiple communities. It has applications in measuring co-authorship and citation diversity [12]
and discovering non-obvious social groups and patterns [4]. It is also useful for understanding other
problems such as community detection and change-point detection in dynamic hypergraphs.

For instructional purpose only, we start with the 3-uniform hypergraphs (i.e., each hyperedge consists
of 3 nodes), but our results cover both higher-order hypergraphs and non-uniform hypergraphs. Let
A be the adjacency tensor of a uniform and symmetric order-3 hypergraph with n nodes, where

Ai1i2i3 equals 1 if i1, i2, i3 share a hyperedge and equals 0 otherwise, (1.1)

for 1 ≤ i1, i2, i3 (distinct) ≤ n. Since the tensor is symmetric, Ai1i2i3 = Aj1j2j3 for two sets of
indices {i1, i2, i3} and {j1, j2, j3} if one is a permutation of the other. We do not consider self
hyperedges, hence, Ai1i2i3 = 0 whenever i1, i2, i3 are non-distinct.

Real world hypergraphs have several noteworthy features. First, there may be severe degree het-
erogeneity (i.e., the degree of one node is many times higher than that of another). Second, the
overall sparsity levels may vary significantly from one hypergraph to another. Last, a node may
have mixed-memberships across multiple communities (i.e., nonzero weights on more than one
community). To accommodate these features, we adopt the Degree-Corrected Mixed-Membership
(tensor-DCMM) model. The notations below are frequently used in tensor analysis.
Definition 1.1. (matricization, slicing, and slice aggregation). Let A be a 3-symmetric tensor of n-
dimension. First, we call the n×n2 matrix A the matricization of A, defined by Ai,j+n(k−1) = Aijk,
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1 ≤ i, j, k ≤ n. Second, for 1 ≤ k ≤ n, we use A::k to denote the n× n matrix whose row-i-and-
column-j is Aijk, 1 ≤ i, j ≤ n, and call it the k-th slice of A. Last, for any n× 1 vector x, we use
(Ax) to denote the matrix

∑n
k=1 xkA::k, which is an aggregation of the slices.

Now, suppose the tensor has K perceivable communities. Let P be a symmetric (3-uniform) tensor of
K-dimension that models the community structure, let θ = (θ1, θ2, . . . , θn)

′ be positive parameters
that model the degree heterogeneity of nodes, and π1, π2, . . . , πn be K-dimensional membership
vectors where πi(k) = the weight node i puts on community k, 1 ≤ k ≤ K. We assume for all
1 ≤ i1, i2, i3 ≤ n that are three distinct indicies, Ai1i2i3 are independent Bernoulli random variables
with P(Ai1i2i3 = 1) = θi1θi2θi3

∑K
k1,k2,k3=1 Pk1,k2,k3πi1(k1)πi2(k2)πi3(k3), where by Definition

1.1, the right hand side equals to θi1θi2θi3π
′
i1
(Pπi3)πi2 . Introduce a non-stochastic 3-uniform tensor

Q of n-dimension where Qi1i2i3 = θi1θi2θi3π
′
i1
(Pπi3)πi2 for 1 ≤ i1, i2, i3 ≤ n. Let diag(Q) be

the tensor with the same size of Q where (diag(Q))i1i2i3 = Qi1i2i3 if i1, i2, i3 are non-distinct, and
(diag(Q))i1i2i3 = 0 otherwise. It follows that

E(A) = Q− diag(Q), where Qi1i2i3 = θi1θi2θi3π
′
i1(Pπi3)πi2 . (1.2)

For identifiability, let P ∈ RK,K2

be the matricization of P (see Definition 1.1). We assume

rank(P ) = K, and Piii = 1 for all 1 ≤ i ≤ K. (1.3)

Definition 1.2. We call (1.1)-(1.3) the tensor-DCMM model for 3-uniform hypergraphs. We call Q
and P the Bernoulli probability tensor and community structure tensor for DCMM, respectively.

Later in Section 3, we introduce the non-uniform tensor-DCMM as a more sophisticated model. In
tensor-DCMM, if we require all πi to be degenerate (i.e., one entry is 1, all other entries are 0), then
tensor-DCMM reduces to the Degree-Corrected Block Model (tensor-DCBM) [15]. If we further
require θ1 = . . . = θn (but the second condition in (1.3) can be removed), then tensor-DCBM further
reduces to the Stochastic Block Model (tensor-SBM) [9]. For simplicity, we may drop “tensor" in
these terms if there is no confusion. The global testing problem above is then to test

H0 : K = 1 vs. H1 : K > 1. (1.4)

Our primary goals are (a) to find a sharp information lower bound for 3-uniform DCMM, and
especially, to fully characterize the lower bound by a simple quantity to be discovered, and (b) extend
the results to more sophisticated non-uniform hypergraphse (see Section 3). A good understanding
of the problem greatly helps us understand the fundamental limits of many other problems (e.g.,
community detection, determining the number of communities K, dynamic hypergraphs). For
example, for community detection (e.g., [10]), we either assume K as known or estimate it first. Note
that in parameter regions where we cannot tell whether K = 1 or K > 1, we cannot estimate K
consistently, so we cannot have consistent community detection either. Therefore, a lower bound for
global testing is always a valid lower bound for estimating K and for community detection.

To facilitate the lower bound study, we frequently adopt a Random Mixed-Membership (RMM) model.
Introduce a subset V0 = {x ∈ RK : xk ≥ 0,

∑K
k=1 xk = 1}, and let F be a K-variate distribution

with support contained in V0. We assume

πi
iid∼ F ; (let h = EF [πi]). (1.5)

Moreover, let V ∗
0 = {e1, e2, . . . , eK} ⊂ V0, where ek is the k-th basis vector of RK . Similarly,

RMM-DCMM reduces to RMM-DCBM if we require supp(F ) = V ∗
0 , and reduces to RMM-SBM

if we further require θ1 = θ2 = . . . = θn (but the second condition in (1.3) can be removed). Let
θ = (θ1, θ2, . . . , θn)

′. We allow (θ,P, h, F ) to vary with n to cover a variety of settings where we
allow for severe degree heterogeneity, mixed-memberships, flexible sparsity levels, and weak signals.

Example 1 (2-parameter SBM [2, 22, 19]). This model is a special case of DCMM, where θ1 = . . . =
θn = αn (no degree heterogeneity), all πi are degenerate (no mixed membership), and Pijk = 1 if
i = j = k and Pijk = ρn otherwise, for two parameters (αn, ρn). Also, Lin et al. [20] studied a
3-parameter SBM, which is the same as above except that they assume a different form of P , where
Pijk equals to 1, ρn, or τn if i, j, k take 1, 2, or 3 distinct values, respectively, for three parameters
(αn, ρn, τn). Compared to DCMM, these models are much narrower: they do not accommodate
severe degree heterogeneity or mixed-memberships, and P is parametrized by 2 or 3 different values.
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How to derive a sharp lower bound for global testing (and especially, to identify a simple quantity that
fully characterizes the lower bound) in our setting is a rather challenging problem. Our model is a
non-uniform hypergraph model (see Section 3), which consists of hypergraphs of order 2, 3, . . . ,M ,
and each layer consists of many unknown parameters (θ,P, h, F ). Existing works on lower bounds
have been focused on uniform hypergraphs, and non-uniform hypergraphs are much less studied.
Even for uniform hypergraphs, existing works have been focused on the the special SBM as in
Example 1, not the more general DCMM model. For example, Yuan et al. [22] derived the lower
bounds for global testing with the 2-parameter SBM, focusing on the extremely sparse case. Ahn et
al. [2] provided lower bound results for exactly recovering the communities (see Liang et al. [19] and
Kim et al. [16] for related settings) with a similar model. Lin et al. [20] and Chien et al. [7] used
the 3-parameter SBM in Example 1 for study of the lower bounds for community detection. While
these papers are very interesting, their lower bounds are characterized by only 2 or 3 parameters (i.e.,
αn, ρn, τn) assumed in their models. For the much broader tensor-DCMM model considered here,
we have many parameters θ,P, h, F (θ is an n-vector and P is a tensor), and how to extend existing
results to the tensor-DCMM setting here is a challenging problem.

Our contributions. The main challenge in lower bound study is that, since each DCMM model (no
matter what K is) has a large number of unknown parameters, so given an alternative hypothesis
(K > 1), it is hard to identify the null hypothesis (K = 1) that is most difficult to distinguish from the
alternative hypothesis. As our main contribution, we approach this by proposing a degree matching
strategy, where for any given DCMM model with K > 1, we pair it with a DCMM model with
K = 1 in a way so that for each node, the expected degree under the null matches with that under the
alternative. This way, it is hard to separate the two hypotheses by a naive degree-based statistic. We
show (a) the degree matching is always possible by using a tensor scaling technique [3, 8], and (b)
the pair of hypotheses we construct this way lead to sharp results on lower bounds. See Section 2.

We have the following results. Consider the 3-uniform hypergraph first. We first present the standard
minimax theory. Define a class of RMM-DCMM models with K > 1 and µ2

2∥θ∥2∥θ∥1 → 0 (µ2 is
the second singular value of P ). In this class, we can find an RMM-DCMM model (the alternative),
and pair it with a DCMM model with K = 1 (the null), such that the χ2-divergence between the
pair converges to 0 as n → ∞. Therefore, in this class, there exists an alternative model that is
asymptotically inseparable from the null.

The standard minimax theory only claims that there exists an alternative model within a specified
class that is inseparable from the null. It is desirable to show a much stronger result where for any
alternative in the class, we can pair it with a null so that the χ2-divergence of the pair goes to 0 as
n → ∞. In detail, we show that in the parameter space (θ,P, h, F ) of RMM-DCBM, there is a
Region of Impossibility defined by µ2

2∥θ∥2∥θ∥1 → 0; for any alternative in Region of Impossibility,
we can pair it with a null such that the χ2-divergence between the pair goes 0 as n→ ∞. Compared
with existing results on minimax lower bounds, these results are more informative and theoretically
more satisfactory. The proof is also different from the proof of minimax lower bounds: we have used
the tensor scaling theory [3, 8] and the “degree matching strategy" aforementioned. We also extend
such results to the broader RMM-DCMM case (Section 2.3) and discuss some major differences on
the Region of Impossibility between DCBM and the more restrictive SBM (Section 2.4).

Next, we generalize the results to higher-order and non-uniform hypergraphs. Fix M ≥ 2 and
consider a non-uniform hypergraph (e.g., see [10]) that consists of m-uniform hypergraphs for all
m = 2, . . . ,M , each following a DCMM model with individual (θ(m),P(m)) but the common
π1, . . . , πn. Let ℓm = ∥θ(m)∥m−2

1 ∥θ(m)∥2(µ(m)
2 )2 (to be defined in Section 3). We show that (a)

for the m-uniform hypergraph case, the Region of Impossibility for the hypothesis testing (1.4) is
fully characterized by the condition of ℓm → 0, and (b) for the non-uniform hypergraph case, the
Region of Impossibility for the hypothesis testing (1.4) is fully characterized by the condition of
max2≤m≤M{ℓm} → 0.

Last, we show that our lower bounds are tight. Consider the non-uniform hypergraph above.
We propose a new test statistic and show that the sum of Type I error and Type II error → 0 if
max2≤m≤M{ℓm} ≥ log(n)1+δ for a constant δ > 0 (taking δ = 0.1 will work). Therefore, except
for a logarithmic factor here, our lower bounds are tight.

In summary, existing results on lower bounds are largely focused on more restrictive settings (e.g.,
uniform hypergraphs without degree heterogeneity or mixed membership). We provide sharp lower
bounds for a much broader setting. Our study is highly non-trivial because we need (i) a novel degree
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matching strategy to construct least favorable hypothesis pairs, (ii) to identify a simple quantity that
is able to fully characterize the lower bounds, (iii) delicate analysis of the χ2-divergence between the
null and alternative, (iv) a carefully designed test that leads to tight upper bounds.

2 Sharp Lower Bounds for 3-Uniform Hypergraphs

For notational simplicity, we focus on 3-uniform hypergraphs in this section. The study of higher-
order and non-uniform hypergraphs is deferred to Section 3. Consider a (3-uniform) DCMM model.
Recall that h = EF [πi] and that P ∈ RK,K2

is the matricization of the tensor P . In this paper, we
use C > 0 as a generic constant which may vary from occurrence to occurrence. We assume

∥P∥ ≤ C, θmax ≡ max{θ1, . . . , θn} ≤ C, max
1≤k≤K

{hk} ≤ C min
1≤k≤K

{hk}, ∥θ∥2∥θ∥1 → ∞. (2.6)

The first condition is mild, because the model identifiability already requires that all diagonal entries
of P are 1. The second one is also mild (note that while the largest possible value of θmax is O(1),
θmax is allowed to tend to 0 relatively fast). The third one assumes that the community memberships
are balanced, which is also mild. For the last condition, we will see soon that if ∥θ∥2∥θ∥1 → 0, then
the signal is so weak that successful global testing is impossible, so this condition is also mild.

2.1 Standard minimax lower bounds (RMM-DCMM)

We start with the least favorable configuration. The goal is to find a pair of models (a null model with
K = 1, and an alternative model with K > 1) which are hard to distinguish from each other. We
use the following degree-matching technique: we choose the pair in a way so that for each node, the
expected degree under the null matches with that under the alternative, approximately. The idea is, if
the degrees are not matching, then we may separate the two hypotheses by a simple degree-based
statistic, so we should not expect the χ2-divergence between the pair to be small.

In detail, consider a pair of models, a DCMM model with K = 1 and an RMM-DCMM model with
K > 1, where for all 1 ≤ i1, i2, i3 ≤ n, the Bernoulli probability tensors Q and Q∗ satisfy

Qi1i2i3 = θi1θi2θi3 , Q∗
i1i2i3 = θ∗i1θ

∗
i2θ

∗
i3 · π

′
i1(Pπi3)πi2 ; (2.7)

here we recall that (Pπi3) is a K ×K matrix (see Definition 1.1). We call the two models the null
and the alternative, respectively. In (2.7), the community structure tensor P is as in (1.2), and πi and
h = EF [πi] are as in (1.5). Recall that θ = (θ1, θ2, . . . , θn)

′. Similarly, let θ∗ = (θ∗1 , θ
∗
2 , . . . , θ

∗
n)

′.
Fix 1 ≤ i1 ≤ n. By definitions and elementary statistics, the leading term of the expected degree of
node i1, conditional on its own membership πi1 , under the null and alternative are

θi1∥θ∥21 and θ∗i1 · ∥θ
∗∥21 · π′

i1a, respectively, where a = (Ph)h ∈ RK . (2.8)

For least favorable construction, we choose (P, h) in a way so that

a = (Ph)h = c301K , for a scalar c0 > 0. (2.9)

For broadness, we allow c0 to depend on n. There are many (P, h) that satisfy (2.9). For example,
in the 2-parameter SBM model as in Example 1 with h = (1/K, . . . , 1/K)′ and ak = (1/K2)[1 +
(K2 − 1)ρn] for 1 ≤ k ≤ K, (2.9) is satisfied with c30 = (1/K2)[1 + (K2 − 1)ρn]. Moreover, we
choose θ∗i in the alternative model such that

θ∗i = (1/c0)θi, 1 ≤ i ≤ n. (2.10)

Now, by (2.8)-(2.10), for all 1 ≤ i1 ≤ n, θ∗i1∥θ
∗∥21 · π′

i1
a = θ∗i1∥θ

∗∥21 · c30 = θi1∥θ∥21. Therefore, for
each node, the expected degree under the alternative matches that under the null (at least in the leading
term), making it hard to separate the null and alternative by any naive degree-based statistics. Only
when such a degree-matching holds, we can hope two models are asymptotically indistinguishable.
This is the key for our least favorable configuration. Recall that P ∈ RK,K2

is the matricization of
the community tensor P and µk is the k-th largest singular value of P .

Theorem 2.1 (Least favorable configuration). Fix K > 1 and consider a pair of models, a null and
an alternative with K communities, given in (2.7), where (2.9)-(2.10) hold. Assume (2.6) holds and
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∥θ∥1∥θ∥2µ2
2 = o(1). As n→ ∞, the χ2-divergence 1 between the pair tends to 0. Therefore, the two

models are asymptotically indistinguishable: for any test, the sum of Type I and Type II errors is no
smaller than 1 + o(1).

Remark (How degree matching affects the χ2-divergence). Intuitively speaking, the χ2-divergence
has many terms, each being the sum (or a function) of terms in a Taylor expansion. We can roughly call
these terms the first-order term, second-order term, and so on. When the expected node degrees are
not matched between the null and the alternative, the first-order term dominates, and correspondingly,
a degree-based χ2-test may have power; see Section 2.4. When the expected degrees are matched,
the first-order term vanishes as we have hoped, and the degree-based χ2-test loses power. As a result,
the second-order term in the χ2-divergence now dominates and gives the sharp lower bound.

The above least favorable configuration gives rises to the standard minimax theorem. Fix K ≥ 1
and consider a DCMM model (where πi are non-random). Introduce a vector g ∈ RK by gk =
(1/∥θ∥1)

∑n
i=1 θiπi(k), 1 ≤ k ≤ K. For a constant 0 < c0 < 1, and two positive sequences

{αn}∞n=1 and {βn}∞n=1, we define a class of DCMM models by

Mn(K, c0, αn, βn) =

{
(θ,Π, P ) : ∥P∥ ≤ c0, θmax ≤ c0, max1≤k≤K gk ≤ c−1

0 min1≤k≤K gk,
∥θ∥1∥θ∥2 ≥ 1/βn, ∥θ∥1∥θ∥2µ2

2 ≤ αn

}
.

Here, we assume max1≤k≤K{gk} ≤ Cmin1≤k≤K{gk}, so the tensor is balanced. This is similar to
the third condition in (2.6), except that πi’s are random there. For the null case, K = P = πi = 1,
and the above defines a class of θ, which we write for short by Mn(1, c0, αn, βn) = M∗

n(βn). The
following theorem is proved in the supplement.
Theorem 2.2 (Minimax lower bound). Fix K ≥ 2, a constant c0 > 0, and any sequences {αn}∞n=1

and {βn}∞n=1 where αn = o(1) and βn = o(1). As n → ∞, infψ
{
supθ∈M∗

n(βn) P(ψ = 1) +

sup(θ,Π,P )∈Mn(K,c0,αn,βn) P(ψ = 0)
}
= 1− o(1), where the infimum is over all possible tests ψ.

2.2 Region of Impossibility for RMM-DCBM

The standard minimax theorem in Section 2.1 only says that in the class of all alternative models with
∥θ∥2∥θ∥1µ2

2 → 0, there exists one where we can pair it with a null so the pair are asymptotically
inseparable. A much more satisfactory result is to show that, for any alternative in the same class,
we can pair it with a null such that the pair are asymptotically inseparable. In this section, we
prove this for the RMM-DCBM case (mixed-memberships are not allowed). The discussion for the
RMM-DCMM (mixed-memberships allowed) is in Section 2.3 and the supplement.

Consider again a pair of models, a DCBM null model and an RMM-DCBM model withK > 1, where
the Bernoulli probability tensors are Q and Q∗, respectively. We assume for all 1 ≤ i1, i2, i3 ≤ n,

Qi1i2i3 = θi1θi2θi3 , Q∗
i1i2i3 = θ∗i1θ

∗
i2θ

∗
i3π

′
i1(Pπi3)πi2 . (2.11)

Here, the community structure tensor P is as in (1.2), πi and h = EF [πi] are as in (1.5), and
supp(F ) = {e1, . . . , eK}. Similarly, the goal is degree-matching: for any (θ,P, h, F ), we construct
θ∗ in a way so that for each node, the expected degrees under the null and the alternative match with
each other approximately. Recall that in Section 2.2, in order to have a desired degree matching, it is
crucial to pick an alternative model where the (P, h) satisfies a ≡ (Ph)h = c301K for some scalar
c0 > 0; once this holds, we have the desired degree matching by taking θ∗ = (1/c0)θ. Unfortunately,
for general (P, h), we don’t have a ≡ (Ph)h ∝ 1K , so we should not expect to have the desired
degree matching by taking θ∗ ∝ θ. In short, for our purpose here, the approach in Section 2.1 no
longer works, and we must find a new approach to constructing the model pair.

Our proposal is as follows. For any diagonal matrixD = diag(d1, . . . , dK) with dk > 0, 1 ≤ k ≤ K,
define a K-dimensional vector aD by (PD is a 3-tensor in dimension K)

aD = (PDh)h, with PDk1k2k3 = dk1dk2dk3Pk1k2k3 , 1 ≤ k1, k2, k3 ≤ K.

We aim to select a matrixD such that aD = 1K . The next lemma states that suchD always exists and
is unique. It leverages classic results on tensor scaling (e.g., [3, 8]) and is proved in the supplement.

1The χ2-divergence between two models, f0(A) and f1(A), is defined as
∫
[(f0(A)− f1(A))2/f0(A)]dA.

In our setting, the alternative model f1(A) alone involves an integral over the distribution of πi in (1.5)
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Lemma 2.1. Fix K > 1 and let P , h, D, and aD be as above. Suppose min{h1, h2, . . . , hK} ≥ C.
There exists a unique diagonal matrix D = diag(d1, d2, . . . , dK) such that aD = 1K .

Now, given (θ,P, h, F ) and the two models in (2.11), let D = diag(d1, d2, . . . , dK) be as in Lemma
2.1. Moreover, in (2.11), we choose θ∗i as follows:

θ∗i = dkθi, if node i belongs to community k. (2.12)
Combining it with (2.11), we have Q∗

i1i2i3
= θ∗i1θ

∗
i2
θ∗i3 · π

′
i1
(Pπi3)πi2 = θi1θi2θi3 · π′

i1
(PDπi3)πi2 .

By similar calculations as in (2.8), for 1 ≤ i ≤ n, in the null and the alternative, the leading terms of
the expected degrees of node i are

θi∥θ∥1 and θi(π
′
ia
D)∥θ∥21, respectively, where aD = (PDh)h.

By Lemma 2.1, aD = 1K . Hence, for each node, the expected degrees match under the null and
alternative, so it is hard to separate two models by a naive degree-based statistic. Recall that P is the
matricization of P and µk is the k-th singular value of P . Theorem 2.3 is proved in the supplement.
Theorem 2.3 (Impossibility for RMM-DCBM). Fix K > 1. For any given (θ,P, h, F ), consider
a pair of models, a null and an alternative with K communities, as in (2.11), where θ∗i are given
by (2.12) with the matrix D as in Lemma 2.1. Suppose (2.6) holds and ∥θ∥1∥θ∥2µ2

2 = o(1). As
n→ ∞, the χ2-divergence between the pair tends to 0. Therefore, the two models are asymptotically
indistinguishable: for any test, the sum of Type I and Type II errors is no smaller than 1 + o(1).

Region of Possibility, Region of Impossibility, and tightness. In the parameter space (θ,P, h, F )
for DCBM, we call the region prescribed by ∥θ∥1∥θ∥2µ2

2 → 0 the Region of Impossibility: by
Theorem 2.3, for any model in this region, we can pair it with a null so that the pair are asymptotically
inseparable. We call the region prescribed by ∥θ∥1∥θ∥2µ2

2/ log
1.1(n) → ∞ the Region of Possibility:

for any alternative model in this region, there is a method that can separate it from any null with
asymptotically full power (this follows from Theorem 3.2 as a special case). Comparing Region of
Impossibility and Region of Possibility, except for a log(n) term, our lower bounds are tight.

2.3 Region of Impossibility for RMM-DCMM

The discussion for RMM-DCMM is similar, so for reasons of space, we leave it to Section A of the
supplement. In that section, we present a similar theorem for RMM-DCMM, where the hypergraphs
may have mixed-memberships. The proofs are largely similar, where again the key is to construct a
pair of null and alternative using the degree matching strategy. Since the model is more complicated
than RMM-DCBM, we need an extra (but mild) condition. See details therein.

2.4 Major differences on Region of Impossibility for the more restrictive RMM-SBM

For an alternative RMM-DCBM, we can always pair it with a null using tensor scaling technique: for
each node, the expected degrees under the null and the alternative match with each other. For the
more restrictive RMM-SBM (where θ1 = . . . = θn), such a degree matching is not always possible:
A null SBM has only 1 parameter, so we have insufficient flexibility in choosing the null for degree
matching. A consequence is that a naive degree-based test may have non-trivial power for SBM.

Consider a pair of models, where the Bernoulli probability tensors Q and Q∗ under two hypotheses
are such that, for 1 ≤ i1, i2, i3 ≤ n,

Qi1i2i3 = αn, Q∗
i1i2i3 = π′

i1(Pπi3)πi2 . (2.13)

Same as before, πi are iid generated from a distribution F on {e1, e2, . . . , eK} with h = EF [πi]. Let
α̂n = (n(n− 1)(n− 2))−11′

n(A1n)1n, η = (1/2)(A1n)1n, and η̄ be the mean of η1, η2, . . . , ηK .
Consider the centered-χ2-statistic

ψn = (2n)−1/2
∑

1≤i≤n

[
(ηi − η̄)2/(

(
n−1
2

)
α̂n(1− α̂n))− 1

]
.

Lemma 2.2. Consider the global testing problem (1.4) under the SBM model (2.13) for H0 and H1,
respectively. Let α̃n = E[α̂n], h = (1/n)

∑n
i=1 πi and Σ = 1

n

∑n
i=1(πi−h)(πi−h)′. Let λK−1(Σ)

be the (K − 1)-th largest eigenvalue (in magnitude) of Σ. Assume αn ≤ c0, max1≤i,j,k≤K{Pijk} ≤
c0, n2αn → ∞, and n2α̃n → ∞. Also, assume min{h1, h2, . . . , hK} ≥ C and λK−1(Σ) ≥ C.
Write δn = ∥α̃−1

n (IK−HK)(Ph)h∥, whereHK = (1/K)1K1′
K and IK is the identity matrix of the

same size. As n→ ∞, ψn → N(0, 1) if H0 holds, and ψn → ∞ if H1 holds and n3/2α̃1/2
n δ2n → ∞
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By Lemma 2.2, the power of the χ2-test hinges on δn

δn = ∥α̃−1
n (IK −HK)(Ph)h∥.

Note that δn = 0 if and only if (Ph)h ∝ 1K . We call the cases of (Ph)h ∝ 1K and (Ph)h ̸∝ 1K
the symmetric case and the asymmetric case, respectively. For symmetric SBM, δn = 0, and we do
not expect the χ2-test to have power. However, for asymmetric SBM, the χ2-test may have non-trivial
power, implying a potential shift of the lower bound.

Example 2. Consider an SBM setting where we either have K = 1 (null) or K = 2 (alternative).
Also, when K = 2, we assume h = (a, 1− a)′ for some 0 < a < 1, Pijk is equal to ρ0 if i = j = k
and ρ1 otherwise. Suppose n2ρ0 → ∞ and ρ1/ρ0 → 1. This can be viewed as a special DCBM
with θi ≡ ρ

1/3
0 and off-diagonals of P being ρ1/ρ0. In this case, we have ∥θ∥1∥θ∥2 ≍ n2ρ0,

τn ≡ ∥θ∥1∥θ∥2µ2
2 ≍ n2ρ−1

0 (ρ1 − ρ0)
2, and n3/2α̃nδ2n ≍ (nρ0)

−1/2(2a− 1)2τn. In the symmetric
case where a = 1/2, the χ2-test is powerless, and the Region of Impossibility is given by τn → 0
(same as in the DCBM case). In the asymmetric case where |a− 1/2| ≥ c0, by direct calculations,
we have that even when τn → 0, we may have n3/2α̃1/2

n δ2n → ∞ (so χ2-test has asymptotically full
power). Here, the interesting range of ρ0 is (n−2, 1), so we may have (nρ0)

−1/2 → ∞. Therefore,
for the asymmetric case, the Region of Impossibility is different from that of DCBM.

In most lower bound results for SBM [2, 7, 20, 22], they focused on the symmetric case (Ph)h ∝ 1K .
Our lower bound restricted to symmetric SBM agrees with those in the literature. The asymmetric
case (Ph)h ̸∝ 1K is less studied, except for [14, 21] which focused on the network setting (m = 2).
We discover: (i) the Region of Impossibility for symmetric SBM is similar to that of DCBM (see
Example 2), and (ii) the Region of Impossibility for asymmetric SBM is quite different from that of
DCBM. This is because DCBM is much broader than SBM, where the problem of global testing is
much harder, and a naive degree-based test statistic may lose power.

3 Sharp lower bound for non-uniform hypergraphs

Section 2 discusses lower bounds for uniform 3-hypergraph. We now first extend the results to more
general non-uniform hypergraphs, and then present a tight upper bound. Note that our results include
those for m-uniform hypergraphs as special cases (see the paragraph behind Theorem 3.1). The
notation below is useful:

Definition 3.1. Given an order-m tensor M in dimension K and vectors b1, b2, . . . , bm ∈ RK , let
[M; b1, · · · , bm] denote the summation

∑
1≤k1,k2,...,km≤K [Mk1k2...kmb1(k1)b2(k2) · · · bm(km)].

Fix M ≥ 2. Consider a general non-uniform hypergraph that consists of m-uniform hypergraphs
for all 2 ≤ m ≤ M . Fixing 2 ≤ m ≤ M , let A(m) be the adjacency tensor of the order-m
hypergraph (i.e., A(m)

i1i2···im = 1 if {i1, i2, . . . , im} is a hyper-edge and 0 otherwise). As before,
we model A(m) with the tensor-DCMM model. Let P(m) be a symmetric order-m tensor in di-
mension K, and let θ(m) = (θ

(m)
1 , θ

(m)
2 , . . . , θ

(m)
n )′ be a positive vector of degree parameters. Let

π1, π2, . . . , πn be the K-dimensional membership vectors (which do not depend on m). We assume
{A(m)

i1i2···im}1≤i1<i2<...<im≤n are independent Bernoulli variables, where the Bernoulli probabilities
are specified by the tensor Q(m), given by

Q(m)
i1i2...im

= θ
(m)
i1

. . . θ
(m)
im

× [P(m);πi1 , · · · , πim ], 1 ≤ i1, i2, . . . , im ≤ n. (3.14)

Similar to (1.2), we have E[A(m)] = Q(m) − diag(Q(m)). This extends the tensor-DCMM model
to m-uniform hypergraphs for a general m. Finally, we denote the non-uniform hypergraph by
A[M ] ≡ {A(2),A(3), . . . ,A(M)}.

Definition 3.2. We say that A[M ] = {A(2), . . . ,A(M)} follows a (general non-uniform) tensor-
DCMM model if {A(m)}2≤m≤M are independent of each other and each A(m) follows anm-uniform
tensor-DCMM model as in (3.14), where π1, π2, . . . , πn are shared by all 2 ≤ m ≤M .

A similar model is introduced in [10], but is more restrictive for it assumes θ(m)
1 = θ

(m)
2 = · · · = θ

(m)
n

for each 2 ≤ m ≤M . Note also the focus of [10] is on community detection, while the focus here is
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on global testing. As argued before, since in parameter regions where we cannot tell whether K = 1
or K > 1, it is impossible to estimate K and community labels consistently. Therefore, our lower
bound is also a valid lower bound for estimating K and for community detection.

We present the Region of Impossibility for testing H0: K = 1 versus H1: K > 1. Similarly as
in Section 2.2, we focus on the special case of tensor-DCBM models (i.e., each πi is degenerate);
the study of tensor-DCMM is similar. Fix K > 1. Consider a DCBM null model with probability
tensors Q[M ] = {Q(2), . . . ,Q(M)} and an RMM-DCBM model with probability tensors Q∗[M ] =
{Q∗(2), . . . ,Q∗(M)}, where for every 2 ≤ m ≤M and 1 ≤ i1, i2, . . . , im ≤ n,

Q(m)
i1,i2,...,im

= θ
(m)
i1

θ
(m)
i2

· · · θ(m)
im

, (3.15)

Q∗(m)
i1,i2,...,im

= θ
∗(m)
i1

· · · θ∗(m)
im

× [P(m);πi1 , . . . , πim ], πi
iid∼ F. (3.16)

The support of F is in V ∗
0 = {e1, e2, . . . , eK}. Let h = EF [πi] and suppose min{h1, . . . , hK} ≥ C.

In the supplemental material, we provide a lemma analogous to Lemma 2.1: For each 2 ≤ m ≤M ,
there exists a unique diagonal matrix D(m) = diag(d

(m)
1 , d

(m)
2 , . . . , d

(m)
K ) such that∑

1≤i2,...,im≤K

d
(m)
i1

· P(m)
i1···im · (d(m)

i2
hi2) · · · (d

(m)
im

him) = 1, for every 1 ≤ i1 ≤ K.

Its proof leverages the Sinkhorn theorems for higher-order tensors [3, 8]. We choose θ∗(m) in (3.16)
by

θ
∗(m)
i = d

(m)
k θ

(m)
i , if node i belongs to community k. (3.17)

This is analogous to the degree matching strategy in (2.12), and it is conducted for each m separately.
Let P (m) ∈ RK×Km−1

be the matricization of P(m) and let µ(m)
2 be the second singular value of

P (m). For short, let

ℓm = ∥θ(m)∥m−2
1 ∥θ(m)∥2(µ(m)

2 )2.

Theorem 3.1 is proved in the supplement.

Theorem 3.1 (Impossibility for non-uniform RMM-DCBM). Fix K > 1 and M ≥ 2. For any
given (h, F ) and {(θ(m),P(m))}2≤m≤M , consider a pair of models, a null as in (3.15) and an
alternative with K communities as in (3.16), where {θ∗(m)

i }1≤i≤n,2≤m≤M are as in (3.17). Suppose
∥P (m)∥ ≤ C, max1≤i≤n θ

(m)
i ≤ C, and min1≤k≤K hk ≥ C. If max2≤m≤M{ℓm} = o(1), then as

n→ ∞, the χ2-divergence between the pair tends to 0.

Remark (Comparison with [22]). Yuan et al. [22] gave a nice impossibility result for the 2-parameter
symmetric SBM. Their model is a special case of our model where θ(m)

i ≡ α
(m)
n and P(m) has

equal off-diagonal entries ρ(m) (see Example 1 for m = 3). In this case, |µ(m)
2 | = |1− ρ(m)|, and

ℓm ≍ nm−1αmn (1 − ρ(m))2. Hence, ℓm → 0 is equivalent to nm−1α
(m)
n (1 − ρ(m))2 → 0, which

matches with results in [22].

Below in Section 3.1, we show that the lower bounds are tight. Theorem 3.1 includes m-uniform
hypergraphs as a special case (e.g., to apply the theorem to an m0-uniform hypergraph, we set θ(m) a
zero vector for all m ̸= m0). For an m-uniform hypergraph, the Region of Impossibility is given by
ℓm → 0, which is the same as that in Theorem 2.3 when m = 3. While many lower bound results are
available for uniform hypergraphs [2, 7, 20, 22], non-uniform hypergraphs are less studied. Our lower
bound in Theorem 3.1 leads to two notable discoveries: (i) the Regions of Possibility/Impossibility for
A(m) are fully characterized by the simple quantity of ℓm; (ii) the Regions of Possibility/Impossibility
for non-uniform hypergraphs are fully characterized by the simple quantity of max2≤m≤M{ℓm}.

3.1 Tightness of the lower bounds

We propose a test for the global testing problem (1.4) and show that it attains the lower bounds in
Theorems 2.3 and Theorem 3.1. For simplicity, we only discuss this for DCBM with moderate degree
heterogeneity but the tightness holds in much broader settings (e.g., DCMM).
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For each 2 ≤ m ≤ M , we first compute a vector η(m) ∈ Rn, which serves as an estimate of θ(m)

when the null hypothesis is true. Fix m. Given a positive vector u ∈ Rn, define L(u) ∈ Rn by

Li(u) =

∑
i2,...,im(distinct) A

(m)
i i2...im

+
∑
i2,...,im(non-distinct) uiui2 · · ·uim(∑

i1,...,im(distinct) A
(m)
i1i2...im

+
∑
i1,...,im(non-distinct) ui1 · · ·uim

)(m−1)/m
. (3.18)

Let Nm = ⌈m−1
2 ⌉. Initialize at u(0) = 0n, compute u(k) = L(u(k−1)) iteratively for k = 1, ..., Nm,

and output u(Nm) as η(m). We note that each u(1)i is a simple function of node degrees, 1 ≤ i ≤ n.
For m ∈ {2, 3}, since η(m) = u(1), we estimate θ(m) directly from node degrees. However, for
m ≥ 4, u(1) is a biased estimator of θ(m) under the null, and the bias is caused by diag(Q(m)). The
iteration serves to reduce this bias. The required number of iterations depends on m explicitly.

Next, we construct a statistic Q(m)
n to capture the difference between A(m) and a rank-1 estimate of

the Bernoulli probability tensor. Let A∗(m) be a tensor of the same size as A(m), where A∗(m)
i1...im

=

A(m)
i1...im

−η(m)
i1

· · · η(m)
im

for 1 ≤ i1, . . . , im ≤ n. We say that S = (S1, S2, . . . , Sm+1) is an (m+1)-
partition of {1, 2, . . . , n} if S1, . . . , Sm+1 are disjoint and their union is {1, 2, . . . , n}. Let B be the
set of all (m+ 1)-partitions. For each S = (S1, . . . , Sm+1) ∈ B and 1 ≤ k1, ..., km ≤ m+ 1, let

Q(m)
n = max

S=(S1,...,Sm+1)∈B
max

1≤k1,...,km≤m+1

{∣∣∣ ∑
i1∈Sk1

,...,im∈Skm (distinct)

A∗(m)
i1...im

∣∣∣}. (3.19)

Finally, we combine Q(2)
n , . . . , Q

(M)
n . For each m, let V (m)

n =
(
n
m

)
α̂n(1 − α̂n), where α̂n =

[(n−m)!/n!]
∑n
i1,...,im=1 A

(m)
i1...im

. The test statistic is

ϕn = max
2≤m≤M

{
Q(m)
n /[n log(n)1.1V (m)

n ]1/2
}
. (3.20)

Recall that by Theorem 3.1, for any alternative with max2≤m≤M{ℓm} = o(1), we can pair it with a
null so that the pair are asymptotically indistinguishable. The next theorem says that the proposed
test statistic ϕn can successfully separate any alternative satisfying max2≤m≤M{ℓm} ≫ log1+δ(n)
(for some δ > 0; taking δ = 0.1 is adequate) from the null. Therefore, except for a logarithmic factor,
our lower bounds are tight. Recall that ℓm = ∥θ(m)∥m−2

1 ∥θ(m)∥2(µ(m)
2 )2. Let θ(m)

max and θ(m)
min be the

maximum and minimum entry of the vector θ(m), respectively.
Theorem 3.2 (Tightness of lower bounds). Consider the general tensor-DCBM model with M ≥ 2.
Let h = 1

n

∑n
i=1 πi, and let P (m) ∈ RK,Km−1

be the matricization of P(m). Suppose ∥P (m)∥ ≤ C,
max1≤k≤K{hk} ≤ Cmin1≤k≤K{hk}, θ(m)

max ≤ Cθ
(m)
min , θ(m)

max ≤ c0 for a constant c0 < 1, and
∥θ(m)∥m−2

1 ∥θ(m)∥2/ log(n) → ∞, for every 2 ≤ m ≤ M . Then, ϕn → 0 in probability, if H0

holds, and ϕn → ∞ in probability, if H1 holds and max2≤m≤M{ℓm}/[log1.1(n)] → ∞.

To speed up the computation of ϕn for large n, we introduce a proxy statistic by replacing the search
over B by a specific B̂ as follows: conduct SVD on the matricization of A(m), take the first (m+ 1)
left singular vectors, and apply the spectral algorithm [13] to partition nodes into (m+ 1) groups.
We use this partition B̂ to replace the maximization over B in (3.19), to get a proxy to Q(m)

n ; the test
statistic ϕn is then defined similarly as in (3.20). As long as the hypergraph is not too sparse, this
proxy works well and is computationally much faster.

4 Numerical study

We use simulated data to validate our theoretical results. Fix (n,K,m) = (500, 2, 3). In Experiment
1, we consider the SBM model and verify that the Regions of Impossibility are different for symmetric
and asymmetric SBM (see Section 2.4). Let θi = n−1/2 for 1 ≤ i ≤ n, and Pijk = 1 if i = j = k
and Pijk = 1/4 otherwise. We consider a symmetric case where each communities have 250 nodes
and an asymmetric case where two communities have 375 and 125 nodes, respectively. For each
setting, we randomly generate the hypergraphs, apply the degree-based χ2-statistic ψn in Section 2.4,
and repeat for 500 times. The histograms of ψn for two cases are on the left panel of the figure below
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(green: symmetric alternative; red: asymmetric alternative; blue: density of N(0, 1)). By Lemma 2.2,
ψn ≈ N(0, 1) in the null. Hence, the results suggest that ψn is unable to distinguish the symmetric
alternative from the null but can distinguish the asymmetric alternative from the null.

In Experiment 2, we consider DCBM and use the least-favorable configuration in Section 2.2 where
the degree matching strategy is employed. We verify that a degree-based test such as ψn indeed has
no power. Let (n,K,m) be the same as above. In the null, we let θi be iid drawn from Pareto(0.5, 5)
and then re-normalize the vector of θ so that n−2∥θ∥1∥θ∥2 = cn, for cn = n−1; in the alternative,
let (P∗, h) be the same as in the asymmetric case in Experiment 1 and generate θ∗i is as in (2.12) (D
is obtained by treating D(P(Dh))Dh = 1K as a nonlinear equation and apply the Matlab function
solve). The histograms of ψn under the null (green) and alternative (red) are shown on the middle
panel of the figure below. The two histograms are inseparable from each other.
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In Experiment 3, we study the test statistic ϕn proposed in Section 3.1. The simulation setting is
the same as that in Experiment 2, except that cn = n−1/2. To save computing time, we use the
proxy of ϕn by plugging in a B̂ from spectral clustering (see Section 3.1). The histograms of the test
statistic under the null (green) and alternative (red) are shown on the right panel of the figure above.
We see that ϕn successfully distinguishes the alternative from the null. This validates our result in
Theorem 3.2. The distribution of ϕn in the alternative has two modes, due to that the proxy B̂ we
plug in has two most frequent realizations. However, this does not affect the testing performance.

5 Conclusion
We consider the problem of global testing for non-uniform hypergraphs in a broad DCMM setting.
Given an alternative, how to identify the null that is hardest to separate from the alternative is a
challenging problem. We solve this by proposing a degree matching strategy, and use it to derive
a tight lower bound by tensor scaling techniques and delicate analysis of the χ2-divergence. We
discover that for an m-uniform hypergraph, the Regions of Impossibility/Possibility are governed by
the simple quantity of ℓm = ∥θ(m)∥m−2

1 ∥θ(m)∥2(µ(m)
2 )2 (and so those for a non-uniform hypergraph

are governed by max2≤m≤M{ℓm}). We also propose a new test that attains the lower bounds, so
our lower bounds are tight. For future work, we notice that the test in Section 3.1 is computationally
expensive. It is desirable to find some fast algorithms that also achieve the lower bounds. The
signed-cycle statistics [6, 14] are polynomial-time statistics that have shown appealing performance
for network global testing. It is possible that these statistics can be generalized to hypergraphs to
provide polynomial-time tests that are also theoretically optimal. We leave it to future study.
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Supplement of “Sharp Impossibility Results for

Hyper-graph Global Testing”

In this supplement file, we first present the impossibility results for RMM-DCMM, which is

omitted from the main text due to space limit. Then, we prove all the theorems and lemmas.

Note that in this paper, C is a generic constant that may vary from occurrence to occurrence.

A The region of impossibility for RMM-DCMM

For RMM-DCMM models, we allow mixed-memberships. The discussion is quite similar, and

the impossibility result in Section 2.2 continues to hold under a mild condition.

Similarly, consider a model pair, where we have a null DCMM model and an RMM-DCMM

model with K communities as the alternative. Denote the Bernoulli probability tensors by Q
and Q∗, respectively. Similarly, for 1 ≤ i1, i2, i3 ≤ n, we assume

Qi1i2i3 = θi1θi2θi3 , (A.1)

Q∗
i1i2i3 = θ∗i1θ

∗
i2θ

∗
i3 · π

′
i1(Pπi3)πi2 , (A.2)

where the community structure tensor P is as in (1.2), and πi and h = EF [πi] are as in (1.5). Sim-

ilarly, for any matrixD = diag(d1, d2, . . . , dK) with dk > 0, 1 ≤ k ≤ K, let PD be the tensor with

the same size of P satisfying PD
k1k2k3

= dk1
dk2

dk3
Pk1k2k3

. Also, let hD = E[D−1πi/∥D−1πi∥1]
and ãD = (PDhD)hD. We assume that there is a matrix D such that

ãD = 1K , min
1≤k≤K

{hDk } ≥ C. (A.3)

Recall that in Lemma 2.1, we have shown that such a matrix D always exists for DCBM. To see

the point, note that if we do not allow mixed-memberships, then each realized πi is degenerate

(i.e., only one entry is 1, all other entries are 0). In this case, hD = EF [πi] = h, and ãD = aD.

Therefore, (A.3) always holds, by Lemma 2.1. For this reason, (A.3) is only a mild condition.

Suppose now (A.3) holds for a matrix D = D0. Let P∗ and ã∗ be PD and ãD evaluated at

D = D0, respectively. By definitions, ã∗ = 1K . For 1 ≤ i ≤ n, let

θ∗i = θi/∥D−1
0 πi∥1, π∗

i = D−1
0 πi/∥D−1

0 πi∥1. (A.4)

Combining them with (A.2), for all 1 ≤ i1, i2, i3 ≤ n, we have Q∗
i1i2i3

= θ∗i1θ
∗
i2
θ∗i3 ·π

′
i1
(Pπi3)πi2 =

θi1θi2θi3π
∗
i1

′(P∗π∗
i3
)π∗

i2
. By similar calculations, for 1 ≤ i1 ≤ n, the leading term of the expected

degree of node i1 under the alternative is θi1∥θ∥21(π∗
i1
)′ã∗ = θi1∥θ∥21, where the right hand side

is the leading term of the expected degree of node i1 under the null. Therefore, we have the

desired degree matching as before. The following theorem is proved in Section D.

Theorem A.1 (Impossibility for DCMM). Fix K > 1. Given (θ,P, h, F ), consider a pair of

models, an alternative with K communities and a null, as in (A.2) and (A.1) respectively, where

(A.3) holds and θ∗ is given by (A.4). Suppose (2.6) hold and ∥θ∥1∥θ∥2µ2
2 = o(1). As n → ∞,

1



the χ2-divergence between the pair tends to 0. Therefore, the two models are asymptotically

indistinguishable in the sense that the sum of Type I and Type II errors of any test is no smaller

than 1 + o(1).

Similarly, in the parameter space (θ,P, h, F ) for DCMM, we call the region prescribed by

∥θ∥1∥θ∥2µ2
2 → 0 the Region of Impossibility. For any model in this region, we can pair it with a

null so they are asymptotically inseparable.

We next generalize the result to non-uniform DCMM. Consider a DCMM null model with

probability tensors Q[M ] = {Q(2), . . . ,Q(M)} and an RMM-DCMM model with probability

tensors Q∗[M ] = {Q∗(2), . . . ,Q∗(M)}, where for every 2 ≤ m ≤M and 1 ≤ i1, i2, . . . , im ≤ n,

Q(m)
i1,i2,...,im

= θ
(m)
i1

θ
(m)
i2

· · · θ(m)
im

, (A.5)

Q∗(m)
i1,i2,...,im

= θ
∗(m)
i1

· · · θ∗(m)
im

× [P(m);πi1 , . . . , πim ], πi
iid∼ F. (A.6)

For any matrix D(m) = diag(d
(m)
1 , d

(m)
2 , . . . , d

(m)
K ) with d

(m)
k > 0, 1 ≤ k ≤ K, let P̃(m) be the ten-

sor with the same size of P(m) satisfying P̃(m)
k1k2···km

= d
(m)
k1

d
(m)
k2

· · · d(m)
km

P(m)
k1k2···km

. Also, let h̃(m) =

E[D(m)−1
πi/∥D(m)−1

πi∥1] and ã(m) =
∑

1≤i2,...,im≤K d
(m)
i1

·P(m)
i1···im ·(d(m)

i2
h̃
(m)
i2

) · · · (d(m)
im

h̃
(m)
im

), for

every 1 ≤ i1 ≤ K. We assume that there are matrices D(2), . . . , D(m) such that form = 2, . . . ,M

ã(m) = 1K , min
1≤k≤K

{h̃(m)
k } ≥ C. (A.7)

Note that (A.7) always holds for non-uniform DCBM, by Lemma C.1 in Section C below. For

this reason, (A.7) is only a mild condition.

Suppose now (A.7) holds for a matrix D(m) = D
(m)
0 , for m = 2, . . . ,M . Let P∗(m) and ã∗(m)

be P̃(m) and ã(m) evaluated at D(m) = D
(m)
0 , respectively. By definitions, ã∗(m) = 1K . For

1 ≤ i ≤ n, 2 ≤ m ≤M , let

θ
∗(m)
i = θ

(m)
i /∥D(m)

0

−1
πi∥1, π

∗(m)
i = D

(m)
0

−1
πi/∥D(m)

0

−1
πi∥1. (A.8)

This is analogous to the degree matching strategy in (A.4), and it is conducted for each m sepa-

rately. Let µ
(m)
2 be the second singular value of P (m). For short, let ℓm = ∥θ(m)∥m−2

1 ∥θ(m)∥2(µ(m)
2 )2.

The following Theorem is for non-uniform DCMM.

Theorem A.2 (Impossibility for non-uniform RMM-DCMM). Fix K > 1 and M ≥ 2. For

any given (h, F ) and {(θ(m),P(m))}2≤m≤M , consider a pair of models, a null as in (A.6) and

an alternative with K communities as in (A.5), where (A.7) hold and {θ∗(m)
i }1≤i≤n,2≤m≤M are

as in (A.8). Suppose ∥P (m)∥ ≤ C and max1≤i≤n θ
(m)
i ≤ C. If max2≤m≤M{ℓm} = o(1), then as

n→ ∞, the χ2-divergence between the pair tends to 0.

B Proof of Theorem 2.2

Fix an arbitrary (θ,P, h, F ) that satisfies the requirement of Theorem A.1. We consider a pair

of models: a null model where Qi1i2i3 = θi1θi2θi3 and a K-community uniform RMM-DCMM

model as in Theorem A.1. Let P(n)
0 and P(n)

1 denote the probability measures associated with

these two models, respectively. We further modify P(n)
1 as follows. In this RMM-DCMM, the

membership matrix Π is randomly generated. Let Π0 be a non-random membership matrix such

that (θ,Π0,P) ∈ Mn(K, c0, αn, βn). We define

Π̃ =

{
Π, if (θ,Π,P) ∈ Mn(K, c0, αn, βn),

Π0, otherwise.
, where πi

iid∼ F . (B.9)
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We construct a similar RMM-DCMM by replacing Π with Π̃ and denote P̃
(n)
1 the probability

measure associated with this new RMM-DCMM.

Consider a pair of hypotheses, where A is generated from P(n)
0 under the null hypothesis and

it is generated from P̃
(n)
1 under the alternative hypothesis. Given any test ψ, its sum of type I

and type II errors is equal to

P(n)
0 (ψ = 1) + P̃(n)

1 (ψ = 0)

= P0(ψ = 1) + EΠ̃

[
P1

(
ψ = 0|Π̃

)]
≤ sup

θ∈M∗
n(βn)

P(ψ = 1) + sup
(θ,Π,P)∈Mn(K,c0,αn,βn)

P(ψ = 0).

In the last inequality, we have used the fact that (θ, Π̃,P) ∈ Mn(K, c0, αn, βn) for any realization

of Π̃ (this is guaranteed by the construction in (B.9)). At the same time, by Neyman-Pearson

lemma,

P(n)
0 (ψ = 1) + P̃(n)

1 (ψ = 0) ≥ 1− ∥P(n)
0 − P̃(n)

1 ∥1,

where ∥P(n)
0 − P̃(n)

1 ∥1 is the L1-distance between two probability measures. Therefore, to show

the claim, it suffices to show that

∥P(n)
0 − P̃(n)

1 ∥1 = o(1). (B.10)

We now show (B.10). Recall that in Theorem A.1 we have seen that the χ2-divergence

between P(n)
0 and P(n)

1 tends to 0. Using the triangle inequality and the connection between

L1-distance and χ2-divergence (e.g., equation (2.27) of [5]), we have

∥P(n)
0 − P̃(n)

1 ∥1 ≤ ∥P(n)
0 − P(n)

1 ∥1 + ∥P(n)
1 − P̃(n)

1 ∥1

≤
√
χ2(P(n)

0 ,P(n)
1 ) + ∥P(n)

1 − P̃(n)
1 ∥1

≤ o(1) + ∥P(n)
1 − P̃(n)

1 ∥1. (B.11)

It suffices to show that ∥P(n)
1 − P̃(n)

1 ∥1 → 0. By (B.9), P̃(n)
1 is obtained from P(n)

1 by modifying

those realizations of Π where (θ,Π,P) /∈ Mn(K, c0, αn, βn). By some elementary calculations,

we have

∥P(n)
1 − P̃(n)

1 ∥1 ≤ 2P
(
(θ,Π,P) /∈ Mn(K, c0, αn, βn)

)
,

where P is with respect to the randomness of Π. In the definition of Mn(K, c0, αn, βn), the only

requirement involving Π is that max1≤k≤K{gk} ≤ c−1
0 min1≤k≤K{gk}. The following lemma is

proved below:

Lemma B.1. Fix a constant c0 ≥ 1. As n→ ∞, suppose ∥P∥ ≤ c0, θmax ≤ c0, and ∥θ∥1 → ∞.

Write h = E[D−1πi/∥D−1πi∥1]. If min1≤k≤K{hk} ≥ c1, for an appropriate constant c1 > 0,

then as n→ ∞, with probability 1− o(1), the following condition is satisfied,

max1≤k≤K{gk}
min1≤k≤K{gk}

≤ c−1
0 .

By Lemma B.1, the probability of (θ,Π,P) /∈ Mn(K, c0, αn, βn) tends to 0 as n→ ∞. It follows

that ∥P(n)
1 − P̃(n)

1 ∥1 → 0. We plug it into (B.11) to get (B.10). This completes the proof.

B.1 Proof of Lemma B.1

Recall that gk = (1/∥θ∥1)
∑n

i=1 θiπi(k), for 1 ≤ k ≤ K. Since maxk{
∑n

i=1 θiπi(k)} ≤ ∥θ∥1, it
suffices to show that

min
k

{
n∑

i=1

θiπi(k)} ≥ c0 ∥θ∥1. (B.12)
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Let c1 be a constant such that c1 > c0. Our assumptions say that min1≤k≤K{hk} ≥ c1, where

h = E[D−1πi/∥D−1πi∥1]. Let h∗ = E[πi]. We first show that min1≤k≤K{hk} ≥ c1 implies

min1≤k≤K{h∗k} ≥ c1 · [1 + o(1)]. By Lemma E.5 in section E, we have

max
1≤i≤K

{|di − 1|} ≤ Cµ2 with µ2 = o(1),

and so di = 1 + o(1), 1 ≤ i ≤ K. By definitions, it follows that

hk ≤ E[( min
1≤k≤K

{dk})−1πi(k)/( max
1≤k≤K

{dk})−1)] ≤ h∗k · [1 + o(1)].

Combining this with min1≤k≤K{hk} ≥ c1, we have min1≤k≤K{h∗k} ≥ c1 · [1 + o(1)].

Now we are going to show (B.12). Note that X =
∑n

i=1 θi(πi(k)−h∗k) is a sum of independent

mean-zero random variables, where θi(πi(k) − h∗k) ≤ Cθmax and
∑n

i=1 Var(θi(πi(k) − h∗k)) ≤
C∥θ∥2. By Bernstein’s inequality,

P(|X| > t) ≤ exp
(
− t2

C∥θ∥2 + Cθmaxt

)
, for any t > 0.

Taking t = C∥θ∥
√
log(∥θ∥1)+Cθmax log(∥θ∥1), it follows that, with probability at least 1−∥θ∥−1

1 ,

|
∑
i

θi(πi(k)− h∗k∥θ∥1| = |X| ≤ C∥θ∥
√

log(∥θ∥1) + Cθmax log(∥θ∥1),

where by ∥θ∥2 ≤ ∥θ∥1, the RHS is o(∥θ∥1). Combining this with mink{h∗k} ≥ c1 · [1 + o(1)],∑
i

θiπi(k) = h∗k∥θ∥1 · [1 + o(1)] ≥ c1∥θ∥1 · [1 + o(1)],

where c1 is a constant strictly larger than c0. This proves (B.12). The claim follows.

C Proof of Lemma 2.1

We prove a version of this lemma for m−uniform hypergraph below where the desired result is

by letting m = 3.

Lemma C.1 (Lemma 2.1 for m−uniform hypergraph). Fix K > 1 and m > 1. Let P be

a nonnegative m-uniform tensor of dimension K and h be a vector in RK , where we assume

Pi...i = 1, for i = 1, . . . ,K and min{h1, h2, . . . , hK} ≥ C. There exists an unique diagonal

matrix D = diag(d1, d2, . . . , dK) such that

K∑
i2,...,im=1

di1Pi1···im · (di2hi2) · · · (dimhim) = 1, for all i1 = 1, . . . ,K. (C.13)

To begin with, we transform the problem (C.13) into an equivalent form (C.14).

Multiplying hi1 on both sides of (C.13) and let d̃i = dihi for i = 1, . . . ,K. It is equivalent to

find an unique diagonal matrix D̃ = diag(d̃1, . . . , d̃K) with strictly positive entries such that

K∑
i2,...,im=1

d̃i1Pi1···im d̃i2 · · · d̃im = hi1 , for all i1 = 1, . . . ,K. (C.14)

Now, by the Theorem 6 in [1], for a nonnegative order-m tensor P of dimensionK (not necessarily

symmetric) such that Pi...i > 0, i = 1, . . . ,K, and K positive numbers h1, . . . , hK , there exist

positive numbers x1, . . . , xK such that

K∑
i2,...,im=1

xi1Pi1···imxi2 · · ·xim = hi1 , for all i1 = 1, . . . ,K. (C.15)
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which gives the existence of such D̃ satisfying (C.14).

The uniqueness of such D̃ is given by the Theorem 1.1 in [2] which states that there is an

unique tensor A that is defined by Ai1···im = d̃i1Pi1···im d̃i2 · · · d̃im for i1, . . . , im = 1, . . . ,K and

satisfies
K∑

i2,...,im=1

Ai1···im = hi1 , for all i1 = 1, . . . ,K. (C.16)

Therefore, D̃ is unique since A is unique and one-to-one correpondence with D̃. This completes

the proof.

D Proof of Theorem 2.1, Theorem 2.3 and Theorem A.1-

A.2

Theorem 2.1 and Theorem 2.3 are the special cases of Theorem 3.1, which do not need separate

proofs. Furthermore, in the proof of Theorem 3.1 below, we actually consider the more general

setting of non-uniform DCMM where θ∗i is constructed as θ∗i = θi/∥D−1πi∥1 (note that when πi
is degenerate, this reduces to the construction of θ∗i = θidk for DCBM). Therefore, the proof of

Theorem 3.1 (for non-uniform DCMM) already includes the proof of Theorem A.1 (for 3-uniform

DCMM) and Theorem A.2 (for non-uniform DCMM). It remains to prove Theorem 3.1, which

is contained in Section E.

E Proof of Theorem 3.1

We first state the preliminary lemmas, Lemmas E.1-E.5, needed for the proof of Theorem 3.1.

Next, we prove this theorem. Finally, we prove all the preliminary lemmas.

E.1 Preliminary lemmas

The following lemmas are used in the main proof and proved after the main proof.

Lemma E.1. Let P be a m−way symmetric K dimensional tensor, P0 be the tensor with the

same size as P where all entries are 1, and introduce a tensor M by M = P − P0. Let h,πi be

weight vectors in RK and yi = πi − h, for 1 ≤ i ≤ n. Then

[P;π1, . . . , πm] = 1 + x(m) + z(m), holds for any m > 1,

where

x(m) =[M;h, . . . , h] +

m∑
s=1

[M;h, . . . , h︸ ︷︷ ︸
s−1

, ys, h, . . . , h︸ ︷︷ ︸
m−s

],

z(m) =

m−1∑
s1=1

m∑
s2=s1+1

[M;h, . . . , h︸ ︷︷ ︸
s1−1

, ys1 , h, . . . , h︸ ︷︷ ︸
s2−s1−1

, ys2 , πs2+1 . . . , πm︸ ︷︷ ︸
m−s2

].

Lemma E.2. With the same notations as in Section E.2, let {w(j)
i : 1 ≤ i ≤ n, 1 ≤ j ≤ m} be a

set of weight vectors in RK and {w̃(j)
i } be an independent copy of {w(j)

i }. Assume that for distinct

i1, . . . , im, vectors yi1 , yi2 , w
(3)
i3
, . . . , w

(m)
im

are mutually independent and that ∥M::k3···km∥ ≤ Cµ,

for 1 ≤ k3, . . . , km ≤ K. Denote

S =
∑

i1,...,im(dist)

(θi1 · · · θim)t

at
[M; yi1 , yi2 , w

(3)
i3
, . . . , w

(m)
im

][M; ỹi1 , ỹi2 , w̃
(3)
i3
, . . . , w̃

(m)
im

].
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Then, for any constant c independent of n,

E
[
exp(cS)

]
≤ E

[
exp

(
Cµ2∥θ∥t(m−2)

t |T |/at
)]

· exp(Cµ2∥θ∥t(m−2)
t ∥θ∥2t2t/at),

where T is a random variable satisfying P(|T | > x) ≤ 2 exp(−x/(2K2∥θ∥2t2t)), for x > 0.

Lemma E.3. With the same setting in Lemma E.2, denote

S =
∑

i1,...,im(dist)

(θi1 · · · θim)t

at
[M; yi1 , yi2 , w

(3)
i3
, . . . , w

(m)
im

][M; ỹi1 , h, ỹi3 , w̃
(4)
i4
, . . . , w̃

(m)
im

].

Then, for any constant c independent of n,

E
[
exp(cS)

]
≤ E

[
exp

(
Cµ2∥θ∥t(m−2)

t |T |/at
)]

· exp(Cµ2∥θ∥t(m−2)
t ∥θ∥2t2t/at),

where T is a random variable satisfying P(|T | > x) ≤ 4 exp(−x/(2K2∥θ∥2t2t)), for x > 0.

Lemma E.4. With the same setting in Lemma E.2, denote

S =
∑

i1,...,im(dist)

(θi1 · · · θim)t

at
[M; yi1 , yi2 , w

(3)
i3
, . . . , w

(m)
im

][M;h, h, ỹi3 , ỹi4 , w̃
(5)
i5
, . . . , w̃

(m)
im

].

Then, for any constant c independent of n,

E
[
exp(cS)

]
≤ E

[
exp

(
Cµ2∥θ∥t(m−2)

t |T |/at
)]

· exp(Cµ2∥θ∥t(m−2)
t ∥θ∥2t2t/at),

where T is a random variable satisfying P(|T | > x) ≤ 4 exp(−x/(2K∥θ∥2t2t)), for x > 0.

Lemma E.5. Under the conditions of Theorem 3.1, for m = 2, . . . ,M we have

max
1≤k3,...,km≤K

∥M(m)
::k3···km

∥ ≤ C|µ(m)
2 |, max

1≤i≤K
|d(m)

i − 1| ≤ C|µ(m)
2 |,

where M(m) is a m−way symmetric tensor defined by M(m)
k1···km

= (P(m)
k1···km

− 1)d
(m)
k1

· · · d(m)
km

,

1 ≤ k1, . . . , km ≤ K.

E.2 Proof of Theorem 3.1

Let P
(n)
0 and P

(n)
1 denote the probability measures associated with the null and alternative

hypotheses, respectively, and let χ2(P
(n)
0 , P

(n)
1 ) be the χ2 divergence between the two probability

measures. By definitions,

χ2(P
(n)
0 , P

(n)
1 ) =

∫
A

[
dP

(n)
1 (A)

dP
(n)
0 (A)

]2
dP

(n)
0 (A)− 1.

To show the claim, it suffices to show that when (µ
(m)
2 )2∥θ(m)∥m−2

1 ∥θ(m)∥22 → 0, m = 1, . . . ,M ,

we have ∫
A

[
dP

(n)
1 (A)

dP
(n)
0 (A)

]2
dP

(n)
0 (A) = 1 + o(1). (E.17)

By definitions,

dP
(n)
0 (A) =

M∏
m=2

∏
i1<···<im

dP
(n,m)
0 (A(m)

i1···im),

dP
(n)
1 (A) = EΠ

[ M∏
m=2

∏
i1<···<im

dP
(n,m)
1 (A(m)

i1···im |Π)
]
,

6



Let Π̃ be an independent copy of Π. Putting the above two equations into (E.17) gives

∫
A

[
dP

(n)
1 (A)

dP
(n)
0 (A)

]2
dP

(n)
0 (A) =

∫
A

EΠ,Π̃

[∏M
m=2

∏
i1<···<im

dP
(n,m)
1 (A(m)

i1···im |Π)dP
(n,m)
1 (A(m)

i1···im |Π̃)
]

∏M
m=2

∏
i1<···<im

dP
(n,m)
0 (A(m)

i1···im)

=

∫
A
EΠ,Π̃

[ M∏
m=2

∏
i1<···<im

dP
(n,m)
1 (A(m)

i1···im |Π)dP
(n,m)
1 (A(m)

i1···im |Π̃)

dP
(n,m)
0 (A(m)

i1···im)

]
.

Exchanging the order of integral and expectation in the last equation and by elementary prob-

ability,∫
A

[
dP

(n)
1 (A)

dP
(n)
0 (A)

]2
dP

(n)
0 (A) =EΠ,Π̃

[∫
A

M∏
m=2

∏
i1<···<im

dP
(n,m)
1 (A(m)

i1···im |Π)dP
(n,m)
1 (A(m)

i1···im |Π̃)

dP
(n,m)
0 (A(m)

i1···im)

]

=EΠ,Π̃

[ M∏
m=2

∏
i1<···<im

∫
A(m)

i1···im

dP
(n,m)
1 (A(m)

i1···im |Π)dP
(n,m)
1 (A(m)

i1···im |Π̃)

dP
(n,m)
0 (A(m)

i1···im)

]
.

Let χ2
i1···im(Π, Π̃) denote

∫
A(m)

i1···im
dP

(n,m)
1 (A(m)

i1···im |Π)dP
(n,m)
1 (A(m)

i1···im |Π̃)/dP
(n,m)
0 (A(m)

i1···im) − 1.

Hence ∫
A

[
dP

(n)
1 (A)

dP
(n)
0 (A)

]2
dP

(n)
0 (A) = EΠ,Π̃

[ M∏
m=2

∏
i1<···<im

(χ2
i1···im(Π, Π̃) + 1)

]
. (E.18)

Note that by inequality
∏n

i=1(1 + xi) ≤ exp(
∑n

i=1 xi), for all xi such that 1 + xi ≥ 0, we have

M∏
m=2

∏
i1<···<im

(χ2
i1···im(Π, Π̃) + 1) ≤ exp

( M∑
m=2

∑
i1<···<im

χ2
i1···im(Π, Π̃)

)
, (E.19)

Further, by Jensen’s inequality, exp(
∑M

i=2 xi) ≤
1

M−1

∑M
i=2 exp(xi). It follows that

exp

( M∑
m=2

∑
i1<···<im

χ2
i1···im(Π, Π̃)

)
≤

M∑
m=2

1

M − 1
exp

(
(M − 1)

∑
i1<···<im

χ2
i1···im(Π, Π̃)

)
. (E.20)

Combining (E.18)-(E.20) gives∫
A

[
dP

(n)
1 (A)

dP
(n)
0 (A)

]2
dP

(n)
0 (A) ≤

M∑
m=2

1

M − 1
EΠ,Π̃

[
exp

(
(M − 1)

∑
i1<···<im

χ2
i1···im(Π, Π̃)

)]
.

Therefore, to show (E.17), it is sufficient to show that when the conditions hold, for each m =

2, . . .M we have

EΠ,Π̃

[
exp

(
(M − 1)

∑
i1<···<im

χ2
i1···im(Π, Π̃)

)]
= 1 + on(1). (E.21)

Fix m, recall that

χ2
i1···im(Π, Π̃) =

∫
A

dP
(n,m)
1 (A(m)

i1···im |Π)dP
(n,m)
1 (A(m)

i1···im |Π̃)

dP
(n,m)
0 (A(m)

i1···im)
− 1. (E.22)

By definitions,

dP
(n,m)
0 (A(m)

i1···im) = (Q(m)
i1···im)A

(m)
i1···im (1−Q(m)

i1···im)1−A(m)
i1···im ,

dP
(n,m)
1 (A(m)

i1···im |Π) = (Q∗(m)
i1···im(Π))A

(m)
i1···im (1−Q∗(m)

i1···im(Π))1−A(m)
i1···im .

7



Putting the above two equations into (E.22) gives

χ2
i1···im(Π, Π̃) =

Q∗(m)
i1···im(Π)Q∗(m)

i1···im(Π̃)

Q(m)
i1···im

+
(1−Q∗(m)

i1···im(Π))(1−Q∗(m)
i1···im(Π̃))

1−Q(m)
i1···im

− 1

=

(
Q∗(m)

i1···im(Π)−Q(m)
i1···im

)(
Q∗(m)

i1···im(Π̃)−Q(m)
i1···im

)
Q(m)

i1···im(1−Q(m)
i1···im)

.

(E.23)

Based on the expression of χ2
i1···im(Π, Π̃), it is seen that the LHS of (E.21) only relates to the

variables in m−uniform tensor DCMM (e.g., A(m),Q(m),P(m), θ(m)), for ease of notations, we

remove the superscript (m) whenever it is clear from the context.

Next we continue to simplify χ2
i1···im(Π, Π̃). According to the constructions of our model,

Qi1···im = θi1 · · · θim and Q∗
i1···im = θi1 · · · θim [P∗;π∗

i1 , . . . , π
∗
im ],

where we recall that P∗ is the m-uniform tensor defined by P∗
k1···km

= dk1
· · · dkm

Pk1···km
, 1 ≤

k1, . . . , km ≤ K, π∗
i = D−1πi/∥D−1πi∥1, 1 ≤ i ≤ n and D = diag(d1, d2, . . . , dK) is the scaling

matrix given by degree matching.

Let P0 the tensor with the same size as P∗ and where all entries are 1, and introduce a tensor

M by M = P∗ −P0. Let h = EF [π
∗
i ], and yi = π∗

i − h, 1 ≤ i ≤ n. By Lemma E.1, we can write

the Bernoulli probability tensor for the alternative Q∗ by

Q∗
i1···im = θi1 · · · θim(1 + xi1···im + zi1···im), 1 ≤ i1, . . . , im ≤ n, (E.24)

where

xi1···im =[M;h, . . . , h] +

m∑
s=1

[M;h, . . . , h︸ ︷︷ ︸
s−1

, yis , h, . . . , h︸ ︷︷ ︸
m−s

],

zi1···im =

m−1∑
s1=1

m∑
s2=s1+1

[M;h, . . . , h︸ ︷︷ ︸
s1−1

, yis1 , h, . . . , h︸ ︷︷ ︸
s2−s1−1

, yis2 , π
∗
is2+1

. . . , π∗
im︸ ︷︷ ︸

m−s2

].

Let ei1 be the i1-th standard basis vector of the Euclidean space RK , 1 ≤ i1 ≤ K. Note that by

definitions and symmetry,

[M;h, . . . , h, ei1 , h, . . . , h] =

K∑
i2,...,im=1

(P∗
i1···im − 1) · hi2 · · ·him

=

K∑
i2,...,im=1

P∗
i1···im · hi2 · · ·him − 1

(By degree matching) =0

This indicates that any linear combination of elements in {[M;h, . . . , h, ei, h, . . . , h] :, 1 ≤ i ≤ K}
equals to 0. It follows that the term xi1···im in the RHS of (E.24) equals to 0.

Write for short zi1···im(s1, s2) = [M;h, . . . , h, yis1 , h, . . . , h, yis2 , π
∗
is2+1

. . . , π∗
im
], we get

Q∗
i1···im = θi1 · · · θim

(
1 +

m−1∑
s1=1

m∑
s2=s1+1

zi1···im(s1, s2)
)
, (E.25)

Let z̃i1···im(s1, s2) be zi1···im(s1, s2) evaluated at Π̃. Inserting (E.25) into (E.23) gives

χ2
i1···im(Π, Π̃) =

θi1 · · · θim
1− θi1 · · · θim

m−1∑
s1=1,
s̃1=1

m∑
s2=s1+1
s̃2=s̃1+1

zi1···im(s1, s2)z̃i1···im(s̃1, s̃2).
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Note that x
1−x =

∑∞
i=1 x

i for any x ∈ [0, 1), we have
θi1 ···θim

1−θi1 ···θim
=

∑∞
i=1(θi1 · · · θim)t and so

χ2
i1···im(Π, Π̃) =

∞∑
t=1

(θi1 · · · θim)t
m−1∑
s1=1,
s̃1=1

m∑
s2=s1+1
s̃2=s̃1+1

zi1···im(s1, s2)z̃i1···im(s̃1, s̃2).

Introduce

at =θ
m(t−1)
max (1− θmmax),

S(t, s1, s2, s̃1, s̃2) =(M − 1)4m
∑

i1<···<im

(θi1 · · · θim)t

at
zi1···im(s1, s2)z̃i1···im(s̃1, s̃2).

(E.26)

Exchanging the order of summation, we then can write

(M − 1)
∑

i1<···<im

χ2
i1···im(Π, Π̃) =

∞∑
t=1

m−1∑
s1=1,
s̃1=1

m∑
s2=s1+1
s̃2=s̃1+1

at
4m

S(t, s1, s2, s̃1, s̃2).

Note that
∑∞

t=1

∑m−1
s1,s̃1=1

∑m
s2=s1+1,s̃2=s̃1+1 at/4

m = 1 and exp(·) is convex, by Jensen’s inequal-

ity

exp
(
(M − 1)

∑
i1<···<im

χ2
i1···im(Π, Π̃)

)
≤

∞∑
t=1

m−1∑
s1=1,
s̃1=1

m∑
s2=s1+1
s̃2=s̃1+1

at
4m

exp
(
S(t, s1, s2, s̃1, s̃2)

)
.

Therefore, to prove (E.21), it is sufficient to show that

max
t,s1,s2,s̃1,s̃2

{
E
[
exp

(
S(t, s1, s2, s̃1, s̃2)

)]}
≤ 1 + on(1). (E.27)

Fix t, s1, s2, s̃1, s̃2, we are going to bound E
[
exp

(
S(t, s1, s2, s̃1, s̃2)

)]
. Recall that by construc-

tion, s1 < s2 and s̃1 < s̃2. By symmetry, without loss of generality, assume s2 ≤ s̃2. Now, we can

separate the situations into three cases. Case 1: s1 = s̃1, s2 = s̃2; Case 2: Only one of {s1, s2}
matches any one of {s̃1, s̃2} (e.g., s̃1 = s1 < s2 < s̃2 or s1 < s2 = s̃1 < s̃2 or s1 ̸= s̃1, s2 = s̃2);

Case 3: None of {s1, s2} matches one of {s̃1, s̃2}.
Remark: Case 2 only exists for m ≥ 3 and Case 3 only exists for m ≥ 4. They require much

tricky and delicate analysis to resolve extra random effects induced by Π. This indicates one of

the differences on the calculations of the χ2-divergence between hypergraph and network.

By symmetry ofM, we summerized the derivation of the bounds on E
[
exp

(
S(t, s1, s2, s̃1, s̃2)

)]
for Case 1,2,3 into Lemma E.2, E.3, E.4, respectively. Take Case 1 for example,

Case 1 (s1 = s̃1, s2 = s̃2): By definitions and symmetry of M, we can rewrite

S(t, s1, s2, s̃1, s̃2) :=4m(M − 1)
∑

i1<···<im

(θi1 · · · θim)t

at
[M;h, . . . , h, yis1 , h, . . . , h, yis2 , π

∗
is2+1

. . . , π∗
im ]

· [M;h, . . . , h, ỹis1 , h, . . . , h, ỹis2 , π̃
∗
is2+1

. . . , π̃∗
im ].

=
4m(M − 1)

m!

∑
i1,...,im(dist)

(θi1 · · · θim)t

at
[M; yi1 , yi2 , h . . . , h, π

∗
is2+1

. . . , π∗
im ]

· [M; ỹi1 , ỹi2 , h . . . , h, π̃
∗
is2+1

. . . , π̃∗
im ].

which is implied by the standard forms discussed in Lemma E.2. Similarly, Case 2 is implied by

Lemma E.3 and Case 3 is implied by Lemma E.4.
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Combining Lemmas E.2-E.4 with Lemma E.5, we have

E
[
exp

(
S(t, s1, s2, s̃1, s̃2)

)]
≤ E

[
exp

(
C
µ2
2∥θ∥

t(m−2)
t

at
|T |

)]
· exp

(
C
µ2
2∥θ∥

t(m−2)
t ∥θ∥2t2t
at

)
, (E.28)

where µ2 is the second singular value of the matricization of the tensor P(m) and T is a random

variable satisfying P(|T | > x) ≤ 4 exp(−x/(2K2∥θ∥2t2t)), for any x > 0.

Now, we are ready to calculate a bound for E
[
exp

(
S(t, s1, s2, s̃1, s̃2)

)]
. By direct calculations,

E
[
exp

(
C
∥θ∥t(m−2)

t

at
µ2
2|T |

)]
=

(
1 +

∫ ∞

0

ex · P(C ∥θ∥t(m−2)
t

at
µ2
2|T | > x)dx

)
≤

(
1 +

∫ ∞

0

ex · 4 exp(− atx

2CK2µ2
2∥θ∥

t(m−2)
t ∥θ∥2t2t

)dx
) (E.29)

By θmax ≤ c0, ∥θ∥tt ≤ ∥θ∥1θt−1
max and ∥θ∥2t2t ≤ ∥θ∥2θt−2

max, we have

at

µ2
2∥θ∥

t(m−2)
t ∥θ∥2t2t

=
θ
m(t−1)
max (1− θmmax)

µ2
2∥θ∥

t(m−2)
t ∥θ∥2t2t

≥ 1− cm0
µ2
2∥θ∥

m−2
1 ∥θ∥22

Combining this with (E.28)-(E.29), we get

E
[
exp

(
S(t, s1, s2, s̃1, s̃2)

)]
≤
(
1 +

∫ ∞

0

ex · 4 exp(− (1− cm0 )x

2CK2µ2
2∥θ∥

(m−2)
1 ∥θ∥22

)dx
)
e

C
1−cm0

µ2
2∥θ∥

m−2
1 ∥θ∥2

=e
C

1−cm0
µ2
2∥θ∥

m−2
1 ∥θ∥2(

1 + 4
( (1− cm0 )

2CK2µ2
2∥θ∥

m−2
1 ∥θ∥22

− 1
)−1)

,

where the RHS on the last inequality goes 1 as µ2
2∥θ∥m−2

1 ∥θ∥22 → 0. This proves (E.27) and

finishes the proof.

E.3 Proof of Lemma E.1

Recall the definition of [P;π1, . . . , πm]

[P;π1, . . . , πm] :=

K∑
k1,...,km=1

Pk1...kmπ1(k1) · · ·πm(km).

Note that P = M+ P0 and
∑K

k=1 πi(k) = 1, for 1 ≤ i ≤ n. By direct calculations

[P;π1, . . . , πm] =

K∑
k1,...,km=1

Mk1...km
π1(k1) · · ·πm(km) +

K∑
k1,...,km=1

1 · π1(k1) · · ·πm(km)

=[M;π1, . . . , πm] + 1.

Therefore, we are left to show for m > 1

[M;π1, . . . , πm] = x(m) + z(m). (E.30)

We prove it by induction. When m = 2, M ∈ RK×K . By definitions and elementary algebra,

[M;π1, π2] =π
′
1Mπ2

=h′Mh+ y′1Mh+ h′My2 + y′1My2

= [M;h, h] + [M; y1, h] + [M;h, y2]︸ ︷︷ ︸
x(2)

+ [M; y1, y2]︸ ︷︷ ︸
z(2)

.
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Hence, the claim holds for m = 2.

Assume that form = r, the claim holds. Note that for each kr+1 ∈ {1, . . . ,K}, {Mk1...krkr+1
:

1 ≤ k1, . . . , kr ≤ K} forms a r-way symmetric tensor of K dimensions. It follows that

[M;π1, . . . , πr+1] =[M;h, . . . , h, πr+1] +

r∑
s=1

[M;h, . . . , h, ys, h, . . . , h, πr+1]

+

r−1∑
s1=1

r∑
s2=s1+1

[M;h, . . . , h, ys1 , h, . . . , h, ys2 , πs2+1 . . . , πr+1].

Further, decompose πr+1 into h+ yr+1. By direct calculations

[M;π1, . . . , πr, πr+1] =
(
[M;h, . . . , h, h] + [M;h, . . . , h, yr+1]

)
+
( r∑
s=1

[M;h, . . . , h, ys, h, . . . , h, h] +

r∑
s=1

[M;h, . . . , h, ys, h, . . . , h, yr+1]
)

+

m−1∑
s1=1

m∑
s2=s1+1

[M;h, . . . , h, ys1 , h, . . . , h, ys2 , πs2+1 . . . , πr+1]

=[M;h, . . . , h] +

r+1∑
s=1

[M;h, . . . , h, ys, h, . . . , h]

+

r∑
s1=1

r+1∑
s2=s1+1

[M;h, . . . , h, ys1 , h, . . . , h, ys2 , πs2+1 . . . , πr+1],

=xr+1 + zr+1,

which suggests that the claim also holds for m = r + 1. By induction, (E.30) is proved.

E.4 Proof of Lemma E.2

Introduce Nθ =
∑

i3,...,im(dist)(θi3 · · · θim)t and I(i) be the shorthand notation for set {1, . . . , n}\
{i3, . . . , im}. Here, for convenience, we misuse the superscript (i) to indicate that this element

depends on the choice of (i3, . . . , im) whenever it is clear from the context.

By definitions and elementary algebra,

S =
∑

i3,...,im(dist)

(θi1 · · · θim)t

Nθ

K∑
k3,...,km=1
k′
3,...,k

′
m=1

m∏
s=3

w
(s)
is

(ks)w̃
(s)
is

(ks)
Nθ

at

·
[ ∑
i1,i2(dist)∈I(i)

(θi1θi2)
t(y′i1M::k3···km

yi2)(ỹ
′
i1M::k′

3···k′
m
ỹi2)

]
,

(E.31)

LetM::k3···km =
∑K

j=1 b
(k)
j b

(k)
j

′
δ
(k)
j , andM::k′

3···k′
m
=

∑K
j′=1 b

(k′)
j′ b

(k′)
j′

′
δ
(k′)
j be the eigen-decomposition

of the matrices M::k3···km and M::k′
3···k′

m
, respectively. Introduce

X(i, j, j′, k, k′) =
∑

i1,i2(dist)∈I(i)

(θi1θi2)
tδ

(k)
j δ

(k′)
j′ (y′i1b

(k)
j )(y′i2b

(k)
j )(ỹ′i1b

(k′)
j′ )(ỹ′i2b

(k′)
j′ ).

Then we can write

∑
i1,i2(dist)∈I(i)

(θi1θi2)
t(y′i1M::k3···kmyi2)(ỹ

′
i1M::k′

3···k′
m
ỹi2) =

K∑
j,j′=1

X(i, j, j′, k, k′).
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Inserting this into (E.31) gives

S =
∑

i3,...,im(dist)

(θi1 · · · θim)t

Nθ

K∑
k3,...,km=1
k′
3,...,k

′
m=1

m∏
s=3

w
(s)
is

(ks)w̃
(s)
is

(ks)

K∑
j,j′=1

1

K2

(K2Nθ

at
X(i, j, j′, k, k′)

)
.

Note that
∑

i3,...,im(dist)
(θi1 ···θim )t

Nθ

∑K
k3,k

′
3,...,km,k′

m=1

∏m
s=3 w

(s)
is

(ks)w̃
(s)
is

(ks)
∑K

j,j′=1
1

K2 = 1 and

that exp(·) is convex. By Jensen’s inequality,

exp(cS) ≤
∑

i3,...,im
(dist)

(θi3 · · · θim)t

Nθ

K∑
k3,...,km=1
k′
3,...,k

′
m=1

m∏
s=3

w
(s)
is

(ks)w̃
(s)
is

(ks)

K∑
j,j′=1

1

K2
exp

(cK2Nθ

at
X(i, j, j′, k, k′)

)

By assumptions w
(s)
is
, w̃

(s)
is

are independent of yi1 , yi2 , ỹi1 , ỹi2 , 3 ≤ s ≤ m. Taking expectation on

both sides gives

E[exp(cS)] ≤
∑

i3,...,im
(dist)

(θi3 · · · θim)t

Nθ

K∑
k3,...,km=1
k′
3,...,k

′
m=1

m∏
s=3

E[w(s)
is

(ks)]E[w̃(s)
is

(ks)]

K∑
j,j′=1

1

K2

· E
[
exp

(cK2Nθ

at
X(i, j, j′, k, k′)

)]
≤ max

i,j,j′,k,k′
E
[
exp

(cK2Nθ

at
X(i, j, j′, k, k′)

)]
.

Now, to show the claim, note that Nθ :=
∑

i3,...,im(dist)(θi3 · · · θim)t ≤ ∥θ∥t(m−2)
t , we are sufficient

to show that

X(i, j, j′, k, k′) ≤ Cµ2|T |+ Cµ2∥θ∥2t2t, (E.32)

where T is a random variable satisfying P(|T | > x) ≤ 2 exp(−x/(2K2∥θ∥2t2t)), for x > 0.

To see this, we rewrite

X(i, j, j′, k, k′) :=
∑

i1,i2∈I(i)

(1− I{i1=i2})(θi1θi2)
tδ

(k)
j δ

(k′)
j′ (y′i1b

(k)
j )(y′i2b

(k)
j )(ỹ′i1b

(k′)
j′ )(ỹ′i2b

(k′)
j′ )

=δ
(k)
j δ

(k′)
j′ (T1 − T2),

where

T1 =
( ∑
i1∈I(i)

θti1(y
′
i1b

(k)
j )(ỹ′i1b

(k′)
j′ )

)2

, T2 =
∑

i1∈I(i)

(
θti1(y

′
i1b

(k)
j )(ỹ′i1b

(k′)
j′ )

)2

.

Consider T2 first. Note that maxi1{∥yi1∥, ∥ỹi1∥} ≤
√
K and that ∥b(k)j ∥ = ∥b(k

′)
j′ ∥ = 1, ∀

j, j′, k, k′. By direct calculations

|T2| ≤ (K)2
∑
i1

θ2ti1 ≤ C∥θ∥2t2t.

Next, consider T1. Let Z =
∑

i1∈I(i) θti1(y
′
i1
b
(k)
j )(ỹ′i1b

(k′)
j′ ). Note that Z is a sum of n − (m − 2)

independent random variables with |θti1(y
′
i1
b
(k)
j )(ỹ′i1b

(k′)
j′ | ≤

√
K

2
θti1 . By Hoeffding’s inequality

P(|Z| > x) ≤ 2 exp
(
−2x2/(

∑
i1∈I(i)

(2
√
K

2
θti1)

2)
)
, for x > 0.
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Combining this with
∑

i1∈I(i)(2
√
K

2
θti1)

2 ≤ 4K2∥θ∥2t2t and T1 = Z2, it follows that

P(|T1| > x) ≤ 2 exp(−x/(2K2∥θ∥2t2t)), for x > 0. (E.33)

At the same time, recall that δ
(k)
j ,δ

(k′)
j′ are the eigenvalues of the matrices M::k3···km and

M::k′
3···k′

m
. By the assumption ∥M::k3···km∥ ≤ Cµ, for 1 ≤ k3, . . . , km ≤ K, maxj,k{|δ(k)j |} ≤ Cµ.

It is seen that

X(i, j, j′, k, k′) := δ
(k)
j δ

(k′)
j′ (T1 − T2) ≤ Cµ2|T1|+ Cµ2∥θ∥2t2t, with T1 satisfying (E.33).

This shows (E.32) and finishes the proof.

E.5 Proof of Lemma E.3

Similarly, letNθ =
∑

i3,...,im(dist)(θi3 · · · θim)t and I(i) be the shorthand notation for set {1, . . . , n}\
{i3, . . . , im}. Here, for convenience, we misuse the superscript (i) to indicate that this element

depends on the choice of (i3, . . . , im) whenever it is clear from the context. Let M::k3···km
=∑K

j=1 b
(k)
j b

(k)
j

′
δ
(k)
j , andM:k′

2:k
′
4...k

′
m
=

∑K
j′=1 b

(k′)
j′ b

(k′)
j′

′
δ
(k′)
j be the eigen-decomposition of the ma-

trices M::k3···km
and M:k′

2:k
′
4...k

′
m
, respectively. Following the procedures in the proof of Lemma

E.2, we can obtain

exp(cS) ≤
∑

i3,...,im
(dist)

(θi3 · · · θim)t

Nθ

K∑
k3,...,km=1

k′
2,k

′
4,...,k

′
m=1

h(k′2)w̃
(3)
i3

(k3)

m∏
s=4

w
(s)
is

(ks)w̃
(s)
is

(ks)

K∑
j,j′=1

1

K2

· exp
(cK2Nθ

at
X(i, j, j′, k, k′)

)
,

(E.34)

where

X(i, j, j′, k, k′) =
∑

i1,i2(dist)∈I(i)

(θi1θi2)
tδ

(k)
j δ

(k′)
j′ (y′i1b

(k)
j )(y′i2b

(k)
j )(ỹ′i1b

(k′)
j′ )(ỹ′i3b

(k′)
j′ ).

Note that w̃
(3)
i3

may not be independent of ỹi3 which exists in X(i, j, j′, k, k′). Consequently,

we can not directly take expectation on both sides of (E.34) like that in Lemma E.2 to elimi-

nate weight vectors {w(j)
ij

} by a maximum bound. To resolve this, we first derive a bound on

X(i, j, j′, k, k′) to eliminate ỹi3 .We rewrite

X(i, j, j′, k, k′) :=
∑

i1,i2∈I(i)

(1− I{i1=i2})(θi1θi2)
tδ

(k)
j δ

(k′)
j′ (y′i1b

(k)
j )(y′i2b

(k)
j )(ỹ′i1b

(k′)
j′ )(ỹ′i3b

(k′)
j′ )

=δ
(k)
j δ

(k′)
j′ (T1 − T2)(ỹ

′
i3b

(k′)
j′ ),

where

T1 =
( ∑
i1∈I(i)

θti1(y
′
i1b

(k)
j )(ỹ′i1b

(k′)
j′ )

)( ∑
i2∈I(i)

θti2(y
′
i2b

(k)
j )

)
, T2 =

∑
i1∈I(i)

(
θti1(y

′
i1b

(k)
j )

)2

(ỹ′i1b
(k′)
j′ ).

Recall that δ
(k)
j ,δ

(k′)
j′ are the eigenvalues of the matrices M::k3···km

and M:k′
2:k

′
4...k

′
m
. By the

assumption ∥M::k3···km
∥ ≤ Cµ, for 1 ≤ k3, . . . , km ≤ K, maxj,k{|δ(k)j |} ≤ Cµ. Combining this

with ∥b(k
′)

j′ ∥ = 1 and ∥yi3∥ ≤
√
K, we have

X(i, j, j′, k, k′) := δ
(k)
j δ

(k′)
j′ (T1 − T2)(ỹ

′
i3b

(k′)
j′ ) ≤ Cµ2(|T1|+ |T2|).
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Note that T1, T2 (and so the bound) are independent of w
(s)
is
, w̃

(s)
is

, 3 ≤ s ≤ m. Applying this

inequality to the RHS of (E.34) and taking expectation on both sides give

E[exp(cS)] ≤
∑

i3,...,im
(dist)

(θi3 · · · θim)t

Nθ

K∑
k3,...,km=1

k′
2,k

′
4,...,k

′
m=1

h(k′2)E[w̃
(3)
i3

(k3)]

m∏
j=4

E[w(s)
is

(ks)]E[w̃(s)
is

(ks)]

K∑
j,j′=1

1

K2

· E
[
exp

(CNθ

at
µ2(|T1|+ |T2|)

)]
≤ max

i,j,j′,k,k′
E
[
exp

(CNθ

at
µ2(|T1|+ |T2|)

)]
.

Now, to show the claim, note that Nθ :=
∑

i3,...,im(dist)(θi3 · · · θim)t ≤ ∥θ∥t(m−2)
t , it is then

sufficient to show that

(I) : P(|T1| > x) ≤ 4 exp(−x/(2K2∥θ∥2t2t)), ∀x > 0, (II) : |T2| ≤ C∥θ∥2t2t. (E.35)

Consider (I) first. Let Z1 =
∑

i1∈I(i) θti1(y
′
i1
b
(k)
j )(ỹ′i1b

(k′)
j′ ), Z2 =

∑
i2∈I(i) θti2(y

′
i2
b
(k)
j ) and so

T1 = Z1 · Z2. Note that Z1 and Z2 are the sum of n − (m − 2) independent random variables.

Similarly, by Hoeffding’s inequality, for any x > 0

P(|Z1| > x) ≤ 2 exp(−2x/((2K)2∥θ∥2t2t)), P(|Z2| > x) ≤ 2 exp(−2x/((2
√
K)2∥θ∥2t2t)).

Combining this with |T1| = |Z1| · |Z2| and union bound P(|Z1||Z2| > x) ≤ P(|Z1| >
√
x) +

P(|Z1||Z2| >
√
x),

P(|T1| > x) ≤ 2 exp(−x/(2K2∥θ∥2t2t)) + 2 exp(−x/(2K∥θ∥2t2t)) ≤ 4 exp(−x/(2K2∥θ∥2t2t)),

which proves the first claim in (E.35).

Next, consider (II) in (E.35). By maxi1{∥yi1∥, ∥ỹi1∥} ≤
√
K, ∥b(k)j ∥ = ∥b(k

′)
j′ ∥ = 1, ∀ j, j′, k, k′

|T2| :=
∑

i1∈I(i)

(
θti1(y

′
i1b

(k)
j )

)2

(ỹ′i1b
(k′)
j′ ) ≤

∑
i1

θ2ti1 (
√
K)2

√
K ≤ C∥θ∥2t2t,

which proves (II) and finishes the whole proof.

E.6 Proof of Lemma E.4

The proof is similar to that in Lemma E.3. Similarly, let Nθ =
∑

i3,...,im(dist)(θi3 · · · θim)t and

I(i) be the shorthand notation for set {1, . . . , n} \ {i3, . . . , im}. Here, for convenience, we misuse

the superscript (i) to indicate that this element depends on the choice of (i3, . . . , im) when-

ever it is clear from the context. Let M::k3···km
=

∑K
j=1 b

(k)
j b

(k)
j

′
δ
(k)
j , and Mk′

1k
′
2::k

′
5...k

′
m

=∑K
j′=1 b

(k′)
j′ b

(k′)
j′

′
δ
(k′)
j be the eigen-decomposition of the matrices M::k3···km

and Mk′
1k

′
2::k

′
5...k

′
m
,

respectively. Following the procedures in the proof of Lemma E.2, we can obtain

exp(cS) ≤
∑

i3,...,im
(dist)

(θi3 · · · θim)t

Nθ

K∑
k3,...,km=1

k′
1k

′
2,k

′
5,...,k

′
m=1

h(k′1)h(k
′
2)

m∏
s=5

w
(s)
is

(ks)w̃
(s)
is

(ks)

· w̃(3)
i3

(k3)w̃
(4)
i4

(k4)

K∑
j,j′=1

1

K2
· exp

(cK2Nθ

at
X(i, j, j′, k, k′)

)
,

(E.36)
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where

X(i, j, j′, k, k′) =
∑

i1,i2(dist)∈I(i)

(θi1θi2)
tδ

(k)
j δ

(k′)
j′ (y′i1b

(k)
j )(y′i2b

(k)
j )(ỹ′i3b

(k′)
j′ )(ỹ′i4b

(k′)
j′ ).

Note that w̃
(3)
i3

and w̃
(4)
i4

may not be independent of ỹi3 and ỹi4 which exist in X(i, j, j′, k, k′).

Similar to the proof of Lemma E.3, we rewrite

X(i, j, j′, k, k′) :=
∑

i1,i2∈I(i)

(1− I{i1=i2})(θi1θi2)
tδ

(k)
j δ

(k′)
j′ (y′i1b

(k)
j )(y′i2b

(k)
j )(ỹ′i3b

(k′)
j′ )(ỹ′i4b

(k′)
j′ )

=δ
(k)
j δ

(k′)
j′ (T1 − T2)(ỹ

′
i3b

(k′)
j′ )(ỹ′i4b

(k′)
j′ ),

where

T1 =
( ∑
i1∈I(i)

θti1(y
′
i1b

(k)
j )

)2

, T2 =
∑

i1∈I(i)

(
θti1(y

′
i1b

(k)
j )

)2

.

Recall that δ
(k)
j ,δ

(k′)
j′ are the eigenvalues of the matrices M::k3···km

and M:k′
2:k

′
4...k

′
m
. By the

assumption ∥M::k3···km
∥ ≤ Cµ, for 1 ≤ k3, . . . , km ≤ K, maxj,k{|δ(k)j |} ≤ Cµ. Combining this

with ∥b(k
′)

j′ ∥ = 1 and ∥yi3∥ ≤
√
K, we have

X(i, j, j′, k, k′) := δ
(k)
j δ

(k′)
j′ (T1 − T2)(ỹ

′
i3b

(k′)
j′ )(ỹ′i4b

(k′)
j′ ) ≤ Cµ2(|T1|+ |T2|).

Note that T1, T2 (and so the bound) are independent of w
(s)
is
, w̃

(s)
is

, 3 ≤ s ≤ m. Applying this

inequality to the RHS of (E.36) and taking expectation on both sides give

E[exp(cS)] ≤ max
i,j,j′,k,k′

E
[
exp

(CNθ

at
µ2(|T1|+ |T2|)

)]
.

Now, to show the claim, note that Nθ :=
∑

i3,...,im(dist)(θi3 · · · θim)t ≤ ∥θ∥t(m−2)
t , it is then

sufficient to show that

(I) : P(|T1| > x) ≤ 2 exp(−x/(2K∥θ∥2t2t)), ∀x > 0, (II) : |T2| ≤ C∥θ∥2t2t.

The procedures to show them are the same as that in the proof of Lemma E.2. So we omit them.

E.7 Proof of Lemma E.5

The following lemma is used in this proof and we prove it below.

Lemma E.6 (Each element of community structure tensor is close to one). Using the same

notations of Theorem 3.1, for each m ∈ {2, . . . ,M},

max
1≤i1,...,im≤K

{|P(m)
i1···im − 1|} ≍ |µ(m)

2 |. (E.37)

Fix m, for simplicity of notation, we remove the superscript (m) whenever it is clear from

the context. Recall that D = diag(d1, · · · , dK) and h = E[D−1πi/∥D−1πi∥1]. Write for short

s =
∑K

k=1 dkhk and v = (d1, . . . , dK)′. With these notations and direct calculations, for 1 ≤
k3, . . . , km ≤ K

M::k3···km
= D(P::k3···km

− 1K1′
K)D

m∏
j=3

dkj
+ (

m∏
j=3

dkj
− sm−2)vv′ + (sm−2vv′ − 1K1′

K).
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Therefore, to prove the first claim of this lemma, by elementary algebra, it is sufficient to show

that

(a) : max
1≤k1,...,km≤K

{|Pk1···km
− 1|} ≤ C|µ2|,

(b) : max
1≤k≤K

{dk} ≤ C,

(c) : max
1≤i,j≤K

{|(sm−2vv′ − 1K1′
K)ij |} ≤ C|µ2|,

(d) : max
1≤k≤K

{|dk − s|} ≤ C|µ2|,

where we note that (a) is implied by Lemma E.6.

Consider (b). Recall that by degree matching

K∑
k2,...,km=1

DP:k2···km

m∏
j=2

(dkj
hkj

) = 1K . (E.38)

Note that each element of P is non-negative and Pk1···k1
= 1 for 1 ≤ k1 ≤ K. It follows that

dk1
(dk1

hk1
)m−1 ≤

K∑
k2,...,km=1

dk1
Pk1···km

m∏
j=2

(dkj
hkj

) = 1, 1 ≤ k1 ≤ K.

Combining this with our assumption min1≤k≤K{hk} ≥ C,

dk ≤ h
−(m−1)/m
k ≤ C, 1 ≤ k ≤ K, (E.39)

which proves (b).

Next consider (c). Let H be a tensor defined by Hk1···km
= Pk1···km

− 1, for all 1 ≤
k1, . . . , km ≤ K and introduce w as the vector

∑K
k2···km=1DH:k2···km

∏m
j=2(dkj

hkj
). Recall that

s =
∑K

k=1 dkhk. By definitions and calculations, (E.38) can be written as

w + sm−1v = 1K . (E.40)

Note that h′v = s. Left multiplying h′ on both sides gives

h′w + sm = 1. (E.41)

At the same time, inserting (E.40) into sm−2vv′ − 1K1′
K through 1K gives

sm−2vv′ − 1K1′
K =sm−2vv′ − (w + sm−1v)(w + sm−1v)′

=sm−2(1− sm)vv′ − sm−1wv′ − sm−1vw′ − ww′.

Note that by (E.41), 1− sm = h′w. It follows that

sm−2vv′ − 1K1′
K =sm−2h′wvv′ − sm−1wv′ − sm−1vw′ − ww′.

By (E.39), max1≤k≤K{hk} ≤ 1 and elementary algebra

max
1≤i,j≤K

{|(sm−2vv′ − 1K1′
K)ij |} ≤ C∥h∥max · ∥v∥max · ∥w∥max ≤ C∥H∥max,

where ∥ ·∥max is the element-wise maximum norm and ∥H∥max := maxk1,...,km{|Pk1,...,km −1|} ≤
C|µ2|. This proves (c).

On the other hand, by elementary algebra, |(sm−2vv′ − 1K1′
K)ii| ≤ ∥sm−2vv′ − 1K1′

K∥, for
all 1 ≤ i ≤ K and so

|sm−2didi − 1| ≤ C|µ2|.
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Transforming the above formula gives,

di = s−(m−2)/2 +O(|µ2|). (E.42)

Summing up with weight hi in terms of i on two sides and noting that
∑

i hi = 1, it gives

s = s−(m−2)/2 +O(|µ2|). (E.43)

Combining this with (E.42) gives (d).

Next we consider the second claim of this lemma i.e. max1≤i≤K{|di − 1|} ≤ C|µ2|. By

elementary algebra, (E.43) can be rewritten as

s = 1 +

√
s
m−1

+
√
s
m−2∑m−1

j=0

√
s
j

·O(|µ2|),

where we note that
√
sm−1+

√
sm−2∑m−1

j=0

√
sj

≤ 1. Combining this with (E.42) proves the second claim.

E.8 Proof of Lemma E.6

Since the claim is argued for each m-uniform tensor P(m) separately, fixing m, we remove the

superscript (m) whenever it is clear from the context.

Let the K ×Km−1 matrix P denote the matricization of P(m). Let UΣV ′ be the SVD of P ,

where U = (u1, . . . , uK), V = (v1, . . . , vKm−1) and Σ = (diag(µ1, . . . , µK),0K×(Km−1−K)).

To show that claim, it is sufficient to show that

(I) : |µ2| ≤ C max
1≤i1,...,im≤K

{|Pi1···im − 1|}, (II) : max
1≤i1,...,im≤K

{|Pi1···im − 1|} ≤ C|µ2|.

Consider (I) first. Let P0 be the K × Km−1 matrix of ones. Recall that µ2 is the second

singular value of P , and note that the second singular value of P0 is 0. By [4, Corollary 7.3.5,

Page 451],

|µ2| ≤ ∥P − P0∥.

At the same time, by elementary algebra, ∥P − P0∥ ≤ Cmax1≤i1,...,im≤K{|Pi1···im − 1|}. Com-

bining these proves (I).

Next we consider (II).

By our assumption ∥P∥ ≤ C and elemantary algebra,

max
1≤i1,...,im≤K

{|Pi1···im |} = ∥P∥max ≤ ∥P∥ ≤ C,

where ∥ · ∥max is the element-wise maximum norm. Therefore, (II) directly holds for the case

that |µ2| ≥ ϵ for some positive constants ϵ < 1. It is then sufficient to consider the case when

|µ2| < ϵ.

By definitions,

(PP ′)ii ≥ P2
i···i = 1, (PP ′)ij ≥ 0, 1 ≤ i, j ≤ K.

Therefore, by Perron’s theorem [4], the first eigenvalue (in magnitude) and each entry of the first

eigenvector of PP ′ are positive. Note that PP ′ = UΣ2U ′, it follows that

µ1 > 0, u1(i) > 0, 1 ≤ i ≤ K.

Let a = u1µ
1
m
1 and b = v1µ

m−1
m

1 be the scaled version of u1 and v1, where ai > 0 since

u1(i) > 0, 1 ≤ i ≤ K. Introduce P̃ = ab′. For simplicity, we misuse the notation bi2···im
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for bi2+
∑m

s=3 Ks−2(is−1). To show (II), by triangle inequality, it is sufficient to show that for

1 ≤ i1, . . . , im ≤ K,

(IIa) : |Pi1···im − ai1bi2···im | ≤ C|µ2|, (IIb) : |ai1bi2···im − 1| ≤ C|µ2|.

Note that by elementary algebra

|Pi1···im − ai1bi2···im | ≤ ∥P − P̃∥max ≤ ∥P − P̃∥ = |µ2|, (E.44)

This proves (IIa).

It is left to show (IIb). We start by showing that a is a vector with elements are almost the

same. By equality xm − ym = (x− y)
∑m−1

j=0 xm−1−jyj , we have,

|ai1 − ai2 | =
|ami1 − ami2 |∑m−1

j=0 am−j−1
i1

aji2
=

|ai1/ai2 − (ai2/ai1)
m−1|∑m−1

j=0 a−j
i1
aj−1
i2

, 1 ≤ i1, i2 ≤ K.

Combining this with triangle’s inequality |ai1/ai2 − (ai2/ai1)
m−1| ≤ |ai1bi2···i2 − ai1/ai2 | +

|ai1bi2···i2 − (ai2/ai1)
m−1|,

|ai1 − ai2 | ≤
|ai1bi2···i2 − ai1/ai2 |+ |ai1bi2···i2 − (ai2/ai1)

m−1|∑m−1
j=0 a−j

i1
aj−1
i2

, 1 ≤ i1, i2 ≤ K. (E.45)

We claim that for 1 ≤ k ≤ m the following holds and prove it later.∣∣∣ai1bi2···iki1···i1 − ∏k
j=1 aij

aki1

∣∣∣ ≤ (
2

k∑
s=2

∏k
j=s+1 aij

ak−s
i1

+

∏k
j=1 aij

aki1

)
|µ2|, 1 ≤ i1, . . . , im ≤ K. (E.46)

By setting k = m; i3, . . . , im = i2 and k = 1, i1 = i2 separately in the above inequality, we obtain∣∣∣ai1bi2···i2 − am−1
i2

am−1
i1

∣∣∣ ≤ (
2

m∑
s=2

am−s
i2

am−s
i1

+
am−1
i2

am−1
i1

)
|µ2|,

∣∣∣ai1bi2···i2 − ai1
ai2

∣∣∣ ≤ ai1
ai2

|µ2|.

Inserting the above into the RHS of (E.45) and by direct calculations

|ai1 − ai2 | ≤
1∑m−1

j=0 a−j
i1
aj−1
i2

(
2

m∑
s=2

am−s
i2

am−s
i1

|µ2|+
am−1
i2

am−1
i1

|µ2|+
ai1
ai2

|µ2|
)
= (ai1 + ai2)|µ2|.

Combining this inequality with
∑K

j=1(ai − |ai − aj |) ≤
∑K

j=1 aj ≤
∑K

j=1(ai + |ai − aj |) give

K∑
i2=1

(
ai1 − (ai1 + ai2)|µ2|

)
≤

K∑
i2=1

ai2 ≤
K∑

i2=1

(
ai1 + (ai1 + ai2)|µ2|

)
.

By
∑K

i2=1 ai2 = ∥a∥1, we can rewrite it as

∥a∥1
K

1− |µ2|
1 + |µ2|

≤ ai1 ≤ ∥a∥1
K

1 + |µ2|
1− |µ2|

.

Note that |µ2| < ϵ < 1, it is seen that

ai1 =
∥a∥1
K

(1 +O(|µ2|)), 1 ≤ i1 ≤ K. (E.47)

Now we are ready to show (IIb). By triangle inequality

|ai1bi2···im − 1| ≤ |ai1bi2···im −
∏m

j=1 aij

ami1
|+ |

∏m
j=1 aij

ami1
− 1|. (E.48)
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Note that setting k = m in (E.46) gives∣∣∣ai1bi2···im −
∏m

j=1 aij

ami1

∣∣∣ ≤ (
2

m∑
s=2

∏m
j=s+1 aij

am−s
i1

+

∏m
j=1 aij

ami1

)
|µ2|.

Inserting this into (E.48). By direct calculations and (E.47)

|ai1bi2···im − 1| ≤
(
2

m∑
s=2

∏m
j=s+1 aij

am−s
i1

+

∏m
j=1 aij

ami1

)
|µ2|+ |

∏m
j=1 aij

ami1
− 1| = O(|µ2|).

which holds proves (IIb) and finishes the main proof of this lemma.

Lastly, we prove the claim (E.46), which is done by induction. Consider k = 1, the goal is to

show

|ai1bi1···i1 − 1| ≤ |µ2|, 1 ≤ i1 ≤ K (E.49)

Since Pi1···i1 = 1, for 1 ≤ i1 ≤ K. By (E.44), we have

|ai1bi1···i1 − 1| ≤ |µ2|,

which is exactly (E.49) and so the claim (E.46) holds for k = 1.

Now, assume that the claim holds for k = k0 and the goal is to show that this implies that

the claim holds for k = k0 + 1. By triangle’s inequality,∣∣∣ai1bi2···ik0+1i1···i1 −
∏k0+1

j=1 aij

ak0+1
i1

∣∣∣
≤
∣∣∣ai1bi2···ik0+1i1···i1 − Pi1···ikik0+1i1···i1

∣∣∣+ ∣∣∣Pi1···ikik0+1i1···i1 − Pik0+1i1···ik0
i1···i1

∣∣∣
+
∣∣∣Pik0+1i1···ik0

i1···i1 − aik0+1
bi2···ik0

i1···i1

∣∣∣+ ∣∣∣aik0+1
bi2···ik0

i1···i1 −
∏k0+1

j=1 aij

ak0+1
i1

∣∣∣
By (E.44), the first term and the third is bounded by |µ2|. Also, by symmetry of P, the second

term is 0. Moving a factor aik0+1
/ai1 from the last term, it follows that

∣∣∣ai1bi2···ik0+1i1···i1 −
∏k0+1

j=1 aij

ak0+1
i1

∣∣∣ ≤2|µ2|+
aik0+1

ai1

∣∣∣ai1bi2···ik0
i1···i1 −

∏k0

j=1 aij

ak0
i1

∣∣∣
(By the assumption for k = k0) ≤2|µ2|+

aik0+1

ai1

(
2

k0∑
s=2

∏k
j=s+1 aij

ak0−s
i1

+

∏k
j=1 aij

ak0
i1

)
|µ2|

=
(
2

k0+1∑
s=2

∏k0+1
j=s+1 aij

ak0+1−s
i1

+

∏k0+1
j=1 aij

ak0+1
i1

)
|µ2|,

which shows (E.46) also holds for k = k0 + 1. Hence, by induction, (E.46) holds for 1 ≤ k ≤ m.

F Proof of Lemma 2.2

We have the following lemma which is used in the proof of Lemma 2.2 and prove it below.

Lemma F.1. Under the conditions of Lemma 2.2, as n→ ∞, with probability at least 1−O(1/n),

• (a) Under both the null and under the alternative, |α̂n − α̃n| ≤ C log(n)(α̃n/n
3)1/2.

• (b) Under the alternative, α̃n ≤ max1≤k1,k2,k3≤K{Pk1k2k3} ≤ Cα̃n and α̃n = h′(Ph)h +

O( α̃n

n ).
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To show the claims of Lemma 2.2, it is sufficient to show as n→ ∞, for any positive constant

M ,

ψn → N(0, 1) under the null, and P(|ψn| ≤M) → 0 under the alternative. (F.50)

Recall that

α̃n = E[α̂n],

Let A∗ and Ã be two tensors with the same size as A, where A∗
i1i2i3

= Ai1i2i3 − α̂n and

Ãi1i2i3 = Ai1i2i3 − α̃n if i1, i2, i3 are distinct, and A∗
i1i2i3

= Ãi1i2i3 = 0 otherwise. By definitions,

√
2nψn =

∑
1≤i≤n

(∑
j<k A∗

ijk

)2

− n
(
n−1
2

)
α̂n(1− α̂n)(

n−1
2

)
α̂n(1− α̂n)

. (F.51)

Let S0 = {(i1, i2, i3, i4, i5) : 1 ≤ i1, i2, i3, i4, i5 ≤ n; i1 < i2; i4 < i5; i1, i2, i4, i5 ̸= i3}, and write

for short x = (i1, i2, i3, i4, i5). Introduce a subset of S0 by S = {x ∈ S0 : (i1, i2) ̸= (i4, i5)}. Note

that for any x ∈ S0 \ S, (i1, i2) = (i4, i5). It is seen that the numerator on the RHS of (F.51) is∑
x∈S0

A∗
i1i2i3A

∗
i3i4i5 − n

(
n−1
2

)
α̂n(1− α̂n)

=
∑
x∈S

A∗
i1i2i3A

∗
i3i4i5 +

∑
x∈S0\S

A∗
i1i2i3A

∗
i3i4i5 − n

(
n−1
2

)
α̂n(1− α̂n)

=(I) + (II), (F.52)

where

(I) =
∑
x∈S

A∗
i1i2i3A

∗
i3i4i5 , (II) =

∑
x∈S0\S

A∗
i1i2i3A

∗
i3i4i5 − n

(
n−1
2

)
α̂n(1− α̂n).

Consider (I) first. Write

(I) = (Ia) + (Ib), (F.53)

where

(Ia) =
∑
x∈S

Ãi1i2i3Ãi3i4i5 , (Ib) =
∑
x∈S

(A∗
i1i2i3A

∗
i3i4i5 − Ãi1i2i3Ãi3i4i5).

Now, by direct calculations,

(Ib) = (α̃n − α̂n)
∑
x∈S

(Ai1i2i3 +Ai3i4i5 − α̂n − α̃n). (F.54)

Note that for each tuple (i1, i2, i3), there are
(
n−1
2

)
− 1 different x = (i1, i2, i3, i4, i5) in S with

the same (i1, i2, i3). It follows∑
x∈S

Ai1i2i3 =

((
n−1
2

)
− 1

) ∑
i1,i2,i3(dist)

i1<i2

Ai1i2i3 =
n2(n− 1)(n− 2)(n− 3)

4
α̂n. (F.55)

Similarly, we have ∑
x∈S

Ai3i4i5 =
n2(n− 1)(n− 2)(n− 3)

4
α̂n. (F.56)

Inserting (F.55)-(F.56) into (F.54) gives

(Ib) = −n
2(n− 1)(n− 2)(n− 3)

4
(α̃n − α̂n)

2.
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Combining this with (F.53) gives

(I) = (Ia)− n2(n− 1)(n− 2)(n− 3)

4
(α̃n − α̂n)

2. (F.57)

Next consider (II). Note that for any x ∈ S0 \ S, i1 < i2 and (i1, i2) = (i4, i5). By direct

calculations∑
x∈S0\S

A∗
i1i2i3A

∗
i3i4i5 =

1

2

∑
i1,i2,i3(dist)

(A∗
i1i2i3)

2 =
1

2

∑
i1,i2,i3(dist)

(A2
i1i2i3−2α̂nAi1i2i3+α̂

2
n). (F.58)

Since Ai1i2i3 ∈ {0, 1}, we have A2
i1i2i3

= Ai1i2i3 . Combining this with definitions, the RHS of

(F.58) reduces to
n(n− 1)(n− 2)

2
α̂n(1− α̂n).

It follows that

(II) = 0. (F.59)

Combining (F.52), (F.57), and (F.59), it follows from (F.51) that

ψn =
(Ia)− (1/4)n2(n− 1)(n− 2)(n− 3)(α̃n − α̂n)

2

√
2n

(
n−1
2

)
α̂n(1− α̂n)

.

Now, by Lemma F.1, |α̂n − α̃n| ≤ C log(n)(α̃n/n
3)1/2 except for a probability of 1−O(1/n). It

is seen that except for a probability of 1−O(1/n)∣∣∣∣ α̂n

α̃n
− 1

∣∣∣∣ ≤ C
log(n)√
n3α̃n

,

∣∣∣∣ (1/4)n2(n− 1)(n− 2)(n− 3)(α̃n − α̂n)
2

√
2n

(
n−1
2

)
α̂n(1− α̂n)

∣∣∣∣ ≤ C
log2(n)

n1/2
.

By n2α̃n → ∞, we have that in probability,

α̂n

α̃n
→ 1,

(1/4)n2(n− 1)(n− 2)(n− 3)(α̃n − α̂n)
2

√
2n

(
n−1
2

)
α̂n(1− α̂n)

→ 0.

Let

Zn =
(Ia)√

2n
(
n−1
2

)
α̃n(1− α̃n)

.

To show (F.50), it is sufficient to show that as n→ ∞,

Zn → N(0, 1), under the null, (F.60)

and

P(|Zn| > M) → 1 for any M > 0, under the alternative. (F.61)

We now show (F.60)-(F.61). We consider (F.61) first since the proof is shorter. The following

lemma is proved below.

Lemma F.2. Under the conditions of Lemma 2.2, if the alternative hypothesis is true, then as

n→ ∞
E[Zn] ≥ Cn2.5α̃nδ

2
n, Var(Zn) ≤ Cn2α̃n.

Now, suppose the alternative hypothesis is true. Note that by triangle inequality

P(|Zn| ≤M) ≤ P
(∣∣E[Zn]

∣∣− ∣∣Zn − E[Zn]
∣∣ ≤M

)
= P(

∣∣Zn − E[Zn]
∣∣ ≥ ∣∣E[Zn]

∣∣−M),
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where by Chebyshev’s inequality,

P(
∣∣Zn − E[Zn]

∣∣ ≥ ∣∣E[Zn]
∣∣−M) ≤ Var(Zn)

(E[Zn]−M)2
.

At the same time, by Lemma F.2 and our assumptions of n2α̃n → ∞ and n3/2α̃
1/2
n δ2n → ∞,

Var(Zn)

(E[Zn]−M)2
≤ Cn2α̃n

(Cn2.5α̃nδ2n −M)2
≤ 1

C(n3/2α̃
1/2
n δ2n)

2
→ 0.

Combining these proves (F.61).

We now consider (F.60). For 1 ≤ m ≤ n, introduce a subset of S by

S(m) = {x = (i1, i2, i3, i4, i5) ∈ S : max{i1, i2, i3, i4, i5} ≤ m}.

Introduce

T̃n,m =
∑

x∈S(m)

Ãi1i2i3Ãi3i4i5 , Zn,m =
T̃n,m√

2n
(
n−1
2

)
α̃n(1− α̃n)

, (T̃n,0 = Zn,0 = 0),

and

Xn,m = Zn,m − Zn,m−1.

It is seen that

(Ia) = T̃n,n, and Zn = Zn,n =

n∑
m=1

Xn,m. (F.62)

Consider the filtration {Fn,m}1≤m≤n with Fn,m = σ
(
{Ãi1i2i3 : 1 ≤ i1, i2, i3 ≤ m}

)
. It is seen

that for all 1 ≤ m ≤ n,

E[Xn,m|Fn,m−1] = E[Zn,m|Fn,m−1]− Zn,m−1 = 0,

so {Xn,m}nm=1 is a martingale difference sequence with respect to {Fn,m}1≤m≤n. We have the

following lemma which is proved below.

Lemma F.3. Under the conditions of Lemma 2.2, if the null hypothesis is true, then as n→ ∞,

(a)

n∑
m=1

E[X2
n,m|Fn,m−1] → 1, in probability ,

(b)∀ϵ > 0,

n∑
m=1

E[X2
n,mI{|Xn,m| > ϵ}|Fn,m−1] → 0, in probability .

By Lemma F.3 and [3, Corollary 3.1], it follows from (F.62) that under the null,

Zn = Zn,n → N(0, 1).

This proves (F.60).

F.1 Proof of Lemma F.1

We first prove the claim (b). By definitions

α̃n = E[α̂n] =

∑
i1,i2,i3(dist)

Qi1i2i3

n(n− 1)(n− 2)
.

22



Recall that under alternative

Qi1i2i3 =
∑

1≤k1,k2,k3≤K

πi1(k1)πi2(k2)πi3(k3)Pk1k2k3 , 1 ≤ i1, i2, i3 ≤ n.

It is seen that Qi1i2i3 ≤ max1≤k1,k2,k3≤K{Pk1k2k3}, 1 ≤ i1, i2, i3 ≤ n and so

α̃n ≤ max
1≤k1,k2,k3≤K

{Pk1k2k3}, α̃n = h′(Ph)h+O(
max1≤k1,k2,k3≤K{Pk1k2k3}

n
).

At the same time, by our assumption minKk=1{hk} ≥ c0 and elementary calculations

max
1≤k1,k2,k3≤K

{Pk1k2k3} ≤ C
∑

1≤k1,k2,k3≤K

hk1hk2hk3Pk1k2k3 ≤ Cα̃n.

These prove the claims in (b). Now we show the claim (a).

Note that, α̂n is the average of
(
n
3

)
independent Bernoulli random variables with parameter

bounded by Cα̃n under both null and alternative hypothesis. By Bernstein’s inequality,

P((
(
n
3

)
)|α̂n − α̃n| ≥ t

)
≤ 2 exp(− t2(

n
3

)
Cα̃n(1− Cα̃n) +

t
3

).

Let t = C
(
n
3

) log(n)α̃1/2
n

n3/2 , by elementary calculations, we get

P
(
|α̂n − α̃n| ≥ C

log(n)α̃
1/2
n

n3/2

)
≤ O(1/n). (F.63)

This is equivalent to the claim in (a).

F.2 Proof of Lemma F.2

Recall that

Zn = (2n)−1/2 (Ia)(
n−1
2

)
α̃n(1− α̃n)

, with (Ia) =
∑

x∈S(Ai1i2i3 − α̃n)(Ai3i4i5 − α̃n).

Therefore, to show the claims, it is sufficient to show that as n→ ∞

E[(Ia)] ≥ Cn5α̃2
nδ

2
n, (F.64)

and

Var((Ia)) ≤ Cn7α̃3
n. (F.65)

Consider (F.64) first. Since for each x = (i1, i2, i3, i4, i5) ∈ S, Ai1i2i3 is independent of

Ai3i4i5 , by direct calculations,

E[(Ia)] =
∑
x∈S

(Qi1i2i3 − α̃n)(Qi3i4i5 − α̃n).

Let Q̃i1i2i3 = Qi1i2i3 − α̃n, by definitions,

E[(Ia)] =
1

4
(
∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5 −
∑

x∈(S′
0\S′

1)

Q̃i1i2i3Q̃i3i4i5),

where

S′
0 ={x : 1 ≤ i1, i2, i3, i4, i5 ≤ n}
S′
1 ={x ∈ S′

0 : i1, i2, i3(dist); i3, i4, i5(dist); (i1, i2) ̸= (i4, i5)}.
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To show (F.64), it is sufficient to show that∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5 ≥ Cn5α̃2
nδ

2
n, and

∑
x∈(S′

0\S′
1)

Q̃i1i2i3Q̃i3i4i5 = o(
∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5).

(F.66)

Consider the first claim in (F.66). Recall that

Q̃i1i2i3 = Qi1i2i3 − α̃n =
∑

k1,k2,k3

πi1(k1)πi2(k2)πi3(k3)Pk1k2k3 − α̃n, and h =

n∑
i=1

πi/n.

By direct calculations and elementary algebra,∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5 = n4∥Π(Ph)h− α̃n1n∥2.

By triangle inequality, we have ∥Π(Ph)h − α̃n1n∥ ≥
∣∣∥Π(Ph)h − h′(Ph)h1n∥ − ∥(h′(Ph)h −

α̃n)1n∥
∣∣. It follows that∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5 ≥ n4(∥Π(Ph)h− h′(Ph)h1n∥ − ∥(h′(Ph)h− α̃n)1n∥)2. (F.67)

Recall that Σ = Π′Π/n − hh′ and note that Σ1K = 0. Also, recall that HK = K−11K1′
K and

note that IK −HK is a projection matrix. By elementary algebra,

Σ = (IK −HK)Σ(IK −HK).

First, by elementary algebra,

∥Π(Ph)h− h′(Ph)h1n∥2 = n
(
h′(Ph)Π

′Π

n
(Ph)h− h′(Ph)hh′(Ph)h

)
= n((Ph)h)′Σ((Ph)h),

(F.68)

where the RHS equals to

n((Ph)h)′(IK −HK)Σ(IK −HK)(Ph)h. (F.69)

By our assumption λK−1(Σ) = min∥v∥=1,v⊥1K
v′Σv ≥ c0, it is seen that

n((Ph)h)′(IK −HK)Σ(IK −HK)(Ph)h ≥ c0nα̃
2
n∥α̃−1

n (IK −HK)(Ph)h∥2. (F.70)

Recall that δn = ∥α̃−1
n (IK −HK)(Ph)h∥, combining with (F.68)-(F.70), we get

∥Π(Ph)h− h′(Ph)h1n∥2 ≥ c0nα̃
2
nδ

2
n. (F.71)

At the same time, by Lemma F.1,

α̃n = h′(Ph)h+O(
α̃n

n
). (F.72)

By direct calculations,

∥(h′(Ph)h− α̃n)1n∥2 = n(h′(Ph)h− α̃n)
2 = O(

α̃2
n

n
), (F.73)

where by α̃n ≤ max1≤i1,i2,i3≤n{Pi1i2i3} ≤ c0 and our condition n3/2α̃
1/2
n δ2n → ∞,

α̃2
n

n
= o(1) · (nα̃2

nδ
2
n). (F.74)
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Combining (F.72)-(F.74),

∥(h′(Ph)h− α̃n)1n∥2 = o(nα̃2
nδ

2
n). (F.75)

Inserting (F.71) and (F.75) into (F.67) proves the first claim in (F.66).

Next, we consider the second claim in (F.66). Notice that by symmetry, the two leading

terms of
∑

x∈(S′
0\S′

1)
Q̃i1i2i3Q̃i3i4i5 are the following:

O(
∑

1≤i1,i2,i3,i4,i5≤n
i3=i4

Q̃i1i2i3Q̃i3i4i5), and O(
∑

1≤i1,i2,i3,i4,i5≤n
i4=i5

Q̃i1i2i3Q̃i3i4i5). (F.76)

The other terms are O(n3α̃2
n) = o(n5α̃2

nδ
2
n) and thus are negligible. It is therefore adequate to

consider the two terms in (F.76).

Consider the first term in (F.76). By Cauchy-Schwarz inequality,∣∣ ∑
1≤i1,i2,i3,i4,i5≤n

i3=i4

Q̃i1i2i3Q̃i3i4i5

∣∣ ≤ √ ∑
1≤i3≤n

(
∑

1≤i5≤n

Q̃i3i3i5)
2

√ ∑
1≤i3≤n

(
∑

1≤i1,i2≤n

Q̃i1i2i3)
2. (F.77)

Note that by definitions and Lemma F.1, |Q̃i3i3i5 | ≤ Cα̃n. It is seen that∑
1≤i3≤n

(
∑

1≤i5≤n

Q̃i3i3i5)
2 ≤ Cn3α̃2

n. (F.78)

By our condition n3/2α̃
1/2
n δ2n → ∞, we have n2δ2n → ∞. Comparing the RHS of (F.78) with the

first claim of (F.66), the RHS is at a smaller order of
∑

x∈S′
0
Q̃i1i2i3Q̃i3i4i5 . At the same time,∑

1≤i3≤n

(
∑

1≤i1,i2≤n

Q̃i1i2i3)
2 =

∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5 . (F.79)

Inserting (F.78)-(F.79) into (F.77), we have∣∣ ∑
1≤i1,i2,i3,i4,i5≤n

i3=i4

Q̃i1i2i3Q̃i3i4i5

∣∣ = o(
∑
x∈S′

0

Q̃i1i2i3Q̃i3i4i5).

For the second term in (F.76), the analysis is similar, so we omit the details. These prove the

second claim of (F.66), and so complete the proof of (F.64).

Next we consider (F.65). Let W be the tensor with the same size as A, where Wi1i2i3 =

Ai1i2i3 −Qi1i2i3 if i1, i2, i3 are distinct, and Wi1i2i3 = 0 otherwise. By symmetry and definitions,

(Ia) =
∑
x∈S

(Wi1i2i3−Q̃i1i2i3)(Wi3i4i5−Q̃i3i4i5) =
∑
x∈S

(Wi1i2i3Wi3i4i5−2Q̃i1i2i3Wi3i4i5+Q̃i1i2i3Q̃i3i4i5).

(F.80)

Since for any random variables X and Y , Var(X + Y ) ≤ 2Var(X) + 2Var(Y ), we have

Var((Ia)) ≤ 2Var(
∑
x∈S

Wi1i2i3Wi3i4i5) + 2Var(
∑
x∈S

2Q̃i1i2i3Wi3i4i5).

Here, we note that Q̃ is non-random, so the variance of the last term in (F.80) is 0. By direct

calculations,

Var(
∑
x∈S

Wi1i2i3Wi3i4i5) =
∑
x∈S

Var(Wi1i2i3Wi3i4i5) = O(n5α̃2
n),

Var(
∑
x∈S

2Q̃i1i2i3Wi3i4i5) =
1

4

∑
i3i4i5(dist)

(
∑

i1i2(dist)
{i1,i2}̸={i4,i5}

i1,i2 ̸=i3

Qi1i2i3)
2Var(Wi3i4i5) = O(n7α̃3

n).
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By our assumptions, n2α̃n → ∞, and so n5α̃n = o(1) · n7α̃3
n. Combining these gives that

Var((Ia)) ≤ Cn7α̃3
n.

This proves (F.65).

F.3 Proof of Lemma F.3

We first show claim (a). By Chebyshev’s inequality, it is sufficient to show that

E
[ n∑
m=1

E[X2
n,m|Fn,m−1]

]
→ 1, Var(

n∑
m=1

E[X2
n,m|Fn,m−1]) → 0. (F.81)

Introduce

T (m) = E[(
∑

x∈S(m)\S(m−1)

Ãi1i2i3Ãi3i4i5)
2|Fn,m−1].

By definitions,

E[X2
n,m|Fn,m−1] =

E[(
∑

x∈S(m)\S(m−1) Ãi1i2i3Ãi3i4i5)
2|Fn,m−1]

(
√
2n

(
n−1
2

)
αn(1− αn))2

=
T (m)

(
√
2n

(
n−1
2

)
αn(1− αn))2

.

To show (F.81), it is sufficient to show that

E[
n∑

m=1

T (m)] =
n5α2

n(1− αn)
2

2
(1 + o(1)), (F.82)

and that

Var(

n∑
m=1

T (m)) = o(n10α4
n). (F.83)

Consider (F.82) first. Recall that S(m) = {x = (i1, i2, i3, i4, i5) ∈ S : max{i1, i2, i3, i4, i5} ≤
m} and x = (i1, i2, i3, i4, i5) for short. Similarly, for short, we write x′ = (i′1, i

′
2, i

′
3, i

′
4, i

′
5) and let

(S(m)\S(m−1))2 = {(x, x′) : x ∈ S(m)\S(m−1), x′ ∈ S(m)\S(m−1)}.

Let

SS
(m)
1 =

{
(x, x′) ∈ (S(m)\S(m−1))2 : i3 = i′3, {i1, i2, i4, i5} = {i′1, i′2, i′4, i′5}

}
,

SS
(m)
2 =(S(m)\S(m−1))2\SS(m)

1 .

It is seen that the LHS of (F.82) equals to

(I) + (II),

where

(I) = E
[ n∑
m=1

E[
∑

(x,x′)∈SS
(m)
1

Ã2
i1i2i3Ã

2
i3i4i5 |Fn,m−1]

]
,

and

(II) = E
[ n∑
m=1

E[
∑

(x,x′)∈SS
(m)
2

Ãi1i2i3Ãi3i4i5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
|Fn,m−1]

]
.

Notice that for any (x, x′) ∈ SSm
2 , each Ãi1i2i3Ãi3i4i5Ãi′1i

′
2i

′
3
Ãi′3i

′
4i

′
5
is a mean-zero random vari-

able. It follows that

(II) = 0.
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At the same time, note that for any (x, x′) ∈ SS
(m)
1 (where x = (i1, i2, i3, i4, i5) and x′ =

(i′1, i
′
2, i

′
3, i

′
4, i

′
5)), there are two possibilities: (i1, i2, i4, i5) = (i′1, i

′
2, i

′
4, i

′
5) and (i1, i2, i4, i5) =

(i′4, i
′
5, i

′
1, i

′
2). By symmetry,

(I) = 2

n∑
m=1

∑
x∈S(m)\S(m−1)

E
[
Ã2

i1i2i3Ã
2
i3i4i5

]
= 2

∑
x∈S

α2
n(1− αn)

2 = 12n

(
n

4

)
α2
n(1− α2

n).

Combining these gives (F.82).

Next, consider (F.83). In S(m)\S(m−1), we have i3 = m or i2 = m or i5 = m. Let

S
(m)
1 =

{
x ∈ S(m)\S(m−1) : either i2 = m, i5 < m or i5 = m, i2 < m

}
,

S
(m)
2 =(S(m)\S(m−1))\S(m)

1 .

Write

T (m) = T
(m)
1 + 2T

(m)
2 + T

(m)
3 ,

where

T
(m)
1 =E[

∑
x,x′∈S

(m)
1

Ãi1i2i3Ãi3i4i5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
|Fn,m−1],

T
(m)
2 =E[

∑
x∈S

(m)
1 ,x′∈S

(m)
2

Ãi1i2i3Ãi3i4i5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
|Fn,m−1],

T
(m)
3 =E[

∑
x,x′∈S

(m)
2

Ãi1i2i3Ãi3i4i5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
|Fn,m−1].

Notice that for x ∈ S
(m)
1 , x′ ∈ S

(m)
2 , Ãi1i2i3Ãi3i4i5Ãi′1i

′
2i

′
3
Ãi′3i

′
4i

′
5
is mean-zero conditional on

Fn,m−1. It follows directly that

T
(m)
2 = 0.

Also, by definitions, for each x ∈ S
(m)
2 , we must have i3 = m or i2 = i5 = m. Let Em ={

(x, x′) ∈ S
(m)
2 × S

(m)
2 : {i1, i2, i3, i4, i5} = {i′1, i′2, i′3, i′4, i′5}

}
, by direct calculations

T
(m)
3 = |Em|α2

n(1− αn)
2.

It is seen that T
(m)
3 is non-random. Therefore,

T (m) = T
(m)
1 + |Em|α2

n(1− αn)
2, and Var(

n∑
m=1

T (m)) = Var(

n∑
m=1

T
(m)
1 ),

and to show (F.83), it is sufficient to show that

Var(

n∑
m=1

T
(m)
1 ) = o(n10α4

n). (F.84)

By definitions and symmetry

T
(m)
1 = E[4

∑
1≤i1,i2,i3,i4,i

′
1,i

′
2,i

′
3,i

′
4≤m−1

i1<i2;i
′
1<i′2

i1,i2,i4 ̸=i3;i
′
1,i

′
2,i

′
4 ̸=i′3

Ãi1i2i3Ãi3i4mÃi′1i
′
2i

′
3
Ãi′3i

′
4m

|Fn,m−1].

If {i3, i4} ≠ {i′3, i′4}, then Ãi1i2i3Ãi3i4mÃi′1i
′
2i

′
3
Ãi′3i

′
4m

has a conditional mean of zero. Therefore,

we have

T
(m)
1 = T

(m)
11 + T

(m)
12 ,
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where

T
(m)
11 =E[4

∑
1≤i1,i2,i3,i4,i

′
1,i

′
2≤m−1

i1<i2;i
′
1<i′2

i1,i2,i
′
1,i

′
2,i4 ̸=i3

Ãi1i2i3Ã2
i3i4mÃi′1i

′
2i3

|Fn,m−1],

T
(m)
12 =E[4

∑
1≤i1,i2,i3,i4,i

′
1,i

′
2≤m−1

i1<i2;i
′
1<i′2

i1,i2,i4 ̸=i3;i
′
1i

′
2 ̸=i4

Ãi1i2i3Ã2
i3i4mÃi′1i

′
2i4

|Fn,m−1].

Since for any random variables X and Y , Var(X + Y ) ≤ 2Var(X) + 2Var(Y ), to show (F.84), it

is sufficient to show that

Var(

n∑
m=1

T
(m)
11 ) = o(n10α4

n), and Var(

n∑
m=1

T
(m)
12 ) = o(n10α4

n). (F.85)

Consider the first claim in (F.85). Recall that

T̃n,m =
∑

x∈S(m)

Ãi1i2i3Ãi3i4i5 =
∑

1≤i1,··· ,i5≤m
i1<i2;i4<i5
i1,i2,i4,i5 ̸=i3
(i1,i2) ̸=(i4,i5)

Ãi1i2i3Ãi3i4i5 .

By elementary calculations

T
(m)
11 = 4(m− 2)αn(1− αn)T̃n,m−1 + 4(m− 2)αn(1− αn)

∑
1≤i1,i2,i3≤m−1

i1<i2
i1,i2 ̸=i3

Ã2
i1i2i3 .

By inequality Var(X+Y ) ≤ 2Var(X)+2Var(Y ), to show the first claim in (F.85), it is sufficient

to show that

Var(

n∑
m=1

4(m− 2)αn(1− αn)T̃n,m−1) = o(n10α4
n), (F.86)

and

Var(

n∑
m=1

4(m− 2)αn(1− αn)
∑

1≤i1,i2,i3≤m−1
i1<i2

i1,i2 ̸=i3

Ã2
i1i2i3) = o(n10α4

n). (F.87)

Consider the LHS of (F.86), by definitions,

Var(

n∑
m=1

4(m−2)αn(1−αn)T̃n,m−1) =

n∑
m,m′=1

16(m−2)(m′−2)α2
n(1−αn)

2Cov(T̃n,m−1, T̃n,m′−1).

(F.88)

Notice that

Cov(T̃n,m−1, T̃n,m′−1) =
∑

1≤i1,··· ,i5≤m
i1<i2;i4<i5
i1,i2,i4,i5 ̸=i3
(i1,i2) ̸=(i4,i5)

∑
1≤i′1,··· ,i

′
5≤m

i′1<i′2;i
′
4<i′5

i′1,i
′
2,i

′
4,i

′
5 ̸=i′3

(i′1,i
′
2) ̸=(i′4,i

′
5)

E[Ãi1i2i3Ãi3i4i5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
].

Only if {i1, i2, i3, i4, i5} = {i′1, i′2, i′3, i′4, i′5}, E[Ãi1i2i3Ãi3i4i5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
] will be non-zero. Since

there are only a bounded number of ways to pair the indexes, by direct calculations

Cov(T̃n,m−1, T̃n,m′−1) = O(
∑

1≤i1,··· ,i5≤m
i1<i2;i4<i5
i1,i2,i4,i5 ̸=i3
(i1,i2 )̸=(i4,i5)

E[(Ã2
i1i2i3Ã

2
i3i4i5 ]) = O(n5α2

n).
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Combining this with (F.88), it is seen that

Var(

n∑
m=1

4(m− 2)αn(1− αn)T̃n,m−1) = O(n4n5α4
n) = o(n10α4

n).

This proves (F.86).

Next consider the LHS of (F.87), by direct calculations,

Var(

n∑
m=1

4(m− 2)αn(1− αn)
∑

1≤i1,i2,i3≤m−1
i1<i2

i1,i2 ̸=i3

Ã2
i1i2i3) ≤16n4α2

n(1− αn)
2Var(

∑
1≤i1,i2,i3≤n

i1<i2
i1,i2 ̸=i3

Ã2
i1i2i3)

=16n4α2
n(1− αn)

2 ·
∑

1≤i1,i2,i3≤n
i1<i2

i1,i2 ̸=i3

3 ·Var(Ã2
i1i2i3)

=O(n7α3
n).

By our assumption n2α̃n → ∞ (i.e., n2αn → ∞), the RHS of the above inequality is o(n10α4
n).

This proves (F.87) and completes the first claim of (F.85).

Next consider the second claim in (F.85), by definitions,

Var(

n∑
m=1

T
(m)
12 ) =

n∑
m,m′=1

16α2
n(1−αn)

2
∑

1≤i1,··· ,i6≤m
i1<i2;i4<i5

i1,i2 ̸=i3;i4,i5 ̸=i6
i3 ̸=i6

∑
1≤i′1,··· ,i

′
6≤m

i′1<i′2;i
′
4<i′5

i′1,i
′
2 ̸=i′3;i

′
4,i

′
5 ̸=i′6

i′3 ̸=i′6

E[Ãi1i2i3Ãi4i5i6Ãi′1i
′
2i

′
3
Ãi′4i

′
5i

′
6
].

Similarly, it is sufficient to consider terms that satisfy {i1, · · · , i6} = {i′1, · · · , i′6}, hence

Var(

n∑
m=1

T
(m)
12 ) = O(

n∑
m,m′=1

16α2
n(1− αn)

2
∑

1≤i1,··· ,i6≤m
i1<i2;i4<i5

i1,i2 ̸=i3;i4,i5 ̸=i6
i3 ̸=i6

E[Ã2
i1i2i3Ã

2
i4i5i6 ]) = O(n8α4

n).

Note that the RHS above is o(n10α4
n). This proves the second claim in (F.85) and completes the

proof of claim (a) of (F.81).

Now we consider the claim (b), where the goal is to show that

∀ϵ > 0,

n∑
m=1

E[X2
n,mI{|Xn,m| > ϵ}|Fn,m−1] → 0, in probability. (F.89)

By Cauchy-Schwarz inequality

∣∣ n∑
m=1

E[X2
n,mI{|Xn,m| > ϵ}|Fn,m−1]

∣∣ ≤ n∑
m=1

√
E[X4

n,m|Fn,m−1]
√
P(|Xn,m| > ϵ|Fn,m−1). (F.90)

At the same time, by Markov’s inequality,√
P(|Xn,m| > ϵ|Fn,m−1) ≤

√
E[X4

n,m|Fn,m−1]/ϵ4. (F.91)

Combining (F.90) and (F.91) gives

∣∣ n∑
m=1

E[X2
n,mI{|Xn,m| > ϵ}|Fn,m−1]

∣∣ ≤ n∑
m=1

E[X4
n,m|Fn,m−1]/ϵ

2.
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To show (F.89), by Markov’s inequality, it is sufficient to show that

E
[ n∑
m=1

E[X4
n,m|Fn,m−1]

]
→ 0. (F.92)

Recall that

Xn,m =

∑
x∈S(m)\S(m−1) Ãi1i2i3Ãi3i4i5√

2n
(
n−1
2

)
α̃n(1− α̃n)

.

Write for short y = (i1, i2, i3, i4, i5, j1, j2, j3, j4, j5), similarly, y′ = (i′1, i
′
2, i

′
3, i

′
4, i

′
5, j

′
1, j

′
2, j

′
3, j

′
4, j

′
5).

To show (F.92), it is sufficient to show that

E[
n∑

m=1

∑
y,y′∈(S(m)\S(m−1))2

Ãi1i2i3Ãi3i4i5Ãj1j2j3Ãj3j4j5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
Ãj′1j

′
2j

′
3
Ãj′3j

′
4j

′
5
] = o(n10α4

n).

Similarly, to have non-zero expected value, Ãi1i2i3Ãi3i4i5Ãj1j2j3Ãj3j4j5Ãi′1i
′
2i

′
3
Ãi′3i

′
4i

′
5
Ãj′1j

′
2j

′
3
Ãj′3j

′
4j

′
5

must be in quadratic form. Since there are only a bounded number of ways to pair them into

quadratic forms, it is sufficient to show that

n∑
m=1

∑
y∈(S(m)\S(m−1))2

E[Ã2
i1i2i3Ã

2
i3i4i5Ã

2
j1j2j3Ã

2
j3j4j5 ] = o(n10α4

n).

Recall that for each x ∈ S(m)\S(m−1), there are at least one index of (i1, i2, i3, i4, i5) is m. It is

seen that

n∑
m=1

∑
y∈(S(m)\S(m−1))2

E[Ã2
i1i2i3Ã

2
i3i4i5Ã

2
j1j2j3Ã

2
j3j4j5 ] ≤

n∑
m=1

n10−2
(
αn(1− αn)

)4

= o(n10α4
n).

This finishes the proof.

G Proof of Theorem 3.2

Recall that ϕn = max2≤m≤M{ϕ(m)
n }. To prove this theorem, it is sufficient to show that if there

is a m ∈ {2, . . . ,M} such that ∥θ(m)∥m−2
1 ∥θ(m)∥2(µ(m)

2 )2 ≫ log(n), we will have

ϕ(m)
n → 0 under H0, and ϕ(m)

n → ∞ under H1.

Fix m. For simplicity, we remove the superscript (m) whenever it is clear from the context.

Let

α̃n = E[α̂n], β =

K∑
k2,...,km=1

P:k2···km
gk2

· · · gkm
/([P; g, . . . , g])(m−1)/m.,

where g ∈ RK is defined by gk = (1/∥θ∥1)
∑n

i=1 θiπi(k), 1 ≤ k ≤ K.

Introduce ideal counterparts of Vn and η by

Ṽn =
(
n
m

)
α̃n(1− α̃n) and η∗ = ΘΠβ, respectively. (G.93)

The following lemma is used in this proof and we prove it after the main proof.

Lemma G.1. With the conditions of Theorem 3.2, as n→ ∞,

• (a) Under both the null and alternative, Ṽn/Vn → 1 in probability.

30



• (b) Under the null, with a probability at least 1 − O(1/n), max1≤i≤n{|ηi/η∗i − 1|} ≤
C(nm−1θmmax/ log(n))

−1/2.

• (c) Under the alternative, with a probability at least 1−O(1/n), max1≤i≤n{|ηi/η∗i − 1|} ≤
C(nm−1θmmax/ log(n))

−1/2+Cγn/n and nmθmmaxγn/(n
m+1θmmax log(n))

1/2 → ∞, where γn =

max1≤k1,...,km≤K{|Pk1···km − βk1 · · ·βkm |}.

G.1 Main Proof of Theorem 3.2

Recall that ϕ
(m)
n = Qn/

√
n log(n)1.1Vn. The goal is to show that with probability 1− o(1)

Qn ≤ (n log(n)1.1Vn)
1/2 under H

(n)
0 , Qn ≥ (n log(n)1.1Vn)

1/2 under H
(n)
1 , (G.94)

By (a) in Lemma G.1, Ṽn/Vn → 1 in probability. Hence to show (G.94), it is sufficient to show

that with probability 1− o(1)

Qn ≤ 0.5(n log(n)1.1Ṽn)
1/2 under H

(n)
0 , Qn ≥ 1.5(n log(n)1.1Ṽn)

1/2 under H
(n)
1 . (G.95)

Recall that

Qn = max
S=(S1,...,Sm+1)∈B

max
1≤k1,...,km≤m+1

{|XS,k1···km |},

where

XS,k1···km
=

∑
i1∈Sk1

,...,im∈Skm

i1,...,im(dist)

(Ai1···im − ηi1 · · · ηim).

Also, recall that η∗ is the ideal counterparts of η, defined in (G.93). Introduce a counterpart of

XS,k1···km by replacing η with η∗

X̃S,k1···km =
∑

i1∈Sk1
,...,im∈Skm

i1,...,im(dist)

(Ai1···im − η∗i1 · · · η
∗
im).

Let

Q̃n = max
S=(S1,...,Sm+1)∈B

max
1≤k1,...,km≤m+1

{|X̃S,k1···km
|}.

Note that for any number x1, x2, . . . , xn and y1, y2, . . . , yn,

|max{x1, x2, . . . , xn} −max{y1, y2, . . . , yn}| ≤ max{|x1 − y1|, |x2 − y2|, . . . , |xn − yn|},

It is seen that

|Qn − Q̃n| ≤ max
S

max
1≤k1,...,km≤m+1

{|XS,k1···km
− X̃S,k1···km

|}. (G.96)

At the same time, by definitions and direct calculations, for all S = (S1, . . . , Sm+1) ∈ B and

1 ≤ k1, . . . , km ≤ m+ 1

|XS,k1···km − X̃S,k1···km | ≤ |Sk1 | · · · |Skm | max
1≤i1,...,im≤n

|ηi1 · · · ηim − η∗i1 · · · η
∗
im |, (G.97)

where by (b) and (c) in Lemma G.1, except for a probability O(1/n)

max
1≤i≤n

{
| ηi
η∗i

− 1|
}
≤ C

( log(n)

nm−1θmmax

)1/2

under H0, (G.98)

and

max
1≤i≤n

{
| ηi
η∗i

− 1|
}
≤ C

( log(n)

nm−1θmmax

)1/2

+
Cγn
n

under H1. (G.99)
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Here γn denotes max1≤k1,...,km≤K{|Pk1···km
− βk1

· · ·βkm
|} under H1. Note that by our reg-

ular conditions and elementary calculations, log(n)/(nm−1θmmax) = o(1) and γn/n = O(1/n).

Therefore, max1≤i≤n

{
| ηi

η∗
i
− 1|

}
= o(1) under both hypotheses. By Taylor’s expansion, for

1 ≤ i1, . . . , im ≤ n

|ηi1 · · · ηim − η∗i1 · · · η
∗
im | ≤ Cη∗i1 · · · η

∗
im max

1≤i≤n

{
| ηi
η∗i

− 1|
}
. (G.100)

Combining (G.96)-(G.100) and observe that η∗i ≤ Cθmax and |Skj | ≤ n, 1 ≤ j ≤ m, with

probability 1− o(1)

|Qn − Q̃n| ≤ C
(
log(n)nm+1θmmax

)1/2

under H0, (G.101)

and

|Qn − Q̃n| ≤ C
(
log(n)nm+1θmmax

)1/2

+ Cγnn
m−1θmmax under H1 (G.102)

Note that by direct calculations, we have Ṽn ≍ nmθmmax. Therefore, to show (G.95), it is sufficient

to show that with probability 1− o(1)

(I) : Q̃n ≤ 0.5(n log(n)1.1Ṽn)
1/2 under H

(n)
0 ,

(II) : Q̃n ≥ 2(n log(n)1.1Ṽn)
1/2 + Cγnn

m−1θmmax under H
(n)
1 .

Consider (I) first. Recall that

Q̃n = max
S=(S1,...,Sm+1)∈B

max
1≤k1,...,km≤m+1

{|X̃S,k1···km
|},

where the RHS is the maximum of

≤ mnmm = mn+m

random variables. By union bound, it is sufficient to show that for every S = (S1, . . . , Sm+1) ∈ B

and 1 ≤ k1, . . . , km ≤ m+ 1, except for a probability of O(m−(n+m)n−1)∣∣X̃S,k1···km

∣∣ ≤ 0.5(n log(n)1.1Ṽn)
1/2. (G.103)

Now we are going to prove (G.103). Note that under null hypothesis, η∗ = θ. By definitions

X̃S,k1···km =
∑

i1∈Sk1
,...,im∈Skm

i1,...,im(dist)

(Ai1···im − θi1 · · · θim),

where by symmetry the RHS is a sum of no more than
(
n
m

)
unique independent random vari-

ables, each of which has mean 0 and variance ≤ (m!)2θi1 · · · θim(1− θi1 · · · θim). By Bernstein’s

inequality, for any t > 0,

P
(∣∣X̃S,k1···km

∣∣ ≥ t
)
≤ 2exp

(
− t2∑

i1∈Sk1
,...,im∈Skm

i1,...,im(unique)

(m!)2θi1 · · · θim(1− θi1 · · · θim) + t/3

)
.

Since
∑

i1∈Sk1
,...,im∈Skm

i1,...,im(unique)

(m!)2θi1 · · · θim(1− θi1 · · · θim) ≤ Cnmθmmax, it follows that

P
(∣∣X̃S,k1···km

∣∣ ≥ t
)
≤ 2exp

(
− t2

Cnmθmmax + t/3

)
. (G.104)
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Taking t = (n log(n)Ṽn)
1/2 and noting that (1/C)

√
nm+1 log(n)θmmax ≤ t ≤

√
nm+1 log(n)θmmax,

exp

(
− t2

Cnmθmmax + t/3

)
≤ exp

(
−

(
(1/C)

√
nm+1 log(n)θmmax

)2

Cnmθmmax +
√
nm+1 log(n)θmmax/3

)
.

Combining this with our assumption ∥θ∥m−2
1 ∥θ∥2/ log(n) → ∞ and θmax ≤ Cθmin, by elementary

calculations, the RHS of (G.104) is O(exp(−Cn log(n))). This proves (G.103).

Next, consider (II) for the alternative case. Let S∗
k denote the true partition set {1 ≤ i ≤

n : node i is in community k}, 1 ≤ k ≤ K. Also, recall that

γn = max
1≤k1,...,km≤K

{|Pk1···km
− βk1

· · ·βkm
|}.

Suppose the maximum on the right hand side is assumed at (k1, . . . , km) = (k∗1 , . . . , k
∗
m) and so

γn = |Pk∗
1 ···k∗

m
− βk∗

1
· · ·βk∗

m
|.

Without loss of generality, assume k∗1 , . . . , k
∗
m are distinct. The proofs for the cases that k∗1 , . . . , k

∗
m

are not distinct are similar, so we omit them.

Now let S∗ =
(
Sk∗

1
, . . . , Sk∗

m
, {1, · · · , n}\(Sk∗

1
∪ · · · ∪ Sk∗

m
)
)
. It follows that S∗ ∈ B. By

definitions,

Q̃n ≥ |X̃S∗,k∗
1 ···k∗

m
|.

Therefore, to show (II), it is sufficient to show that except for a probability of 1−O(1/n),

|X̃S∗,k∗
1 ···k∗

m
| ≥ C(n log(n)1.1Ṽn)

1/2 + Cγnn
m−1θmmax. (G.105)

Write

X̃S∗,k∗
1 ···k∗

m
:=

∑
i1∈Sk∗

1
,...,im∈Sk∗

m

(Ai1···im − η∗i1 · · · η
∗
im) = (I) + (II), (G.106)

where

(I) =
∑

i1∈Sk∗
1
,...,im∈Sk∗

m

(θi1 · · · θimPk∗
1 ...k

∗
m
− η∗i1 · · · η

∗
im),

and

(II) =
∑

i1∈Sk∗
1
,...,im∈Sk∗

m

(Ai1···im − θi1 · · · θimPk∗
1 ···k∗

m
).

By definitions, η∗i1 · · · η
∗
im

= θi1 · · · θimβk∗
1
· · ·βk∗

m
, for i1 ∈ Sk∗

1
, . . . , im ∈ Sk∗

m
. It is seen that

|(I)| = ∥θ∥m1 gk∗
1
· · · gk∗

m
γn.

By our assumption maxKk=1{hk} ≤ CminKk=1{hk} and θmax ≤ Cθmin,

∥θ∥m1 gk∗
1
· · · gk∗

m
≥ Cnmθmmax,

and so

|(I)| ≥ Cnmθmmaxγn. (G.107)

Write for short

N = |S∗
k∗
1
| · · · |S∗

k∗
m
|.

Note that (II) is a sum of no more than N independent random variables, each with a mean of

0 and a variance less than Cθmmax. By Bernstein’s Lemma, for any t > 0,

P(|(II)| ≥ t) ≤ exp(− t2

NCθmmax + t/3
). (G.108)
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Taking t = (log(n)Ṽn)
1/2. Note that t ≍ (log(n)nmθmmax)

1/2 and N ≤ nm, by direct calculations

exp(− t2

NCθmmax + t/3
) = O(1/n).

Putting this into (G.108), gives except for a probability of O(1/n),

|(II)| ≤ (log(n)Ṽn)
1/2. (G.109)

Inserting (G.107)-(G.109) into (G.106) gives that except for a probability of O(1/n),

|X̃S∗,k∗
1 ···k∗

m
| ≥ Cnmθmmaxγn − (log(n)Ṽn)

1/2, (G.110)

where we note that by Lemma G.1, nmθmmaxγn/(n log(n)
1.1Ṽn)

1/2 → ∞. This proves (G.105)

and finishes the proof.

G.2 Proof of Lemma G.1

Consider the claim (a). By definitions

Vn

Ṽn
− 1 =

(α̂n − α̃n)(1− α̂n − α̃n)

α̃n(1− α̃n)
. (G.111)

Note that α̂n is the average of
(
n
m

)
independent Bernoulli random variables with parameters

bounded by Cθmmax under both null and alternative hypothesis. By Bernstein’s inequality,

P((
(
n
m

)
)|α̂n − α̃n| ≥ t

)
≤ 2 exp(− t2

C
(
n
m

)
θmmax +

t
3

).

Let t = C log(n)(
(
n
m

)
θmmax)

1/2, by elementary calculations, we get

P
(
|α̂n − α̃n| ≥ C log(n)(θmmax/

(
n
m

)
)1/2

)
≤ o(1/n).

Combining this with (G.111) and α̃n ≤ Cθmmax ≤ Ccm0 < 1, by elementary calculations,∣∣∣∣Vn
Ṽn

− 1

∣∣∣∣ ≤ C log(n)(
(
n
m

)
θmmax)

−1/2, except for a probability of O(1/n),

where by our conditions nm−1θmmax/ log(n) → ∞ (implied by ∥θ∥m−2
1 ∥θ∥2µ2

2/ log(n) → ∞), the

RHS is o(1). Therefore Vn/Ṽn → 1 in probability.

Combining this with Slutsky’s Lemma, we get Ṽn/Vn → 1 in probability and finish the proof

of (a).

Next we consider the claim (b) and the first claim in (c). Our goal is to show that except for

a probability O(1/n)

max
1≤i≤n

{
| ηi
η∗i

− 1|
}
≤ C

( log(n)

nm−1θmmax

)1/2

, under H0 (G.112)

and

max
1≤i≤n

{
| ηi
η∗i

− 1|
}
≤ C

( log(n)

nm−1θmmax

)1/2

+
Cγn
n

, under H1. (G.113)

Recall that

η = u(⌈
m−1

2 ⌉) and u(k) = g(u(k−1)), 1 ≤ k ≤ m,
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where for 1 ≤ i ≤ n

Li1(u) =

∑
i2,...,im(distinct) Ai1···im +

∑
i2,...,im(non-distinct) ui1 · · ·uim(∑

i1,...,im(distinct) Ai1···im +
∑

i1,...,im(non-distinct) ui1 · · ·uim
)(m−1)/m

.

Let I(i1) denote {1, . . . , n} \ {i1}. We claim that if the following events

E1 : max
1≤i1≤n

{∣∣∣ ∑
i2,...,im∈I(i1)

(dist)

(Ai1···im −Qi1···im)
∣∣∣} ≤(nm−1θmmax log(n))

1/2,

E2 :
∣∣∣ ∑
i1,...,im
(dist)

(Ai1···im −Qi1···im)
∣∣∣ ≤(nmθmmax)

1/2
(G.114)

hold then for 1 ≤ k ≤ m

max
1≤i≤n

{|Li(u
(k))

η∗i
− 1|} ≤ C

( log(n)

nm−1θmmax

)1/2

+
C

n
max
1≤i≤n

{|u
(k)
i

η∗i
− 1|}+ C

γn
n
, (G.115)

where by definitions γn is 0 under H0.

Note that inequality (G.115) implies the claims (G.112)-(G.113). To see this, recall that

u(k) = g(u(k−1)). If inequality (G.115) holds, then

max
1≤i≤n

{|u
(k)
i

η∗i
− 1|} = max

1≤i≤n
{|Li(u

(k−1))

η∗i
− 1|}

≤C
( log(n)

nm−1θmmax

)1/2

+
C

n
max
1≤i≤n

{|u
(k−1)
i

η∗i
− 1|}+ Cγn

n

···
≤C

( log(n)

nm−1θmmax

)1/2

(1 + o(1)) +
C

nk
max
1≤i≤n

{|u
(0)
i

η∗i
− 1|}+ Cγn

n
(1 + o(1))

(Note that u(0) = 0) ≤C
( log(n)

nm−1θmmax

)1/2

+
C

nk
+
Cγn
n

.

Combining this with η = u(⌈
m−1

2 ⌉), it follows that n−k (k = ⌈m−1
2 ⌉) is a minor term and so

max1≤i≤n{|ηi/η∗i − 1|} ≤ C(log(n)/nm−1θmmax)
1/2 + Cγn/n (i.e., the claims (G.112)-(G.113)).

Therefore, it is sufficient to show that events (G.114) hold except for a probability O(1/n)

and that inequality (G.115) holds for 1 ≤ k ≤ m given these events.

First, we show that the events E1 and E2 hold with a probability of 1−O(1/n).

Consider event E1 first. For 1 ≤ i1 ≤ n, note that by symmetry,∑
i2,...,im∈I(i1)

(dist)

(Ai1···im −Qi1···im) =
∑

i2<···<im∈I(i1)

(m− 1)!(Ai1···im −Qi1···im),

where the RHS is a sum of
(
n−1
m−1

)
independent centered Bernoulli random variables with param-

eters bounded by Cθmmax. By Bernstein’s inequality, for any t1 > 0

P
( ∑
i2,...,im∈I(i1)

(dist)

(Ai1···im −Qi1···im) > t1

)
≤ exp(− t21

Cnm−1θmmax + t1/3
).

Similarly, for event E2, we have for any t2 > 0

P
( ∑
i1,...,im
(dist)

(Ai1···im −Qi1···im) > t2

)
≤ exp(− t22

Cnmθmmax + t2/3
).
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Letting t1 =
√
2C(nm−1θmmax log(n))

1/2 and t2 = (nmθmmax)
1/2 and by direct calculations

P
( ∑
i2,...,im∈I(i1)

(dist)

(Ai1···im −Qi1···im) >
√
2C(nm−1θmmax log(n))

1/2
)
≤ exp(−2 log(n)) = O(1/n2).

and

P
( ∑
i1,...,im

(Ai1···im −Qi1···im) > (nmθmmax)
1/2

)
≤ exp(−n/C) = o(1/n2).

Combining these with union bound over 1 ≤ i1 ≤ n, we see that events E1 and E2 hold except

for a probability O(1/n).

Next, we show inequality (G.115) when (G.114) is given.

By definitions (G.93) and elementary algebra, η∗ can be written as

η∗ =

∑n
i2,...,im=1 Qi1···im

(
∑n

i1,...,im=1 Qi1···im)
m−1
m

.

For 1 ≤ i1 ≤ n and 0 ≤ k ≤ m, we can then write

Li1(u
(k))

η∗i1
= (I(k))i1(II

(k))
−m−1

m
i1

,

where

(I(k))i1 =

∑
i2,...,im(distinct) Ai1···im +

∑
i2,...,im(non-distinct) u

(k)
i1

· · ·u(k)im∑n
i2,...,im=1 Qi1···im

and

(II(k))i1 =

∑
i1,...,im(distinct) Ai1···im +

∑
i1,...,im(non-distinct) u

(k)
i1

· · ·u(k)im∑n
i1,...,im=1 Qi1···im

.

Therefore to show (G.115), by Taylor’s expansion, it is sufficient to show that

max
1≤i≤n

{|(I(k))i − 1|} = o(1), max
1≤i≤n

{|(II(k))i − 1|} = o(1), (G.116)

max
1≤i≤n

{|(I(k))i − 1|} ≤ C
( log(n)

nm−1θmmax

)1/2

+
C

n
max
1≤i≤n

{|u
(k)
i

η∗i
− 1|}+ C

γn
n

(G.117)

and that

max
1≤i≤n

{|(II(k))i − 1|} ≤ C
( log(n)

nm−1θmmax

)1/2

+
C

n
max
1≤i≤n

{|u
(k)
i

η∗i
− 1|}+ C

γn
n
. (G.118)

Note that by triangle’s inequality,

|(I(k))i1 − 1| ≤
∣∣∣
∑

i2,...,im∈I(i1)

(distinct)

(Ai1···im −Qi1···im)∑n
i2,...,im=1 Qi1···im

∣∣∣
+
∣∣∣
∑

i2,...,im
(non-distinct)

(u
(k)
i1

· · ·u(k)im
− η∗i1 · · · η

∗
im
)∑n

i2,...,im=1 Qi1···im

∣∣∣
+
∣∣∣
∑

i2,...,im
(non-distinct)

(η∗i1 · · · η
∗
im

−Qi1···im)∑n
i2,...,im=1 Qi1···im

∣∣∣.
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By event E1 and Qi1···im ≍ θmmax, the first term on the RHS is ≤ C(nm−1θmmax/ log(n))
−1/2. At

the same time, by definitions and elementary algebra, |η∗i1 · · · η
∗
im

− Qi1···im | ≤ θi1 · · · θimγn. It

follows that

|(I(k))i1 − 1| ≤ C
( log(n)

nm−1θmmax

)1/2

+
C

n
max

1≤i1,...,im≤n

{∣∣∣u(k)i1
· · ·u(k)im

η∗i1 · · · η
∗
im

− 1
∣∣∣}+ C

γn
n
. (G.119)

Similarly, by event E2 and elementary calculations, we have

|(II(k))i1 − 1| ≤C
( 1

nmθmmax

)1/2

+
C

n
max

1≤i1,...,im≤n

{∣∣∣u(k)i1
· · ·u(k)im

η∗i1 · · · η
∗
im

− 1
∣∣∣}+ C

γn
n

≤C
( log(n)

nm−1θmmax

)1/2

+
C

n
max

1≤i1,...,im≤n

{∣∣∣u(k)i1
· · ·u(k)im

η∗i1 · · · η
∗
im

− 1
∣∣∣}+ C

γn
n
.

(G.120)

Therefore, using Taylor’s expansion on u
(k)
i1

· · ·u(k)im
/(η∗i1 · · · η

∗
im
), to show (G.116)-(G.118), it is

sufficient to show that

max
1≤i≤n

{|u
(k)
i

η∗i
− 1|} = o(1), 1 ≤ k ≤ K,

where we recall that our original goal is to show

max
1≤i≤n

{|Li(u
(k))

η∗i
− 1|} ≤ C

( log(n)

nm−1θmmax

)1/2

+
C

n
max
1≤i≤n

{|u
(k)
i

η∗i
− 1|}+ C

γn
n
,

Noting that u(k) = g(u(k−1)). Using induction, we only need to verify that max1≤i≤n{|Li(u
(0))/η∗i −

1|} = o(1). To see this, by u(0) = 0, we have

max
1≤i1,...,im≤n

∣∣∣u(0)i1
· · ·u(0)im

η∗i1 · · · η
∗
im

− 1
∣∣∣ = 1 = max

1≤i≤n

{∣∣∣u(0)i

η∗i
− 1

∣∣∣}.
Combining this with (G.119)-(G.120), we get (G.116)-(G.118) hold for k = 0. It follows that

max
1≤i≤n

{|Li(u
(0))

η∗i
− 1|} ≤ C max

1≤i≤n
{|(I(0))i − 1|}+ C max

1≤i≤n
{|(II(0))i − 1|} = o(1).

This finishes the proof of the claim (b) and the first claim in (c).

Lastly, consider the second claim of (c). Let G be a m−way symmetric tensor of dimension

K defined by

Gk1···km
= βk1

· · ·βkm
, 1 ≤ k1, . . . , km ≤ K,

and G be the matricization of G. By [4, Corollary 7.3.5, Page 451],

|σ2(P )− σ2(G)| ≤ ∥P −G∥, (G.121)

where σ2(B) denotes the second largest singular value of matrix B. Note that by definitions,

the k2 +
∑m

j=3K
kj−1(kj − 1)-th column of the matrix G can be written as the following form

G:,k2+
∑m

j=3 Kkj−1(kj−1) = β · (βk2
· · ·βkm

), 1 ≤ k2, . . . , km ≤ K.

It is seen that G is a rank-one matrix and so σ2(G) = 0. Also, by the definition σ2(P ) =

|µ2|. Combining these with (G.121) and noting that ∥P −G∥ ≤ Cmax1≤k1,...,km≤K{|Pk1···km
−

βk1
· · ·βkm

|} = Cγn, we obtain

|µ2| ≤ ∥P −G∥ ≤ Cγn.

By our assumption ∥θ∥m−2
1 ∥θ∥2µ2

2/ log(n)
1.1 → ∞ and θmax ≤ Cθmin, the above inequality

implies nm−1θmmaxγ
2
n/ log(n)

1.1 → ∞. It follows that

nmθmmaxγn/(n
m+1θmmax log(n)

1.1)1/2 = C(nm−1θmmaxγ
2
n/ log(n)

1.1)1/2 → ∞.

This proves the last claim in (c).
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