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ABSTRACT

How to detect a small community in a large network is an interesting problem,
including clique detection as a special case, where a naive degree-based y?-test
was shown to be powerful in the presence of an Erdés-Renyi background. Using
Sinkhorn’s theorem, we show that the signal captured by the y2-test may be a
modeling artifact, and it may disappear once we replace the Erdds-Renyi model by
a broader network model. We show that the recent SgnQ test is more appropriate
for such a setting. The test is optimal in detecting communities with sizes com-
parable to the whole network, but has never been studied for our setting, which
is substantially different and more challenging. Using a degree-corrected block
model (DCBM), we establish phase transitions of this testing problem concerning
the size of the small community and the edge densities in small and large commu-
nities. When the size of the small community is larger than /n, the SgnQ test is
optimal for it attains the computational lower bound (CLB), the information lower
bound for methods allowing polynomial computation time. When the size of the
small community is smaller than y/n, we establish the parameter regime where the
SgnQ test has full power and make some conjectures of the CLB. We also study
the classical information lower bound (LB) and show that there is always a gap
between the CLB and LB in our range of interest.

1 INTRODUCTION

Consider an undirected network with n nodes and K communities. We assume n is large and the
network is connected for convenience. We are interested in testing whether K = 1 or K > 1 and the
sizes of some of the communities are much smaller than n (communities are scientifically meaningful
but mathematically hard to define; intuitively, they are clusters of nodes that have more edges “within”
than “across” (Jin, [2015}; |Zhao et al.,[2012)). The problem is a special case of network global testing,
a topic that has received a lot of attention (e.g., Jin et al.[ (2018} [2021b)). However, existing works
focused on the so-called balanced case, where the sizes of communities are at the same order. Our
case is severely unbalanced, where the sizes of some communities are much smaller than n (e.g., n%).

The problem also includes clique detection (a problem of primary interest in graph learning (Alon
et al.,[1998; Ron & Feigel 2010)) as a special case. Along this line, |Arias-Castro & Verzelen|(2014);
Verzelen & Arias-Castro| (2015)) have made remarkable progress. In detail, they considered the
problem of testing whether a graph is generated from a one-parameter Erd6s-Renyi model or a
two-parameter model: for any nodes 1 < ¢, 57 < n, the probability that they have an edge equals b
if 7, j both are in a small planted subset and equals a otherwise. A remarkable conclusion of these
papers is: a naive degree-based y2-test is optimal, provided that the clique size is in a certain range.
Therefore, at first glance, it seems that the problem has been elegantly solved, at least to some extent.

Unfortunately, recent progress in network testing tells a very different story: the signal captured by
the x2-test may be a modeling artifact. It may disappear once we replace the models in |Arias-Castro
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& Verzelen|(2014); [Verzelen & Arias-Castro|(2015)) by a properly broader model. When this happens,
the y*-test will be asymptotically powerless in the whole range of parameter space.

We explain the idea with the popular Degree-Corrected Block Model (DCBM) (Karrer & Newman,
2011), though it is valid in broader settings. Let A € R™" be the network adjacency matrix, where
A(i,7) € {0,1} indicates whether there is an edge between nodes i and j, 1 < i,5 < n. By
convention, we do not allow for self-edges, so the diagonals of A are always 0. Suppose there
are K communities, Cy,...,Cx. For each node i, 1 < i < n, we use a parameter ¢; to model
the degree heterogeneity and 7; to model the membership: when i € Cy, 7;(¢) = 1 if £ = k and
m;(£) = 0 otherwise. For a K x K symmetric and irreducible non-negative matrix P that models the
community structure, DCBM assumes that the upper triangle of A contains independent Bernoulli
random variables satisfyingi_-]

P(A(i,j) = 1) = 0,0, Pr;, 1<4,5<n. (1.1)

In practice, we interpret P(k, £) as the baseline connecting probability between communities & and
L. Write 0 = (01,02,...,0,),I1 = [m1,72,...,m,]), and © = diag(f) = diag(dy,02,...,60,).
Introduce n x n matrices 2 and W by Q = OIIPII'© and W = A — E[A]. We can re-write (1.1)) as

A=Q—diag(Q) + W. (1.2)

We call €2 the Bernoulli probability matrix and W the noise matrix. When 6; in the same community
are equal, DCBM reduces to the Stochastic Block Model (SBM) (Holland et al.,|1983). When K = 1,
the SBM reduces to the Erdés-Renyi model, where (i, j) take the same value for all 1 < 7,5 < n.

We first describe why the signal captured by the x2-test in |Arias-Castro & Verzelen|(2014); Verzelen
& Arias-Castro|(2015) is a modeling artifact. Using Sinkhorn’s matrix scaling theorem (Sinkhorn,
1974), it is possible to build a null DCBM with K = 1 that has no community structure and an
alternative DCBM with K > 2 and clear community structure such that the two models have the
same expected degrees. Thus, we do not expect that degree-based test such as x? can tell them apart.
We make this Sinkhorn argument precise in Section and show the failure of x? in Theorem 2.3

In the Erdés-Renyi setting in |Arias-Castro & Verzelen| (2014), the null has one parameter and the
alternative has two parameters. In such a setting, we cannot have degree-matching. In these cases,
a naive degree-based y2-test may have good power, but it is due to the very specific models they
choose. For clique detection in more realistic settings, we prefer to use a broader model such as the
DCBM, where by the degree-matching argument above, the x2-test is asymptotically powerless.

This motivates us to look for a different test. One candidate is the scan statistic [Bogerd et al.
(2021)). However, a scan statistic is only computationally feasible when each time we scan a very
small subset of nodes. For example, if each time we only scan a finite number of nodes, then
the computational cost is polynomial; we call the test the Economic Scan Test (EST). Another
candidate may come from the Signed-Polygon test family (Jin et al., 2021b), including the Signed-
Quadrilateral (SgnQ) as a special case. Let 7 = (1,1,A1,L)*1/2A1n and A = A — 77. Define
Qn = D4, in insia(dist) gimg@isﬁ%uﬁml where the shorthand (dist) indicates we sum over
distinct indices. The SgnQ test statistic is

Y = [Qn = 201717 = 1)*]/v/8(lIAl12 - D*. (1.3)

SgnQ is computationally attractive because it can be evaluated in time O(n?2d), where d is the average
degree of the network (Jin et al., 2021b)).

Moreover, it was shown in|Jin et al.| (2021b)) that (a) when K = 1 (the null case), ¢, — N(0, 1), and
(b) when K > 1 and all communities are at the same order (i.e., a balanced alternative case), the
SgnQ test achieves the classical information lower bound (LB) for global testing and so is optimal.
Unfortunately, our case is much more delicate: the signal of interest is contained in a community with
a size that is much smaller than n (e.g., n®), so the signal can be easily overshadowed by the noise
term of @),,. Even in the simple alternative case where we only have two communities (with sizes N
and (n — N)), it is unclear (a) how the lower bounds vary as N/n — 0, and especially whether there
is a gap between the computation lower bound (CLB) and classical information lower bound (LB),
and (b) to what extent the SgnQ test attains the CLB and so is optimal.

'In this work we use M’ to denote the transpose of a matrix or vector M.



Published as a conference paper at ICLR 2023

1.1 RESULTS AND CONTRIBUTIONS

We consider the problem of detecting a small community in the DCBM. In this work, we specifically
focus on the case K = 2 as this problem already displays a rich set of phase transitions, and we
believe it captures the essential behavior for constant K > 1. Let N < n denote the size of this
small community under the alternative. Our first contribution analyzes the power of SgnQ for this
problem, extending results of Jin et al.| (2021b) that focus on the balanced case. Let Ay = A1(2). In

Section we define a population counterpart Qof Aandlet A = A1 (Q) We show that SgnQ has
full power if A1 /v/Aa — oo, which reduces to N (a — ¢)/+/nc — oo in the SBM case.

For optimality, we obtain a computational lower bound (CLB), relying on the low-degree polynomial
conjecture, which is a standard approach in studying CLB (e.g., |[Kunisky et al.|(2019)). Consider a
case where K = 2 and we have a small community with size N. Suppose the edge probability within
the community and outside the community are a and ¢, where a > c. The quantity (a — ¢)/+/c acts as
the Node-wise Signal-to-Noise Ratio (SNR) for the detection problemE] When N >> \/n, we find that
the CLB is completely determined by N and node-wise SNR; moreover, SgnQ matches with the CLB
and is optimal. When N < \/n, the situation is more subtle: if the node-wise SNR (a — ¢)/y/c = 0
(weak signal case), we show the problem is computationally hard and the LB depends on /N and the
node-wise SNR. If (a — ¢)/+/c > n'/? (strong signal case), then SgnQ solves the detection problem.
In the range 1 < (a — ¢)/+/c < n'/? (moderate signal case), the CLB depends on not only N and
the node-wise SNR but also the background edge density c. In this regime, we make conjectures of
the CLB, from the study of the aforementioned economic scan test (EST). Our results are summarized
in Figure [I]and explained in full detail in Section[2.7]

We also obtain the classical information lower 8

bound (LB), and discover that as N/n — 0, .

there is big gap between CLB and LB. Notably ssf":;? ; M°_de"=1|te Weak signal
the LB is achieved by an (inefficient) signed 'gna’ ; signall

scan test. In the balanced case in [Jin et al.
(2021b)), the SgnQ test is optimal among all tests N<y/n -
(even those that are allowed unbounded compu- : ?:;f:::g:'ey
tation time), and such a gap does not exist. ek dreseeeaenn N

We also show that that the naive degree-based
x2-test is asymptotically powerless due to the
aforementioned degree-matching phenomenon.

Our statistical lower bound, computational

lower bound, and the powerlessness of X2 based Computationally

on degree-matching are also valid for all K > 2 impossible

since any model with K > 2 contains K = 2 . . _

as a special case. We also expect that our lower Figure 11_ g hase diagram ((a — ¢)/v/c =1~ and
bounds are tight for these broader models and N =n""").
that our lower bound constructions for K = 2
represent the least favorable cases when community sizes are severely unbalanced.

Compared to|Verzelen & Arias-Castro| (2015)); |Arias-Castro & Verzelen|(2014), we consider network
global testing in a more realistic setting, and show that optimal tests there (i.e., a naive degree-based
x? test) may be asymptotically powerless here. Compared with Bogerd et al.[(2021), our setting is
very different (they considered a setting where both the null and alternative are DCBM with K = 1).
Compared to the study in the balanced case (e.g., Jin et al.| (2018} |2021b)); Gao & Lafferty|(2017)),
our study is more challenging for two reasons. First, in the balanced case, there is no gap between
the UB (the upper bound provided by the SgnQ test) and LB, so there is no need to derive the CLB,
which is usually technical demanding. Second, the size of the smaller community can get as small as
n®, where € > 0 is any constant. Due this imbalance in community sizes, the techniques of |Jin et al.
(2021b)) do not directly apply. As a result, our proof involves the careful study of the 256 terms that
compose SgnQ, which requires using bounds tailored specifically for the severely unbalanced case.

2Note that the node-wise SNR captures the ratio of the mean difference and standard deviation of Bernoulli(a)
versus Bernoulli(c), which motivates our terminology.
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Our study of the CLB is connected to that of [Hajek et al.| (2015)) in the Erdos-Renyi setting of
Arias-Castro & Verzelen| (2014). [Hajek et al.|(2015) proved via computational reducibility that the
naive y*-test is the optimal polynomial-time test (conditionally on the planted clique hypothesis).
We also note work of |Chen & Xu(2016) that studied a K -cluster generalization of the Erdos-Renyi
model of |Arias-Castro & Verzelen| (2014)); Verzelen & Arias-Castro (2015) and provided conjectures
of the CLB. Compared to our setting, these models are very different because the expected degree
profiles of the null and alternative differ significantly. In this work we consider the DCBM model,
where due to the subtle phenomenon of degree matching between the null and alternative hypotheses,
both CLB and LB are different from those obtained by [Hajek et al.[(2015).

Notations: We use 1,, to denote a n-dimensional vector of ones. For a vector § = (61,...,6,)
diag(0) is the diagonal matrix where the i-th diagonal entry is 6;. For a matrix Q € R™*", diag({2
is the diagonal matrix where the i-th diagonal entry is §2(¢,7). For a vector § € R", 0,4, =
max{6y,...,0,} and 6,,;, = min{6y,...,60,}. For two positive sequences {a,} and {b, }, we
write a,, < by, if ¢; < a,, /b, < co for constants co > ¢; > 0. We say a,, ~ by, if (a,, /b,) = 140(1).

~— 3

2 MAIN RESULTS

In Section [2.1] following our discussion on Sinkhorn’s theorem in Section|[I] we introduce calibrations
(including conditions on identifiability and balance) that are appropriate for severely unbalanced
DCBM and illustrate with some examples. In Sections 2.3] we analyze the power of the SgnQ
test and compare it with the y2-test. In Sections 2.5] we discuss the information lower bounds
(both the LB and CLB) and show that SgnQ test is optimal among polynomial time tests, when
N > /n.In Section we study the EST and make some conjectures of the CLB when N < /n.
In Section[2.7} we summarize our results and present the phase transitions.

2.1 DCBM FOR SEVERELY UNBALANCED NETWORKS: IDENTIFIABILITY, BALANCE METRICS,
AND GLOBAL TESTING

In the DCBM (L.1)-(1.2), @ = OIIPII'. It is known that the matrices (O, II, P) are not identifiable.
One issue is that (II, P) are only unique up to a permutation: for a K x K permutation matrix Q,
IIPII = (IIQ)(Q' PQ)(IIQ)’. This issue is easily fixable in applications so is usually neglected. A
bigger issue is that, (©, P) are not uniquely defined. For example, fixing a positive diagonal matrix
D € REXE et P* = DPD and ©* = diag(0;,05,...,0;) where 0 = 0;/\/D(k, k) if i € Cy,
1 <k < K. Itis seen that OTIPII'© = ©*IIP*II'©*, so (O, P) are not uniquely defined.

To motivate our identifiability condition, we formalize the degree-matching argument discussed in the
introduction. Fix (6, P) and let h = (hq, ..., hx)" and hy, > 0 is the fraction of nodes in community
k, 1 < k < K. By the main result of |Sinkhorn| (1974)), there is a unique positive diagonal matrix
D = diag(ds, . ..,dk) such that DPDh = 1. Consider a pair of two DCBM, a null with K = 1
and an alternative with K > 1, with parameters {2 = ©1,,1),0 = 00’ and Q*(i, j) = 07077 Pr;
with 0] = d;.0; if i € C,, 1 < k < K, respectively. Direct calculation shows that node 7 has the
same expected degree under the null and alternative.

There are many ways to resolve the issue. For example, in the balanced case (e.g.,/Jin et al.[(2021b;
2022)), we can resolve it by requiring that P has unit diagonals. However, for our case, this is
inappropriate. Recall that, in practice, P(k,¢) represents as the baseline connecting probability
between community & and ¢. If we forcefully rescale P to have a unit diagonal here, both (P, ©) lose
their practical meanings.

Motivated by the degree-matching argument, we propose an identifiability condition that is more
appropriate for the severely unbalanced DCBM. By our discussion in Section[I} for any DCBM with
a Bernoulli probability matrix 2, we can always use Sinkhorn’s theorem to define (O, P) (while IT is
unchanged) such that for the new (©, P), © = OIIPII'© and Ph x 1k, where h = (hq,...,hi)’
and hy > 0 is the fraction of nodes in community k, 1 < k < K. This motivates the following
identifiability condition (which is more appropriate for our case):

18]]1 = n, Ph o<1k, where hy is fraction of nodes in Cg, 1 < k < K. 2.1)

Lemma 2.1. For any Q that satisfies the DCBM (1.2) and has positive diagonal elements, we can
always find (©,11, P) such that Q = OIIPII'O and holds. Also, any (O, P) that satisfy
Q = OIIPII'O and are unique.
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Moreover, for network balance, the following two vectors in RX are natural metrics:
d=([o])~'Tr'e1,,  g=(|6)) e’ ik, (2.2)

In the balanced case (e.g.,Jin et al.| (2021b} [2022))), we usually assume the entries of d and g are at
the same order. For our setting, this is not the case.

Next we introduce the null and alternative hypotheses that we consider. Under each hypothesis, we
impose the identifiability condition (2.1).

General null model for the DCBM. When K = 1 and h = 1, P is scalar (say, P = «), and
Q = a0’ satisfies ||0]|; = n by 2.1I). The expected total degree is o(||6]|7 — [|0]|%) ~ a[|0]|3 = n*«
under mild conditions, so we view « as the parameter for network sparsity. In this model, d = g = 1.

Alternative model for the DCBM . We assume K = 2 and that the sizes of the two communities,
Co and Cy, are (n — N) and N, respectively. For some positive numbers a, b, ¢, we have

a b eiej'a’ ifiajecla
P= [ b oc ] ,and QGj) = { 0:6; -, if i, j € Co, 23)
0:0; - b, otherwise.

In the classical clique detection problem (e.g., [Bogerd et al. (2021)), a and c are the baseline
probability where two nodes have an edge when both of them are in the clique and outside the clique,
respectively. By 2.1)), ae + b(1 — €) = be + ¢(1 — €) if we write e = N/n. Therefore,

b= (¢(n—N)—aN)/(n—2N). (24)

Note that this is the direct result of Sinkhorn’s theorem and the parameter calibration we choose,
not a condition we choose for technical convenience. Write d = (dg,d;)" and g = (go,¢1)’. It is
seen that dg = 1 —dy, go = 1 — go. d1 = [|0][7" X, 0i-and g1 = [|0] 723 ,cc, 07. If all 6; are
at the same order, then d; < g; < (N/n) and dy ~ go ~ 1. We also observe that b = ¢ + O(ae)
which makes the problem seem very close to|Arias-Castro & Verzelen|(2014); Bogerd et al.| (2021)),
although in fact the problems are quite different.

Extension . An extension of our alternative is that, for the X communities, the sizes of m of them are
at the order of N, for an N < n and an integer m, 1 < m < K, and the sizes of remaining (K — m)
are at the order of n. In this case, m entries of d are O(IN/n) and other entries are O(1); same for g.

2.2 THE SGNQ TEST: LIMITING NULL, P-VALUE, AND POWER

In the null case, K = 1 and we assume {2 = af6’, where ||0]|; = n. As n — oo, both («, §) may
vary with n. Write O,.x = ||0||oo. We assume

log(n?a) — 0. (2.5)
The following theorem is adapted from Jin et al.|(2021b) and the proof is omitted.

na — 0o, and ab?

Theorem 2.1 (Limiting null of the SgnQ statistic). Suppose the null hypothesis is true and the
regularity conditions and hold. As n — oo, ¥, — N(0,1) in law.

We have two comments. First, since the DCBM has many parameters (even in the null case), it is
not an easy task to find a test statistic with a limiting null that is completely parameter free. For
example, if we use the largest eigenvalue of A as the test statistic, it is unclear how to normalize
it so to have such a limiting null. Second, since the limiting null is completely explicit, we can
approximate the (one-sided) p-value of 1, by P(N(0, 1) > 1),,). The p-values are useful in practice,
as we show in our numerical experiments.. For example, using a recent data set on the statisticians’
publication (Ji et al.,|2022)), for each author, we can construct an ego network and apply the SgnQ
test. We can then use the p-value to measure the co-authorship diversity of the author. Also, in many
hierarchical community detection algorithms (which are presumably recursive, aiming to estimate
the tree structure of communities), we can use the p-values to determine whether we should further
divide a sub-community in each stage of the algorithm (e.g. Ji et al.| (2022)).

The power of the SgnQ test hinges on the matrix Q=0- (17.91,,)7101,,1/,Q. By basic algebra,
Q=OIIPII'®, where P =P — (d'Pd)~*Pdd P. (2.6)
Let \; be the largest (in magnitude) eigenvalue of Q. Lemmais proved in the supplement.
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Lemma 2.2. The rank and trace of the matrix QL are (K — 1) and ||0||2diag(P)’g, respectively. When
K =2, A = trace(Q) = ||0]2(ac — b%)(d2g1 + d2go)/(ad? + 2bdody + cd2).

As a result of this lemma, we observe that in the SBM case, d = h and thus Xl = X2 < N(a—c).
To see intuitively that the power of the SgnQ test hinges on :\‘11 /A2, if we heuristically replace the
terms of SgnQ by population counterparts, we obtain

Qn = Z Ai1i2Ai2i3Ai3i4Ai4i1 ~ trace([Q - 7777/}4) = trace(§4) = 5‘le
i1,i2,i3,14 (distinct)
We now formally discuss the power of the SgnQ test. We focus on the alternative hypothesis in
Section Let d = (d1,dp) and g = (g1, 90)" be as in (2.2)), and let Oyax 0 = max;ec, 0; and
emax7l = maX;ec, 91 Suppose

dy < g1 < N/n, a@fnax’1 =0(1), cn — 00, c@fnax’o log(nQC) — 0. 2.7

These conditions are mild. For example, when 6,’s are at the same order, the first inequality in (2.7)
automatically holds, and the other inequalities in (2.7) hold if @ < C for an absolute constant C' > 0,
en — o0, and clog(n) — 0.

Fixing 0 < x < 1, let 2z, > 0 be the value such that P(N(0,1) > z,) = . The level-x SgnQ
test rejects the null if and only if ¢, > z,, where v, is as in (I.3). Theorem [2.2]and Corollary [2.1]
are proved in the supplement. Recall that our alternative hypothesis is defined in Section[2.1] By
power we mean the probability that the alternative hypothesis is rejected, minimized over all possible
alternative DCBMs satisfying our regularity conditions.

Theorem 2.2 (Power of the SgnQ test). Suppose that holds, and let k € (0,1). Under the
alternative hypothesis, if |\1|/v/ 1 — oo, the power of the level-x SgnQ test tends to 1.

Corollary 2.1. Suppose the same conditions of Theorem hOId, and additionally 05 < COpin
so all 6; are at the same order. In this case, \1 < cn and |M\1| < N(a — ¢), and the power of the
level-k SgnQ test tends to 1 if N(a — ¢)/+/cn — oc.

In Theorem [2.2]and Corollary 2.1] if x = &, and ,, — 0 slowly enough, then the results continues
to hold, and the sum of Type I and Type II errors of the SgnQ test at level-x,, — 0.

The power of the SgnQ test was only studied in the balanced case (Jin et al.,[2021b), but our setting is
a severely unbalanced case, where the community sizes are at different orders as well as the entries of
d and g. In the balanced case, the signal-to-noise ratio of SgnQ is governed by |X2|/+v/A1, but in our
setting, the signal-to-noise ratio is governed by |A1|/v/A1. The proof is also subtly different. Since
the entries of P are at different orders, many terms deemed negligible in the power analysis of the
balanced case may become non-negligible in the unbalanced case and require careful analysis.

2.3 COMPARISON WITH THE NAIVE DEGREE-BASED XQ—TEST

Consider a setting where Q = a01,1/,0 = aff’ under the null and Q = OIIPII'O under the
alternative, and holds. When @ is unknown, it is unclear how to apply the x2-test: the null
case has n unknown parameters 61, ..., 6, and we need to use the degrees to estimate 6; first. As
a result, the resultant y2-statistic may be trivially 0. Therefore, we consider a simpler SBM case
where 6 = 1,,. In this case, 2 = al,1,, and Q = IIPII’ and the null case only has one unknown
parameter . Let y; be the degree of node 4, and let & = [n(n — 1)] =11/, A1,,. The x?-statistic is

X, = Z(y —n@)?/[(n —1)a — &)]. (2.8)

It is seen that as na — oo and o — 0, (X,, — n)/v2n — N(0,1) in law. For a fixed level

k € (0,1), consider the y>-test that rejects the null if and only if (X,, — n)/v2n > z,. Let
ap = n~2(1,Q21,). The power of the y?-test hinges on the quantity (nag) ~1[|(Q21, — nag)||* =
(na) ~YH|TIPh — (W' Ph)~'1,||? = 0, if Ph o< 1g. The next theorem is proved in the supplement.

Theorem 2.3. Suppose 0 = 1,, and @2.7) holds. If |\ |/v/A1 — oo under the alternative hypothesis,
the power of the level-r SgnQ test goes to 1, while the power of the level-k x?-test goes to k.
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2.4 THE STATISTICAL LOWER BOUND AND THE OPTIMALITY OF THE SCAN TEST

For lower bounds, it is standard to consider a random-membership DCBM (Jin et al., 2021b), where
16]l1 = n, P is as in 2.3)-2-4) and for a number N < n, I = |7y, mo, ..., m,] satisfies

m=(X;, 1= X;), where X, are iid Bernoulli(¢) with e = N/n. 2.9)

Theorem 2.4 (Statistical lower bound). Consider the null and alternative hypotheses of Section

and assume that @.9) is satisfied, Omayx < COmin and Nc/logn — oo. If VN (a—c)/v/c — 0, then
for any test, the sum of the type-I and type-II errors tends to 1.

To show the tightness of this lower bound, we introduce the signed scan test, by adapting the idea in
Arias-Castro & Verzelen|(2014) from the SBM case to the DCBM case. Unlike the SgnQ test and
the y*-test, signed scan test is not a polynomial time test, but it provides sharper upper bounds. Let
7) be the same as in (I.3). For any subset S C {1,2,...,n}, let 1¢ € R™ be the vector whose ith
coordinate is 1{i € S}. Define the signed scan statistic

= 15 (A — 77/) 1s. 2.10
¢ SC{12 i ISI=N s (A=) Ls 2.10)

Theorem 2.5 (Tightness of the statistical lower bound). Consider the signed scan test
that rejects the null hypothesis if ¢s. > t,. Under the assumptions of Theorem if
VN(a — ¢)/\/clog(n) — oo, then there exists a sequence t,, such that the sum of type I and
type Il errors of the signed scan test tends to 0.

By Theorems [2.4}2.5] and Corollary [2.1] the two hypotheses are asymptotically indistinguishable if
V' N(a—c)/\/c — 0, and are asymptotically distinguishable by the SgnQ test if N (a—c)/+/cn — .
Therefore, the lower bound is sharp, up to log-factors, and the signed scan test is nearly optimal.
Unfortunately, the signed scan test is not polynomial-time computable. Does there exist a polynomial-
time computable test that is optimal? We address this in the next section.

2.5 THE COMPUTATIONAL LOWER BOUND

Consider the same hypothesis pair as in Section [2.4] where K = 2, P is as in (2.3)-(2.4), and II
is as in (2.9). For simplicity, we only consider SBM, i.e., §; = 1. The low-degree polynomials
argument emerges recently as a major tool to predicting the average-case computational barriers in a
wide range of high-dimensional problems (Hopkins & Steurer, |20177; Hopkins et al., 2017). Many
powerful methods, such as spectral algorithms and approximate message passing, can be formulated
as functions of the input data, where the functions are polynomials with degree at most logarithm
of the problem dimension. In comparison to many other schemes of developing computational
lower barriers, the low-degree polynomial method yields the same threshold for various average-case
hardness problems, such as community detection in the SBM (Hopkins & Steurer, [2017)) and (hyper)-
planted clique detection (Hopkins| 2018; [Luo & Zhang] 2022). The foundation of the low-degree
polynomial argument is the following low-degree polynomial conjecture (Hopkins et al.| [2017) :

Conjecture 2.1 (Adapted from Kunisky et al.| (2019)). Let P,, and Q,, denote a sequence of proba-
bility measures with sample space R™ where k = O(1). Suppose that every polynomial f of degree
O(logn) with Eq, f* = 1 is bounded under P,, with high probability as n — oo and that some
further regularity conditions hold. Then there is no polynomial-time test distinguishing P,, from Q,,
with type I and type Il error tending to 0 as n — oo.

We refer to|Hopkins| (2018)) for a precise statement of this conjecture’s required regularity conditions.
The low-degree polynomial computational lower bound for our testing problem is as follows.

Theorem 2.6 (Computational lower bound). Consider the null and alternative hypotheses in Section
and assume 0; = 1 and (2.9) holds. As n — oo, assume ¢ < a, ¢ < 1—¢ for constant§ > 0, N <

n/3, D = O(logn), and limsup,,_, . {(10gn % + log,, “\}J) Y (\/D/2 — 1llog, “\;‘)} < 0.
For any series of degree-D polynomials ¢, : A — R, whenever Egp, ¢, (A) = 0, Varg, (¢n(A)) =1,

we must have Eg, ¢, (A) = o(1). This implies if Conjecture is true, there is no consistent
polynomial-time test for this problem.
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Figure 2: Left: Null distribution of SgnQ (n = 500). Middle and right: Power comparison of
SgnQ and x2 (n =100, N = 10, 50 repetitions). We consider a 2-community SBM with P;; = a,
Py = 0.1, P1z = 0.1 (middle plot) and Pyp = "= F0DN (rgh plo, the case of degree matching).

By Theorem[2.6] if both (a — ¢)/+/c < 1and N(a — ¢)/\/cn — 0, the testing problem is computa-
tionally infeasible. The region where the testing problem is statistically possible but the SgnQ test
loses power corresponds to N(a — ¢)/y/en — 0. If N 2 /n, Theorem [2.6| already implies that
this is the computationally infeasible region; in other words, SgnQ achieves the CLB and is optimal.
If N = o(y/n), SgnQ solves the detection problem only when (a — ¢)/y/c > n'/?, i.e. when the
node-wise SNR is strong. We discuss the case of moderate node-wise SNR in the next subsection.

2.6 THE POWER OF EST, AND DISCUSSIONS OF THE TIGHTNESS OF CLB

When N = o(y/n) and (a — ¢)/+/c — oo both hold, the upper bound by SgnQ does not match with
the CLB. It is unclear whether the CLB is tight. To investigate the CLB in this regime, we consider
other possible polynomial-time tests. The economic scan test (EST) is one candidate. Given fixed

positive integers v and e, the EST statistic is defined to be ¢§ggT = SUP|g|<p i jes Aij» and the

EST is defined to reject if and only if QS%%T > e. EST can be computed in time O(n?), which is
polynomial time. For simplicity, we consider the SBM, i.e. where § = 1,,, and a specific setting of
parameters for the null and alternative hypotheses.

Theorem 2.7 (Power of EST). Suppose € [1/2,1) and 0 < w < § < 1 are fixed constants. Under
the alternative, suppose 0 = 1,, holds, N = n'=5, a = n~%, and ¢ = n°. Under the null,
suppose 0 = 1, and o = a(N/n) +b(1 — N/n). Ifw/(1 — ) < 6, the sum of type I and type Il
errors of the EST with v and e satisfying w/(1 — 3) < v/e < § tends to 0.

Theoremfollows from standard results in probabilistic combinatorics (Alon & Spencer; 2016).
It is conjectured in |[Bhaskara et al.| (2010) that EST attains the CLB in the Erdos-Renyi setting
considered by |Arias-Castro & Verzelen| (2014); |Verzelen & Arias-Castro| (2015). This suggests that
the CLB in Theorem [2.6|is likely not tight when N = o(y/n) and (a — ¢)/+/c — oo. However, this
is not because our inequalities in proving the CLB are loose. A possible reason is that the prediction
from the low-degree polynomial conjecture does not provide a tight bound. It remains an open
question whether other computational infeasibility frameworks provide a tight CLB in our problem.

2.7 THE PHASE TRANSITION

We describe more precisely our results in terms of the phase transitions shown in Figure[I] Consider
the null and alternative hypotheses from Section For illustration purposes, we fix constants
B € (0,1) and v € R and assume that N = n'~# and (a — ¢)/y/c = n~7. In the two-dimensional
space of (v, (), the region of 8 > 1/2 and 8 < 1/2 corresponds to that the size of the small
community is > /n and o(y/n), respectively, and the regions of v > 0, —1/2 < v < 0 and
v < —1/2 correspond to ‘weak node-wise signal’, ‘moderate node-wise signal,” and the ‘strong
node-wise signal’, respectively. See Figure[I] By our results in Section[2.4] the testing problem is
statistically impossible if 5 + 2+ > 1 (orange region). By our results in Section SgnQ has a
full power if § + v < 1/2 (blue region). Our results in Section state that the testing problem is
computationally infeasible if both v > 0 and 8 + v > 1/2 (green and orange regions). Combining
these results, when § < 1/2, we have a complete understanding of the LB and CLB.
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3 NUMERICAL RESULTS

Simulations. First in Figure [2| (Ieft panel) we demonstrate the asymptotic normality of SgnQ under a
null of the form Q2 = 06’, where 0; are i.i.d. generated from Pareto(4,0.375). Though the degree
heterogeneity is severe, SgnQ properly standardized is approximately standard normal under the null.
Next in Figure 2] we compare the power of SgnQ in an asymmetric and symmetric SBM model. As
our theory predicts, both tests are powerful when degrees are not calibrated in each model, but only
SgnQ is powerful in the symmetric case. We also compare the power of SgnQ with the scan test to
show evidence of a statistical-computational gap. We relegate these experiments to the supplement.

Real data: Next we demonstrate the effectiveness of SgnQ in detecting small communities in
coauthorship networks studied in Ji et al.|(2022). In Example 1, we consider the personalized network
of Raymond Carroll, whose nodes consist of his coauthors for papers in a set of 36 statistics journals
from the time period 1975 — 2015. An edge is placed between two coauthors if they wrote a paper in
this set of journals during the specified time period. The SgnQ p-value for Carroll’s personalized
network G carron 18 0.02, which suggests the presence of more than one community. InJi et al.[(2022),
the authors identify a small cluster of coauthors from a collaboration with the National Cancer
Institute. We applied the SCORE community detection module with K = 2 (e.g. |[Ke & Jin|(2022)))
and obtained a larger community G, of size 218 and a smaller communlty G o Of size 17.
Precisely, we removed Carroll from his network, applied SCORE on the remaining giant component,
and defined G, to be the complement of the smaller community. The SgnQ p-values in the
table below suggest that both G2, and G, are tightly clustered. Refer to the supplement for a
visualization of Carroll’s network and its smaller community labeled by author names. In Example
2, we consider three different coauthorship networks G4, Grecent, and Gpew corresponding to time
periods (i) 1975-1997, (ii) 1995-2007, and (iii) 2005-2015 for the journals AoS, Bka, JASA, and
JRSSB. Nodes are given by authors, and an edge is placed between two authors if they coauthored
at least one paper in one of these journals during the corresponding time period. For each network,
we perform a similar procedure as in the first example. First we compute the SgnQ p-value, which
turns out to be =~ 0 (up to 16 digits of precision) for all networks. For each i € {old, recent, new},
we apply SCORE with K = 2 to GG; and compute the SgnQ p-value on both resulting communities,
let us call them GY and G}. We refer to the table below for the results. For Goiq and G'recent, SCORE
with K = 2 extracts a small community. The SgnQ p-value further supports the hypothesis that this
small community is well-connected. In the last network, SCORE splits G into two similarly sized
pieces whose p-values suggests they can be split into smaller subcommunities.

Example Network Size SgnQ p-value Communities Sizes SgnQ p-values
1 Gearroll 235 0.02 (G&vons Glanan)  (218,17) (0.134, 0.682)
2 Gold 2647 0 (GY%4,GLa) (2586, 61) (0, 0.700)
Grecent 2554 0 (Glecents Grecent)  (2540,14) (0,0.759)
Ghrew 2920 0 (GO%ws Ghew) (1685,1235) 0, 0)

Discussions: Global testing is a fundamental problem and often the starting point of a long line of
research. For example, in the literature of Gaussian models, certain methods started as a global testing
tool, but later grew into tools for variable selection, classification, and clustering and motivated many
researches (e.g.,|Donoho & Jin|(2004;[2015)). The SgnQ test may also motivate tools for many other
problems, such as estimating the locations of the clique and clustering more generally. For example,
in|Jin et al.| (2022)), the SgnQ test motivated a tool for estimating the number of communities (see
also[Ma et al.[(2021)). SgnQ is also extendable to clique detection in a tensor (Yuan et al., 2021 Jin
et al.l 2021a)) and for network change point detection. The LB and CLB we obtain in this paper are
also useful for studying other problems, such as clique estimation. If you cannot tell whether there is
a clique in the network, then it is impossible to estimate the clique. Therefore, the LB and CLB are
also valid for the clique estimation problem (Alon et al., |1998; Ron & Feigel 2010).

The limiting distribution of SgnQ is NV (0, 1). This is not easy to achieve if we use other testing ideas,
such as the leading eigenvalues of the adjacency matrix: the limiting distribution depends on many
unknown parameters and it is hard to normalize (Liu et al.,|2019). The p-value of the SgnQ test is easy
to approximate and also useful in applications. For example, we can use it to measure the research
diversity of a given author. Consider the ego sub-network of an author in a large co-authorship or
citation network. A smaller p-value suggests that the ego network has more than 1 communitiy and
has more diverse interests. The p-values can also be useful as a stopping criterion in hierarchical
community detection modules.
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A  ADDITIONAL EXPERIMENTS

A.1  VISUALIZATION OF CARROLL’S NETWORK

In Figure 3] we display a subgraph of high-degree nodes of Raymond Carroll’s personalized coau-
thorship network (figure borrowed with permission from Ji et al| (2022)). On the right of Figure[3]is
shown the small community extracted by SCORE, and this cluster of size 17 is labeled by author
names.

A.2 SGNQ VS. SCAN

In this section we demonstrate evidence of a statistical-computational gap by means of numerical
experiments.

10
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Figure 3: Left: Carroll’s personalized network, figure taken from Ji et al.|(2022)). Right: A small
community of 17 authors extracted by SCORE and whose SgnQ p-value is 0.6818.

We consider a SBM null and alternative model (as in Example 2 with § = 1) with

b
n=(o o). a=(; )

where alN + b(n — N) = «. For this simple testing problem, we compare the power of SgnQ and
the scan test. In our experiments, we set a = 0.2 and allow the parameter a to vary from a = « to
a = amax = an/N. Once a and « are fixed, the parameters b and ¢ are determined by
B aN? + an? — 2anN
CES I

nc— (a+c)N

n—2N
In particular, a,,x is the largest value of a such that b > 0.

b=

Since the scan test ¢4, we defined is extremely computationally expensive, we study the power of an

‘oracle’ scan test ¢, which knows the location of the true planted subset C;. The power of the oracle
scan test is computed as follows. Let « denote the desired level.

1. Using M, repetitions under the null, we calculate the (non-oracle) scan statistic

gi)’ ceey (bglywl) for each repetition. We set the threshold 7 to be the empirical 1 — &
quantile of ¢S, ..., p{Mfee).

2. Given a sample from the alternative model, we compute the power using M, repetitions,
where we reject if

bse = 1¢, (A — i) 1e, > 7.

In our experiments, we set M., = 75 and M, = 200.

Note that since ésc < ¢sc, the procedure above gives an underestimate of the power of the scan
test (provide the threshold is correctly calibrated), which is helpful since this can be used to show
evidence of a statistical-computational gap.

In our plots we also indicate the statistical (information-theoretic) and computational thresholds in
addition to the power. Inspired by the sharp characterization of the statistical threshold in (Arias-
Castro & Verzelen, 2014, Equation (10)) for planted dense subgraph, in all plots we draw a black
vertical dashed line at the first value of a such that

(1/2)V'N(a —¢)/\/e(1 —¢) > 1.

We draw a blue vertical dashed line at the first value of a such that

N(a—c)/v/ne>1.

11
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Power of oracle scan vs. SgnQ: n=30,N=4 Power of oracle scan vs. SgnQ: n=40,N =4

—

——sgna

Figure 4: The power of SgnQ (blue curve) and oracle scan (black curve) for n = 30, N € {4,6,7}
(left) and n = 40, N € {4,6, 7} (right). The black dashed line indicates the theoretical statistical
threshold, and the blue dashed line indicates the theoretical computational threshold.

A3 x2VS. SGNQ

We also show additional experiments demonstrating the effect of degree-matching on the power of
the x2 test. We compute the power with respect to the following alternative models (as in Example 2

with 8 = 1) with
P(l) _ a b P(2) _ a cC
—\b ¢)’ “\e ¢

!/
max

where b = %, c is fixed, and a ranges from c to a/, . = c¢(n — N)/N for the experiments

with P(1), Similar to before, a, .« 18 the largest value of a such that b > 0. See Figure |5|for further
details.

B PROOF OF LEMMA [2.1| (IDENTIFIABILITY)

To prove identifiability, we make use of the following result from (Jin et al.,[2021c, Lemma 3.1),
which is in line with Sinkhorn’s work [Sinkhorn| (1974) on matrix scaling.

12
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Figure 5: Power comparison of SgnQ and x? (n = 500, N = 22, 50 repetitions). We consider a
2-community SBM with P = a, Pys = ¢, Pis = ¢ (left) and Pjp = =FIN (1ioht plot, the

case of degree matching) where ¢ = 0.05 (top row) and ¢ = 0.20 (bottom rowr)L.

Lemma B.1 (Jin et al. (2021c)). Given a matrix A € R¥K with strictly positive diagonal entries
and non-negative off-diagonal entries, and a strictly positive vector h € RX, there exists a unique
diagonal matrix D = diag(dy,ds, . . .,dg) such that DADh = 1 and dy, > 0,1 < k < K.

We apply Lemma with h = (hy,...,hk) and A = P to construct a diagonal matrix D =
diag(dy, ..., dk) satisfying DADh = 1k. Note that P has positive diagonal entries since 2 does.

Define P* = DPD and D* = diag(dj,...,d}) € R where
d; = di ifi € Cy

Observe that
D~ = (D*)7'I.

Define ©* = ©(D*)~ !, and let #* = diag(©*). Next, let © = R let § = diag(©), and let
P= Hen;ﬁ - P*. Note that ||||; = n and Ph « 1.

Using the previous definitions and observations, we have
Q=0ID'DPDD'II'® = ©*IIP*II'0* = OIIPI'O
which justifies existence.
To justify uniqueness, suppose that
0 =001TPpWmre® = @(Q)HP(Q)H’@@),
where 00 = diag(©®) satisfy || ||; = n fori = 1,2 and
PO x1g,  PPhoig.

Observe that
PO, =an-1,, OPPMI1, =a®n-1,.

13
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for positive constants o(*), i € {1,2}. Since 2 has nonnegative entries and positive diagonal elements,
by Lemma [B.1] there exists a unique diagonal matrix D such that

DOQD1, =1,.
We see that taking D = \/(yl(lf)n(@(i))*1 satisfies this equation for ¢+ = 1,2, and therefore by
uniqueness,
1 1
oh-1 — ohH-1
T(l)n( ) T(%( )
Since [|0M ||, = |0 ||; = n, further we have a") = a(?), and hence
o) = @,
It follows that
nPOI =P,
which, since we assume h; > 0 for¢ = 1,..., K, further implies that P = p®@), O

C PROOF OF THEOREM (LIMITING NULL OF THE SGNQ STATISTIC)

Consider a null DCBM with 2 = 6*(6*)’. Note that this is a different choice of parameterization
than the one we study in the main paper. In (Jin et al.| 2021cl Theorem 2.1) it is shown that the
asymptotic distribution of ¢/, the standardized version of SgnQ), is standard normal provided that

167]] = 00, 070 =0, and ([07]*/[16%[|1)/log([l6]IF) — O. €.

We verify that, in a DCBM with Q = a8’ and ||f||; = n, these conditions are implied by the
assumptions in ([2.5)), restated below:

no — 0o, and ab?, log(na) — 0 (C2)

In the parameterization of [Jin et al.[(2021c), we have §* = /af. First, ||6*||> — oo because by

(C.2), .

612 > = - 16*]|? = an — oo.
0°1 > 3

Next, 07 ... — 0 because by (C.2)),

> Y max

emax = \/agmax — 0.

To show the last part of (C.IJ), note that

* X . 1
(16112 /116" 1)1/ Log(191I5) < Vabimaxy/log(van) = ﬁ\/&&m log(an?) — 0
by (C.2)). Thus (C.I)) holds, and 1), is asymptotically standard normal under the null. O

D PROOF OF LEMMA (PROPERTIES OF (2)

Lemma. The rank and trace of the matrix Q2 are (K — 1) and ||0||2diag(P)'g, respectively. When
K =2, \; = trace(Q) = ||0||*(ac — b*)(d3g1 + d2g0)/(ad? + 2bdody + cd3).
Proof of Lemma 2.2] By basic algebra,

Q= OIIPII'®,  where P = (P — (d'Pd)~'Pdd'P).

Itis seen Pd = Pd — (d'Pd)~Pdd'Pd = 0, so rank(P) < K — 1. At the same time, since for any
matrix A and B of the same size, rank(A + B) < rank(A) + rank(B), it follows P > (K — 1), as
rank(P) = K and rank(Pdd’' P) < 1. This proves that rank(P) = K — 1.

14
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At the same time, since for any matrices A and B, trace(AB) = trace(BA),
trace(€) = trace(PII'©O2II) = ||0|*trace(PG) = ||0||*diag(P)’g.
This proves the second item of the lemma.

Last, when K = 2, Q) is rank 1, and its eigenvalue is the same as its trace. First

~ (ad1 + bd())2 2 d%
P)i=a-— — (ac—b
P == hdedy + e~ ) e T 2bdods + o
~ 2 2
(P)22 — ¢ (bdl + Cdo) _ (ac _ b2) dl

 ad? + 2bdod, + cd? ad3 + 2bdod; + cd3’

Thus

dogr + digo
ad? + 2bdyd; + cd?
This proves the last item and completes the proof of the lemma.

A1 = 0] diag(P)'g = [|6]]%(ac — ) -

O

E  PROOF OF THEOREM [2.2] (POWER OF THE SGNQ TEST) AND COROLLARY

E.1 SETUP AND RESULTS

Notation: Given sequences of real numbers A = A,, and B = B,,, we write A < B to signify that
A=0(B), A= Btosignify that A < Band B < A, and A ~ B to signify that A/B = 1 + o(1).

Throughout this section, we consider a DCBM with parameters (6, P) where P € R?*? has unit
diagonals, and we analyze the behavior of SgnQ under the alternative. At the end of this subsection
we explain how Theorem [2.2]and Corollary 2.1] follow from the results described next. Our results
hinge on

A= )\1 = tI‘(Q)

Given a subset U C [n], let f; € RIVI denote the restriction of 6 to the coordinates of U. For
notational convenience, we let S = {3 : m;(1) = 1}, which was previously written as C; in the main
paper.

In a DCBM where P has unit diagonals, our main results hold under the following conditions.

Qi S 06, ED)
16]l.c = O(1), and (E2)
16]15 — oo. (E.3)

(19113/11011) v 1og([l6]]1) — 0. (E4)

First we justify that these assumptions are satisfied by an equivalent DCBM with the same 2
represented with the parameterization (2.1)) and satisfying (2.7). Thus all results proved in this section
transfer immediately to the main paper.

Lemma E.1. Consider a DCBM with parameters (©*, P*) satisfying and satisfying (2.7).
Define © = diag(0) where
0, — {\/&6;“ ifieS
B RVZZ ifi e 8¢

1 b
P_<b JF)
Vac

Q = OIIPI6 = O IIP*II'O*

and

Then
and (EJ)—(E.4) are satisfied.
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Proof. The statement regarding €2 follows by basic algebra. (E-I) follows if we can show that

b
— <1. E.5
v (ES)
Since
_em—(a+oN ~ n—-N N
o n—2N ¢ n—2N “ n—2N’

we have a > ¢ 2 b, so (E33) follows.
Next, (E.2) follows directly from af? < 1since cf? ., , = o(1) by 7).

max,l ~ max,
For (E3),
1
1013 = — - 1017 = en — oo
n

by 7).
For the last part, note that
n—N N

b=c- —a- > <c.
c TN a TN >0=a Sc
Thus,
1013 _ _allOsll3 +cllOs-13 - a(N/n)]|05[15 + cl|05- 13
101 Vallosllh + Vel 05l ~ Vellfell
cll051I3

5 \/Eemax,o == 0(

< 2 fs #) = 0(;%
~ el0%h /log cn? log([[0]]+)

which implies (E-4). Above we use that @ > cand g1 < d; =< N/n, by assumption. Precisely, in the
first line, we used

alO313 = 0 (L N/m)~ 0513 S ell05. 13,
and in the second line we used
1011 = VellO5e Iy = Vel = N/n)~H|07 [l < ven.
O

With Lemma in hand, we restrict in the remainder of this section to the setting where P has unit
diagonals and (E.T)—(E-4) are satisfied.

Define vo = 1'Q1, and let * = (1/,/00)Q1. Recall Q = Q — n*n*T, and A = tr(Q). Our main
result concerning the alternative is the following.

Theorem E.1 (Limiting behavior of SgnQ test statistic). Suppose that the previous assumptions
hold and that |\|/\/A1 — co. Then under the null hypothesis, as n — oo, E[Q] ~ 2[|6]|3,
Var(Q) ~ 8|65, and (Q — EQ)/+/Var(Q) — N(0,1) in law. Under the alternative hypothesis,
asn — 00, EQ ~ A\ and Var(Q) < |X|® + |A2A3 = o()®).

Following Jin et al|(2021c)), we introduce some notation:
1

Q=9- 0", where 7n* = 01, vo=1,01,;
(n*)(n*) n NG 0
) ) 1 o1
8ij = mi(ny — 75) +nj(ni — i), where 17 = %(EA)lm 7= \ﬁAlm v=1,(EA)1,;

* % ~ ~ U, . .
rig = (5 —ning) — (0 = 7:) (5 = 75) + (L= )77, where V= 1,A1,.

The ideal and proxy SgnQ statistics, respectively, are defined as follows:

Qu=" > (Quj+Wi)(Qx + Wjk) Qe + Wie) Qe + Wei) (E.6)
i,5,k,0(dist)
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Qh=" > (Qj+Wij+08i) ik + Wik + 81 (e + Wie + 61) (e + Wi + 00i).
i,4,k,0(dist)
(E.7)

Moreover, we can express the original or real SgnQ as

Qu=Y, |:(§ij + Wi + 81 + 743) (e + Wik + i + 1)
6.,k 0(dist)

(ﬁu + Whie + 6pe + ka)(ﬁfi + Wei + 00 +743) | -

The next theorems handle the behavior of these statistics. Together the results imply Theorem [E.T]
Again, the analysis of the null carries over directly from Jin et al.|(2021c), so we only need to study
the alternative. The claims regarding the alternative follow from Lemmas below.
Theorem E.2 (Ideal SgnQ test statistic). Suppose that the previous assumptions hold and that
IAl/vV/AL = co. Then under the null hypothesis, as n. — oo, E[Q] = 0 and Var(Q) = 8]|0]|5 -
[1+ o(1)]. Furthermore, under the alternative hypothesis, as n. — oo, E[Q] ~ A* and Var(Q) <
AL+ M8 = 0(A®).

Theorem E.3 (Proxy SgnQ test statistic). Suppose that the previous assumptions hold and that
IAl/v/AL = co. Then under the null hypothesis, as n — oo, [E[Q — Q*]| = 0(~H9||‘21) and VNar(Q -
Q*) = o(||0|3). Furthermore, under the alternative hypothesis, as n — oo, |E[Q — Q*]| < |M*M\ =
o(AY) and Var(Q — Q*) S [A2A3 + [A® = o(A®).

Theorem E.4 (Real SgnQ test statistic). Suppose that the previous assumptions hold and that
IAl/v/AL = oo. Then under the null hypothesis, as n — oo, [E[Q — Q]| = o(]|0]|3) and Var(Q —
Q) = 0(||0||3). Furthermore, under the alternative hypothesis, as n — oo, [E[Q — Q*]] < |2\ =
o(AY) and Var(Q — Q*) < |AI2A3 = o(A®).

The previous work Jin et al.[(2021c) establishes that under the assumptions above, if ||0g|]1 /||0]]1 =< 1,
then SgnQ distinguishes the null and alternative provided that |A2|/+/A1 — oo. To compare with

the results above, note that Ay = X if [|0s]/1/]|0]. = 1 (c.f. Lemma E.5 of Jin et al. (2021c)).
Thus when K = 2, our main result extends the upper bound of Jin et al.|(2021c) to the case when

0s]l1/1|6]l = o(1). We note that || > |Xz| in general (see Lemmaand Corollary.
The theorems above apply to the symmetric SBM. Recall that in this model,

a ifi,jes
Qij = C if Z,j §é S
b= % otherwise.
where N = |S] and a, b, ¢ € (0, 1). To obtain this model from our DCBM, set
p— (.1 bac) (E.8)
b/+/ac 1
and
0 =+/alg ++/clge. (E.9)

The assumption (E.I)) implies that b < y/ac, which is automatically satisfied since we assume a > c.

In SBM, it holds that Ay = A (see Lemma . Furthermore, explicit calculations in Section
reveal that

A1 ~ nc, and (E.10)
A=A~ N(a—c).

In addition, with P, a, l~77 c as above, if we have

C pive ifi¢ S

17
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for p > 0 with pupin = Pmax in the DCBM setting, a very similar calculation, which we omit, reveals
that

A1 < nc, and (E.11)
A= N(a—c).

X

With the previous results of this subsection in hand (which are proved in the remaining subsections)
we justify Theorem [2.2] and Corollary

Proof of Theorem[2.2] The SgnQ test has level x by Theorem[2.1] so it remains to study the type II
error. Using Theorem and Lemma [E.T] the fact that the type II error tends to 0 directly follows
from Chebyshev’s inequality and the fact that ||7)]|3 — 1 ~ ||0||3 with high probability. In particular,
note that since || > /A1, the expectation of SgnQ under the alternative is much larger than its
standard deviation, under the null or alternative. We omit the details as they are very similar to the

proof of Theorem 2.6 in (Jin et al.| 2021c| Supplement,pgs. 5-6). O
Proof of Corollary2.1] This result follows immediately from (E.IT) and Theorem [2.2] O

E.2 PRELIMINARY BOUNDS

Define vg = 17Q1, and let n* = 1/\/vo - Q1. For the analysis of SgnQ, it is important is to
understand Q@ = Q — 7*n*T. The next lemma establishes that € is rank one and has a simple
expression when K = 2.

Lemma E.2. Let f = (||0s¢||1, —|0s|/1)" It holds that

g (1=t

-OIIffTIITO.

Vo

Proof. Let pg = ||0s||1 and p1 = ||0s<]|1. Note that

0;(po + bp1) ificS
01);=6; Y ;7] Prj=23" o
(1) ; 3T T {Hi(bpo+p1) ifi ¢ 8.

Hence
vo = 17Q1 = p2 + 2bpopy + p.
Ifi,j € S, then
Qij = Qiﬁj(l — 7([)0 J;:pl)Q) = 0;0; - 7(1 Ulj)p%
Similarly if i € Sand j ¢ S,

A b b 1 — p2
Quy = 0,0, (b — Lot oIty g (L2000
Vo Vo
and
;= (bpo +p1)°y _ 5 (1=07)p}
Qij = 0:6; (1 T) = 0,0; BT
if 4, j € S¢. The claim follows. -
Let

w = OILf = 0s||0se||1 — Os¢||0s1 = p10s — pobse
Using the previous lemma, we have the rank one eigendecomposition

Q= \e€T, (E.12)
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where we define

~ Og — polge Og — polge
5: pP1Vs — pols _ 2/71 52 P02s -, (E.13)
0105 — pobscllz /20512 + p2[[0s-|I2
X _ (1 — b2) 2 0 2 2 0 2 14
- (1110515 + p5ll0sel3). (E.14)

Lemma E.5 of Jin et al.| (2021c) implies that if |61 /]|0]|1 = 1, then Xy =< Ay . If ||6s]|1/]|0]l1 =
o(1), then this guarantee may not hold. Below, in the case K = 2, we express A in terms of the
eigenvalues and eigenvectors of 2. This allows us to compare A, with A more generally, as in
Corollary [E-T]

Lemma E.3. Ler () have eigenvalues A1, A2 and eigenvectors £y, &o. Let \ denote the eigenvalue of
Q. Then

5 - Ake((6 1)+ (6,1)7)
A= A1 (€1, 1)2 + Ao (62,1)2 7 (E.15)

Proof. By explicit computation,
Q -0 n*n*T
A1 <€17 1>2 )
Vo

<§2, )? Aatla, )7

= (1 6836 +&])

)\1 A2

A (6, 1)(6e, 1) (
Vo

&E + (1 - 23

(62, 1)& + (&1, 1)&) - (&2, )& + (&1, 1)52) -

From @) and (E.14), it follows that
_ (& 1)6 + (6, 1)
Vi1 + (612

A 2 (61,117 + (62, 1)%).

A%}

A

Corollary E.1. It holds that
Mol SIALS A (E.16)
If Ay > 0, then
Ao <A<\ (E.17)

Proof. Suppose that Ao > 0. Then
A2 ({61, 1) 4 (€2, 1)) < A€, 1)% + X (€2,1)? = vo < A ((&1,1)% + (€2, 1)?),
implies (E.17).
Suppose that A\ < 0. Note that
A (6, 1% + (€2, 1)%) > A(61,1)% + Xa(,1)% = v > 0,
which combined with implies that || > |-
Next,
ho ETOQE= X+ ("),
which implies that
A< Pal+ G < x4+ 0713 S M+ 1015 S A,
where the last inequality follows from Lemma [E-3] O
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The next results are frequently used in our analyis of SgnQ.
Lemma E4. Letv =1T(Q — diag(2))1 and vy = 1TQ1. Then

vo ~ v~ [[0].

Proof. By EZ). [6]3 = o(|6]11). By (E3). 6]l1 — oc. Hence

v=17(Q — diag())1 = [|6]I7 — [0]I3 ~ 0] ~ vo = 17Q1.

The next result is a direct corollary of Lemmas[E.2]and [E4]
Corollary E.2. Define 5 € R™ by

1 — b7
Vo

B = (16

11s + [[0s]11s¢)

Then
;] < Bi6:B;0;-
Lemma E.5. Let A1 denote the largest eigenvalue of ). Then
M2 [16l3

Proof. Using the universal inequality a? + b? > 1(a + b)2, we have

i,j i,jES

Ol Oge
16113

Lemma E.6. Define n = ﬁ(ﬂ — diag(Q))1. Then

i S0 S 0

~

Proof. The left-hand side is immediate, so we prove that 7 < 6,. We have

(Q1); = { 0:(/[0s 1 + bl|fse 1) ifi€ S
F G0N0 + [10se 1) ifi ¢ S
Since ;; = 62,

92'(“95'||1+b||95cH1)—9i2 if:1e S
Vo 1N = e
Vo {ei<b||es|1+||esc1>—e% ifi ¢S,

Since b = O(1), 6; = O(1),and vg 2 [|0]|? (c.f. Lemma[E.4),
9Wh_
19113

iy

as desired.

We use the bounds (EI8) — (E:22) throughout. We also use repeatedly that

10115 < 10113, ifp = g,
which holds by (E-2), and
18063 = |X
1Bil <1
1806211 < (180 0]12010ll2 < 11613,
where the second line holds by Cauchy—Schwarz.
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E.3 MEAN AND VARIANCE OF SGNQ

The previous work Jin et al.| (2021c)) decomposes @ and Q — Q* into a finite number of terms. For
each term an exact expression for its mean and variance is derived in |Jin et al.|(2021c) that depends

on 6, 1, v, and ). These expression are then bounded using the inequalities (E.2)), (E3), (ET3),
(E2T)—(E:23), as well as an inequality of the form

|Q”‘ 5 aﬁzﬂj.
In our case, an inequality of this form is still valid, but it does not attain sharp results because it does

not properly capture the signal |5\| from the smaller community. Instead, we use the inequality (E.20),
followed by the bounds in (E.24) to handle terms involving 2.

Therefore, for terms of Q and ) — Q* that do not depend on €, the bounds in Jin et al.| (2021c) carry
over immediately. In particular, their analysis of the null hypothesis carries over directly. Hence we
can focus solely on the alternative hypothesis.

Furthermore, any terms with zero mean in|Jin et al.| (2021c)) also have zero mean in our setting : for
every term that is mean zero, it is simply the sum of mean zero subterms, and each mean zero subterm
is a product of independent, centered random variables (eg, X; below).

E.3.1 IDEAL SGNQ
The previous work |Jin et al.[(2021c) shows that Q = X1 +4X5 +4X3 42X, + 4X5 + Xg, where

X1, ...,Xg are defined in their Section G.1. For convenience, we state explicitly the definitions of
these terms.
X = Z Wi Wi Wie W, Xo = Z ﬁijokaéWZi;
i3,k 0(dist) i3,k 0(dist)
X3 = Z ﬁijﬁjkaZWZia X4 = Z ﬁijokﬁMW@iy
i3,k 0(dist) i3,k 0(dist)
Xs= Y Qi Qe Wi, Xe= Y, Q15 Qe Q.
1,4,k 0(dist) 4,4,k 0(dist)

Since X; does not depend on €, the bounds for X; below are directly quoted from Lemma G.3 of
Jin et al.|(2021c). Also note that X is a non-stochastic term.

Lemma E.7. Under the alternative hypothesis, we have

E[Xi] =0for1 <k <5,
Var(X1) S 19115 S A1
Var(Xz) < (180 0ll3 11613 S [APAT
Var(X3) < (180 0lI5 11613 S 1AM\
Var(Xy) S [1800]3 < [A*
Var(Xs) S 1180 0l5* < INI°, and

]

Since we assume |\|/v/A; — oo under the alternative hypothesis, it holds that

Var(Q) S AT+ [A[°.
Theoremfollows directly from this bound and that EXg = EQ ~ A,
E.3.2 PROXY SGNQ

The previous work [Jin et al.|(2021c) shows that
Q-Q =U,+Uy+U,,
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where

U, = 4Y + 8Ys + 4Y; + 8Y, + 4V + 4V
Uy = AZy + 275 + 875 + AZ4 + 475 + 274
U, = AT, + 4T, + F.

These terms are defined in Section G.2 of Jin et al.|(2021c), and for convenience, we define them
explicitly below. The previous equations are obtained by expanding carefully ¢ and Q* as defined in
(E-6) and (E.7). Thus, the terms on the right-hand-side above are referred as post-expansion terms,
and we can analyze each one individually. Now we proceed to their definitions.

First Y7, ..., Y are defined as follows.
Vi= Y G WpWeWe,  Ya= > 65 WeWa,
0.4k, (dist) i4.k,(dist)
Y; = Z 5ijokﬁk£W£i> Yy = Z 5ij§jk§k£WZia
i4.k,(dist) 4.4,k 0(dist)
Ys = Z 5ijf~2jkae§m, Y = Z 5ij§jkﬁkéﬁéi-
i.4.k,(dist) i.4.k,(dist)
Next, Z1, ..., Zg are defined as follows.
Zy= Y 86 WieWa, Zy= > 0i;WikdkWa,
i4.k,(dist) 4.4,k E(dist)
Z3 = Z 5¢j5jkf~2kewm, Zy = Z 5ijﬁjk5k£W£ia
i.4.k,0(dist) i4.k,(dist)
Zs = Z 81505 e s, Zg = Z 8550k 01e2ei-
i.4.k,0(dist) 4.4,k E(dist)
Last, we have the definitions of T, 75, and F'.
T = Z 0301 0ke Wi, T = Z 5ij5jk5ke§ei,

i,5,k,£(dist) i,4,k,(dist)

F= Z 030k 0ke00;-

i,5,k,0(dist)

The following post-expansion terms below appear in Lemma G.5 of Jin et al.| (2021c). The term Y;
does not depend on 2, so we may directly quote the result.

Lemma E.8. Under the alternative hypothesis, it holds that

EYi| =0, Var(vi) £ 10131 1613 < Af
EYa| =0, Var(¥s) £ 18 0 013 1013 < 31X}
[EYs| =0, Var(Ys) < (|8 0lI3 10]5 < IA*AT
B gl llole -
£l 5 150 0131018 S 130, Var(ra) s I2CIRIO < 5
1
6lg4
IEY;| = 0, Var(Ys) < ”50|09|”2 192 < |55,
1
/] 12 0 2 ~
EY| =0, Var(ry) £ AP <5
1
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As a result,
[BUL| S APA1 = o(XY). (E.25)
Also using Corollaryand that |A|/v/A1 — oo, we have
Var(Ua) $ AT+ AT + AP, (E.26)

The terms below appear in Lemma G.7 of Jin et al.|(2021c)). The bounds on Z; and Z5 are quoted
directly from Jin et al.|(2021c).

Lemma E.9. Under the alternative hypothesis, it holds that

EZi| < 04 < X2, Var(Z1) < 0]2 615 < A
0 0
EZa| < 10112 < A%, Var(Zy) < ”'W'"” <A
1
EZs| = 0, Var(Zs) < |80 0112 10]S < |APAS
180613101

[EZa| S 118001131013 < A1, Var(Za) <

< RN
16112 '

5 1Bool3 11013 _ 5
[EZs| S 1180 0lI2 11013 < [A*A1,  Var(Zs) < W < AN
16117 16117
Using Corollaryand the fact that |/~\| /+v/A1 — oo under the alternative hypothesis, we have
[EUs| S 1A%, (E.27)
and

Var(Up) < [A2A3. (E.28)

The terms below appear in Lemma G.9 of Jin et al.| (2021c). The bounds on 77 and F are quoted
directly fromJin et al.|(2021c)) since they do not depend on Omega.

Lemma E.10. Under the alternative hypothesis, it holds that

6
[ET| < Hz: S A Var(Ty) < ”9|||2”9H3 < A3
1
[ETs| < ”6”09H”22|9”2 Sl Var(Ty) S ”6009”22”9”2 < AN
EF| S 116113 S 23, Var(F) < ':fa”g <\
1

Using Corollary and the fact that |5\| /v/A1 — oo under the alternative hypothesis, we have
[EU| < A%, (E.29)
and

Var(U.) < [A?A2. (E.30)

Using Corollary [E.1|and that [A|/v/A; — oo, the inequalities (E-23)~(E-30) imply Theorem

E.3.3 REAL SGNQ

Our first lemma regarding real SgnQ plays the part of Lemma G.11 from Jin et al.[(2021c).

Lemma E.11. Under the previous assumptions, as n. — 0o,
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« Under the null hypothesis, |E[Q* — Q*]| = o(||0||3) and Var(Q* — Q*) = o(||0]|3).
* Under the alternative hypothesis, if IN/VAL = oo, then |E[Q* — Q*]| < A2\ and
Var(Q* — Q) < [APAL.

The following lemma plays the part of Lemma G.12 from Jin et al.[(2021c).
Lemma E.12. Under the previous assumptions, as n — oo,

* Under the null hypothesis, |E[Q — Q*]| = o(||0||3) and Var(Q — Q*) = o(|0]|3).

* Under the alternative hypothesis, if [N /VAL = oo, then |E[Q — Q*]] < A} + |A]® and
Var(Q - Q) S AL

E.4 PROOFS OF LEMMAS |E.7THE. 12|

E.4.1 PROOF STRATEGY

First we describe our method of proof for Lemmas [E.7HE.T0] We borrow the following strategy from
Jin et al | (2021c). Let T denote a term appearing in one of the Lemmas [E.7HE.T0] which takes the
general form

T = § : Ci17"')i7!LGi17"')i’!n

where

* m=0(1),
* R is a subset of [n]™,

* Cirpsim = (s,5)en T'**) is a nonstochastic coefficient where 4 C [m] x [m] and

) e {Q,n*17, 717,117}, and
* Giyvin = [(5,9)e3 Wis,i,, Where B C [m] x [m].

Since we are studying signed quadrilateral, one can simply take m = 4 above, though we wish to
state the lemma in a general way.

(s,8")

Define a canonical upper bound I'; ’;  (up to constant factor) on 1) as follows:

T1s,lg/

Bi.bi.Bi. 0, if D) = Q)

1 otherwise.
Define
G = ] TE. (E.32)
(s,8")€A

By Corollary [E-T]and Lemmal|E.6]

ICiy i | S Cir oy

InJin et al.[(2021c), each term T is decomposed into a sum of L = O(1) terms:

L L
T=TH=3"" > ¢ 0.Girin: (E.33)
/=1

=1 i1, i €RO

In our analysis below and that of Jin et al. (2021c), an upper bound ET on |ET| is obtained by

L L
ET| <> [ETO1 <> Y ey
=1

=1 iy, i €RO)

|EG

i15eenim

24



Published as a conference paper at ICLR 2023

L

< Z Z Ciyeenyin |EGi1,~--7im
=1
ET

i1,0.,im ERW)
= (E.34)
Also an upper bound VarT on VarT is obtained by
L
VarT < L Var(T¥)
=1
L
< LZ Z (Cirovsim Cit it |+ |CoV (Gl i Gt it )
=1 4, imeR®
ey i’ eR®
L
< LZ Z Cirroim G+ |Cov (Gl i G ir )|
=1 i1, imeR®
1'1, il eR®
—: VarT. (E.35)

In Lemmas [E.7HE. 10} all stated upper bounds are obtained in this manner and are therefore upper
bounds on ET" and VarT'.

Note that the definition of ET and VarT depends on the specific decomposition (E-33) of T given in
Jin et al.| (2021c). Refer to the proofs below for details including the explicit decomposition. Again
we remark that the difference between our setting and Jin et al.| (202 1c) is that the canonical upper
bound on |€2;;| used in Jin et al.[{(2021c) is of the form «af,0; rather than the inequality /3;0;0,0;
which is required for our purposes.

The formalism above immediately yields the following useful fact that allows us to transfer bounds
between terms that have similar structures.

Lemma E.13. Suppose that

i1,0,im ER
* * .
T = E Cityeyim Tt seeyim)

T geeey imER

where
) *

|c7117 7l7n| ~ cil ..... Tm

Then
|ET| < E[T%]

and

VarT < VarT*.

In the second part of our analysis, we show that Lemmas [E.TT] and [E.I2] follow from Lemmas
E.7HE.10] and repeated applications of Lemma[E.13]

E.4.2 PROOF OF LEMMAI[E.T

The bounds for X; follow immediately from Jin et al.[(2021c).
In (Jin et al.}|2021c, Supplement, pg.37) it is shown that EXs = 0, and

Var(Xg) =2 Z Q?] . Var(ijWkgng).
4,4,k 0(dist.)
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Thus by (E-I) and (E2),
Var(Xa) S > Q- Var(WpWeWa) S 2028207 - Qe Qi
i,4,k,0(dist.) i,7,k,0
S > BROB67 - 6;02070, = (B0 6|5 613
i,5,k,¢

In (Jin et al.,[2021c, Supplement, pg. 38) it is shown that EX3 = 0 and

X N2
Var(Xs) S Y (D Q)" Var(Wi We).
ik b(dist)  j¢{ik,0}

By (E20) and (E29),
(>0 QuQ)* < 8262 8267 1B o 03
J&{i k. 0}
Thus by (E-I) and (E.2),
Var(Xs) S 8767 6767 180 6ll5 - Qe S 8767 5167 1800)15-67 S [186[5 116113
ikl ikl

In (Jin et al.,|2021c, Supplement, pg. 38) it is shown that EX, = 0 and

Var(Xy) S Y Q0% - Var(W; W)
i,j,k,(dist.)

By (ET) and (E20),
Var(Xy) $ Y 70787035207 8767 - 0;61000: < |18 005,

i,5,k,€
In (Jin et al., |2021c, Supplement, pg. 39) it is shown that EX5 = 0 and

A A 2
VaI‘(X5):2Z( Z Qiijkag) -Var(ng).
i<t jk¢{il}
#k

‘We have
Z Qijﬂjkﬁkf‘ < Bibi|| B 0 0|30y
Jikg{i Lt}
J#k
Thus by and (E2)),
Var(Xs) £ 3 (8:0:]18 0 0]4Be0¢)° - 00, < |15 0 032,
i

Note that X is a nonstochastic term. Mimicking (Jin et al.,2021c, Supplement, pg. 39), we have by

E24),

Xe -S> 2023202 52078707 < > BRO2B2026%0% 1|80 013 <IN
i,3,k,£(not dist.) N
This completes the proof. O

E.4.3 PROOF OF LEMMA[E.S

The bounds on Y7 carry over directly from (Jin et al.;,|2021¢c, Lemma G.5).
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In (Jin et al.,[2021c, Supplement, pg. 43) it is shown that EY; = 0. To study Var(Y2), we write
Y = Y5, + Yo, + Y. where as in (Jin et al.} 2021c| Supplement, pg. 43), we define

1 ~
,],k é(dzst)

- Z ( Z n; Jk)Wkae

z k,e(dist) j¢{i,k, L}

- = Z ( Z U jk) WZGWkZWh
z k,e(dist) j¢{i,k,l}
s¢{i,0}
Yv2a + Y2b + Y2c~ (E36)

There it is shown that

1 A ) ~ ~ 2
Var(Yz2q) S > Z ‘mij + 7k + M85 + Usti’ - Var(W; s WieWe;).
ijkls
We have by
’niﬁjk 4+ 10 Qsn + ey + kalsi‘ S 0:850; 810k + 08504810k + 018;0;8:0; + 015:055:0;

Hence by (E1), (E-2), and (EI8),
1
Var(Yoa) S = D (0805100 + 0:8:0. 100 + 08,0, 5:0; + 015:0:5:9:)” - 0,0.0,030;

ijkls
18 2 011311013
< Iz CRaP e
S ]

Next, in (Jin et al2021c|, Supplement, pg. 43), it is shown that

1
Var(Yay) S - > lowmeqine| - BIWEWie, Wiy Wise]
ike(dist)
iK€ (dist)

where ke = 3505 0y n; Y. By (E24),

|vire| S 1180 0l|2]|6]|2 O
By (E-I), (E-T8), the inequalities above, and the casework in (Jin et al},[2021c| Supplement, pg.44)
on E[WEZWM, WiQ/ZIWk/g/],

1
Var(Yay) S - > 1800131613650k EIW Wi, Wiy Wi

ike(dist)
i’k (dist)

~ v YUY YEVeYi i Yk
ikl ikli’ ikl
S 180 0l311013-

Next, in (Jin et al.}2021c|, Supplement, pg 44) it is shown that

Var(Yae) < > B NVar(WisWieWe:)

2kf(dzst)
s¢{i,0}
where ;i is defined the same as with Y5;,. Thus
1 800203
Var(Va) S5 D 18003101363 - 0x630, S '0':'“”
ike(dist) 1
s¢{i,0}
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Combining the results for Ya,, Yo, Ya. gives the claim for Var(Ys).
In (Jin et al.,|2021c, Supplement, pg.45) it is shown that EY3 = 0 and the decomposition

2 ~ 2 ~
Y3 = BNV > Wi W — 7 > W W W
0,7,k L(dist) i,5,k,0(dist)
s¢{j.k}
= Ysq + Ya, (E.37)

is introduced. There it is shown that

4 ~ ~
Var(Yaa) = = D> (ikenirQur) - EIWRWuW o Wers].

J
i,7,k,(dist)
i'j' k'€ (dist)

Using (E-I)), (E:2) (E:24) and the casework in (Jin et al., 2021c| Supplement, pg.45),

1
Var(Ysa) < (Z[ﬂ%ﬁ?+ﬁiﬁjﬂkﬁz]6?6?9i93+ > ﬁkﬁzﬂk/e?ejeieﬁaj/ei,)

~ g2
||0H1 ijke ijkly'k’
13 < 61I31191l3
< W + 8o 0l3ll0l3 < 118 olllel3
1

Similar to the study of Y, we have

1
Var(Ys) S 5 Z (0:810x 800 + 008101 B:0; + 08500, + 9@5593&91')2 - Var(Wg; W, We;)
ijkls
1
S 5 Z (0:8k0k 800 + 00 Bi0k Bi0; + 058505800, + 9@5395@‘91')2 - 0,070,600,

ijkls
_ 186131813
A (]t
Combining the bounds on Var(Y3,) and Var(Ys;) yields the desired bound on Var(Y3).
Following (Jin et al.,|2021c, Supplement, pg.46) we obtain the decomposition

Y4=—\% > ( > niﬁjkékZ)stW&'_\% > ( > njﬁjkﬁkl)WiSWZi

i,5,0(dist) k¢{i,j.L} i,6(dist) j,k¢{i,l}
s#j Ss#£1
= Yio + Yap.

First we study Y,,, which is shown in Jin et al.| (2021c) to have zero mean and satisfy the following:

1
Var(Yaa) < > Z azjeVar(Wis W)
ij0(dist)
s#J

where o0 = Zk%{i,ﬂ} ﬁinkag. Simlar to previous arguments, we have
1

Var(Ysa) S e > 07(8;0;)(Bebe)? |18 0 05 - 0,0;6,0,

1

ijls

1800113110113
< oz - it e
A 5

Next we study Yy, using the decomposition

1 1 ~
Yi=——= >, BuWi—— > BuWisWe=Yu + Y,
\/E i,0(dist) \/6 i,0(dist)
s¢{i,0}
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from (Jin et al.,|2021c, Supplement,pg.47). There it is shown that only EYj, is nonzero and

~ 1
|EYy| < T > laie|0:0e.
il

where a; o = 3~ ke (i,ey M€Yk ke In our case, we derive from (E:29),

laie| < Bebel|B o 0]13]16]]2.

Using similar arguments from before,

EYap| < ZBMHBO 0131011z - 0:0¢ < 118 0 012119113.

||9H

Now we study Var(Y4b). Using the bound above on || and direct calculations,

. 15001810 00 < 122 EI0IE

z@(dzst)
182 631618

1
Var(Yy,) < " E M Var(W;sWy;) < ]
1

i,0(dist)
s¢{i e}

Combining the results above yields the required bounds on EYy;, and Var(Yyy,).

HQHQZMMMH 16113 - 6266, <

In (Jin et al.,[2021c, Supplement, pg.48) it is shown that EY5; = 0 and

1 2
Var(Ys) S — > ady - Var(WWie)
.k, £(dist)

s#i

where
Qjke = Z niﬁjkﬁh‘-

i¢{j,k,(}

We have using (E.20), (E:24) and the triangle inequality,
il S 10113(810;) (Brk) (Bebe).-
Thus, by similar arguments to before,
16112115 < 6113
16111

Var(Ys) < Z 16113(836,)° (510x)* (Be8e)*) 0,05610¢ <

1 jke
Next, in (Jin et al., 2021c, Supplement, pg.49) it is shown that EYs = 0 and

~ o~ o~ 2
Var YG Z ( Z ninkath) . Var(WjS).
] s(dist) i,k 0(dist)¢{j}

We have using (E20), and the triangle inequality,
Y Q] S 86,1180 01391
i,k 0(dist)¢{j}
Thus

< 1820113119113
Var Y6 ~ Z 2032‘Hﬂ09”%0“9“§)9 5 W

Jss

This completes the proof. O
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E.4.4 PROOF OF LEMMA[E.O|

The bounds on Z1 and Z carry over directly from (Jin et al.;[2021cl Lemma G.7) since neither term
depends on (2.

We consider Z3. In (Jin et al.,|2021c|, Supplement, pg.61), the decomposition

Zs =Y ni(ny — ii)n; (e — ) Qe Wes + Y mi(nj — 71)* Qe Wei

igk,0 WGkl
(dist) (dist)
+ 7 = RO — QWi + Y (0 — 712)n (0 — 1) e W
i,5,k,€ i,5,k,C
(dist) (dist)
= Z3a + Z3b + Z3c + Z34- (E.38)

is introduced. We study each term separately.
In (Jin et al.,|2021c, Supplement, pg.61) it is shown that EZ3, = 0 and the decomposition
1
Zsa == > aipWiWe + ; > ikt Wis Wit Wei

i,5,k0(dist) 1,5,k 0(dist)
875 t#k,(s,6)#(k,5)

= Zga + Z;a.
is introduced, where o1 = niankz. Then
Val"(Zga) S Z |Ozijkg‘|04i/]€/j/g/‘ |COV( ]kW&a W]%k/Wg/il)|.

ijkl(dist)
i'5' K" (dist)

Using the casework in (Jin et al} 2021¢c| Supplement, pg.62), (E-I), (E-2)), and (E-24), we obtain

~ 1
Var(Zsa) < 5 (SOI0067 + BuBB B\ 0000 + S RSB 0003000507
ijkt ijkly'k!
Bob 08
< rors (1990181013 + 1300121015 + 13 011015 < nelh”
Similarly,
1
Var(Z5,) < ( S RE260600.0,+ 3 (5268, +5kﬂ3/3j]9?9§’0202039t)
ijkest ijkest
Bo0|3l6]3
< s (18 1o11017 + 1 o oigiongions) < Lol
1
It follows that

Var(Zsa) S |18 0 0]z
Next, in (Jin et al.|[2021c| Supplement, pg.63), it is shown that EZ5,] = 0 and the decomposition

1 1 ~ .
Z3p = " Z 5iszj-25Wh + " Z BijeW;sW5:Wey = Zsp + Zy,.
i,5,0(dist) i,5,¢(dist)
s#j s,t(dist)¢{j}

is given. Using (Jin et al., [2021c}, Supplement, pg.63) we have
Var(Zgy) S D laugellairjoer ||Cov(W7 W, WiZ W ).

,5,€,8,t
i j',Z',s’,t’

where

Q50 = Z nink§k£~
k¢ {i,j,0}
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Using (E24), (EI8), and similar arguments to before,
laize| < 0:(Be00)]10]13-
By the casework in (Jin et al., [2021cl Supplement, pg.63), (E.1), and (E.2),

Var(Zy) <<Zﬁell9§939 0.+ 30 BIO1650020.050, + Y pus 01302030167
ijls ijlsj’s’ ijls
18 0 031013

||9H4 (118 013161210111 + 118 BSOS IIONT + 118 0 0l311013) < ol

By a similar argument,

182 OII]10115

Var(Z3,) <
% 16111

Hence by (E-2),

180 0113110113

Var(Zgn) < 912 < 500121015,

= ol

For Zs., in (Jin et al.| 2021cl Supplement, pg.64), it is shown that EZ5. = 0 and the decomposition
1

Zse=— D cWiWi + = Y Wi Wi Wi = Zse + Z3,.

i,k,L(dist) z,k,Z(dist)

t£k s@{i, 0}, t#£k
is given. We have

kel =1 Y 13l S (Brbi)(Bebe)]|0]]3-
J¢{i.k.C}
By the casework in (Jin et al.,[2021cl Supplement, pg.65)
Var(ch) g Z Z |Oéik60éi/kfz/||EWi2ngtW12/z/Wk/t’|

ike(dist) i’k (dist)
sg{i, b} t#k s’ ¢ {3/ 0/}, t' Ak

e [
~ H ::2 > [BEﬁ?Gﬂi%‘Gt + BEBeBiO20L020: + BrBE 10} 070307
Liket

- BB BORO2020 + BB BO26R020) + BuBE,0,020307 + ﬁﬁﬂ%eie,ﬁez’et}

+ ) [Bﬁﬁeﬂeﬂiﬁﬁ@?@t@w@%+Bkﬁeﬁwﬁtﬁiﬁi@f@f@w%}

iklti’ 0’

We have by (E.2) and that

> | 2020036200+ HBPG0220,+ SEBOLROUE + Puub 5020307

1kl
+ BEBBi0? 03070} + BiB7B.10,010307 + BEBE0:03030,
S|1Bo 031003 + 18 0 0113110131101 + 118 © 0113116113 + 1|3 o 6]13]16]I

and

> {Bﬁﬁzﬂwﬂi@?@tﬂﬁi + BubBeBe Bi0:0707070::07 | < 118 © 013 1011211611F + 115 © 012|112 ]1011F
iklt'
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Thus
Var(Zs.) < HZ: (18 = BI3161 + 118 < O3 16 N31613 + 113 < BILNOI316IZ) W
To study Z3,, in (Jin et al.,2021c, Supplement, pg.65) the decomposition
Zi. = % > ainWi W + % > ikt WisWieWei = Z3. 1 + Z3e o
i,k,0(dist) i,k,0(dist)

@ (6,0t (s,6) #(k0)

is used, where recall c;pp = > i {ik,0} U?le- Using a similar argument as before, we have

. 03
Var(Z3,.) S it ( S5 RSO20L0% + 3 i} + 50161036201 )
LN ke kLK
_ liels
~ ol
We omit the argument for Z3, , as it is similar and simply state the bound:

< IBool3ens
ST

182 0115/10115"
19113

(180811210113 + 1912118 o Bl 116115 + 118 0 Bl3116113) <

Var(chQ)

Combining the results for ch and Z3., we have

< 1820151013

Var(Zs.) < ol

< 1Bo0131015-

Next we study Z34, which is defined as

Zsa =Y (meny Qo) — i) o — ) Wer = Y e Wis Wi Wes

iyj. k.l ik, 0(dist)
(dist) s#i,tk

where o,y = ng{i o,0} Tk Qj¢. We see that EZ34 = 0. To study the variance, we use a similar
decomposition to that of Zs.. Write

1 1 . .
Z3qg = — Z Qe WaWie + 5 Z e Wis Wi Wy = Zsq + Zzy.

ik, 0(dist) ik, 0(dist)
t£k s@ {0} t£k

Mimicking the arguments for Zs, and Z3, we obtain

Var(ng) < Hﬁ © 9||§||0||g

S ] PO
and
18 0 0||3]1]15°
Var(Z3,) S ——5——.
5 19]11
Hence
Var(Zap) < 18211015
~o (16l
Combining the results for Zs,, ..., Zsq, we have

EZy =0, Var(Z;) < |80 0]2[16]3-

We proceed to study Z4. In (Jin et al.| 2021cl Supplement,pg.67) the following decomposition is
given:

Zy=2 Z (5 — 75) Mk (M0 — 1) Wi
4.4,k E(dist)
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+ ) milny = i)k — )W
i,k 0(dist)
+ Z (i — 1:)n Qe (e — 7e) Wi
i,k 0(dist)
= Zsa + Ly + Zse. (E.39)

There it is shown that EZ,, = 0. To study Var(Z4,), we note that Z,, and Z3. have similar structure.
In particular we have the decomposition

1 1 - .
Zio=~ Y ipWiWie + p > aiwWisWieWes = Zaa + Zi,.
ik £(dist) ik (dist)
t2k s¢{i,0},tk

where oy = ng{i_k o ’r]j’r]ngg. Mimicking the argument for ch we have

~ 2119112
Vr(Zu)  L2BIOB (5™ (52 02020, + 6203070, + puu0030203 + pusuoioroner
1

k0t
+ BRO70R070, + BrBi0:i070707) + Y [Br0:07070:0:67 + /Bkﬂtgigigggt?gi,g%o
iklti’ 0’
ﬂoo 2 /] 2
< W1 (15 0 oigaiton + 15 - o131t + 1 - o136l 11+
1

Bob 41101/8

180 013110121012) < |||e||”|

For Z}, we adapt the decomposition used for Z}:

1
Z* = — — . . L= * *
da v Z alkﬁW}cW& + Z ikt Wis Wit W, Z4a71 + Z4a,2
i,k,l(dist) i,k,l(dist)
SR Lh ik, (5,0) £ (ki)

Mimicking the argument for Z3, ; and Z3,. ,, we have

0||5]|0 ol14110118
Var(Z;, 1) < W Zﬁ,ﬂ?ek@e + 37 BB 62630263 < ”BO”9|24””2
ikt 1
and
< 180013110113 20202 92 202029 2 202022 2
Var(Zi, ) < 0] Z (82070720700, + Br:07 01070507 + 513507 03,07 0507 |
iklst
~ el

It follows that

180 6112119113

Var(Zsa) <
! 10111

Next we study

Zuw =y mlny — i) Qe — i )neWer = Y ijue(n; — i) (e — i) Wi
i,5,k,€ ©,9,k, 0
(dist) (dist)
1
= - Z ke Wis Wit Wi

v
0,4,k 0(dist)
s#j,t#k
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where ;10 = nmgﬁj x- Mimicking the study of Z3,, we have the decomposition

1 ) 1
Zap =~ > Wi W + - > @ikt Wis Wit Wei
0,5,k €(dist) i,5,k,(dist)
sk, (5,6) 7 (k.j)

Further we have, using (E-)), (E:2), (E:20), and (E:24), we have
1
Var(Zu) S B ”4 (Z [1838% + BiBrBeBilOF 030305 ] + > Bi BBy Br 03036760367, 92,)

ijke ijkej'k’

Bod|5]|0
S (18 13161 + 18 <o11018) < ”W'””

Similarly,

1
Var(Z4b) ~ || ||4 ( Z [6?6k92929k950 Ht + ﬁkﬁlﬂ]9293939f929t + /Bjﬁk6492939k95029t>

ijklst
_ I8oollon
~o el
It follows that
0121161
Var(Ze) < IIﬂoH G
1

We study Z,4. using the decomposition

1 2 1
Tp = = ) 3 4 = ) ) 2 4 = . ; )
4c Z BMW& + v Z 5ZZW’LSWZ'L + v Z BZZWZSWZtWEz
i,0(dist) i,4(dist) i,4(dist)
s¢{i, 0} s¢{i,0},t¢{¢,i}
=Zye+ Zi+ Z),.
from (Jin et al.,[2021c, Supplement, pg.68). Only

~ 1
Zye =~ > Wy
1,4(dist)

has nonzero mean, where o,y = Zj K(dist) & (.0} njnkﬁjk- By (E20)
il S 1180 0113110113
Hence

~ 1
EZsc] S e > 1B 6l3161136:6. < 118 © 61I31101]5.
1 e

Except for when (i, £) = (£, ), the summands of Z,,. are uncorrelated. Thus

Var(Zie) S e S 180 ol el0.0, < 2P0
16111 < 1912

Applying the casework from (Jin et al.,|2021c, Supplement, pg.68),

Var(Z3,) S Y. Y loueaine |Cov(Wis Wi, Wy e WE,)|
i,€(dist) i’ ' (dist)
sé{i 0} S (il 0}

302000, + > (180 0[131101131161|3670,0.0¢)
'Lfs sl
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< 1800510113
~o el

Next, in (Jin et al.}2021c), Supplement, pg.69) it is shown that

1806112110115

(lelznens + llenslient) < 7
1611

1
Var(Z],) < ) Z gy - Var(Wis Wy W)
i 0(dist)
sg{ihte{e,i}

Thus
013110115
Var(z},) £ 318 o ol lolozeto.o < 22Tl
ils 1
Combining the results for Zy., Z}., Zlc, we have
013110115
[EZic| S 18001311613, Var(Za.) S lﬁwlhlil

Combining the results for Z4,, Z4, and Z,4., we have

EZi| < |80 6l2l613, Var(Zi) < ﬁnﬂh”‘)

To study Z5, we use the decomposition

Zs=2 > miln —imy O — i) Qe Qi+ > 10y — ) e Qi
i,5,k,£(dist) i,k £(dist)
+ Z (i — )02 (ke — 77k ) e Qe
i\j.k E(dist)
= Z5a + Z5b + Z5c- (E40)

from (Jin et al, 2021c, Supplement, pg. 70). We further decompose Zs, as in (Jin et al.| [2021c]|
Supplement, pg.70):

2 — *
g = = Z Wi + = > Wi Wi = Zsa + 23,
] k(dist) J,k(dist)
s#j,t#k,
(s,t)#(k.4)

where o, = Zi,l(dist)g{{j,k} mnjﬁkgﬁgi. Note that by (E-20) and (E-24),

il S (Bk0k) (Be8e)* (8:6:) S 0580118 © 0[13]10]]2-
il

Only Zs, has nonzero mean. By @[) and (E2),

< IBooslens

|EZ5a| = |EZ5a| ~
1017

T 20560015 211012 - 001 %

Now we study the variance of Zs,. In (Jm et al.| 2021c, Supplement, pg.70) it is shown that

~ 1
Var(Zsa) < 2 Z oy Var(W},)
j,k(dist)

1
Var(Zi,) S = > ady Var(W; Wi).

02

J.k(dist)

s#Jt#k,

(s,)#(k,5)

Thus by (E.2) and ’
~ 0 0 0 81191|8
Var(Zsq) S |B°”0|||4|| H2 2935k9k BO||9|:|24”2
1
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180 01111113 180 611216115

Var(Zga) S ||0H411 (Za?ﬂgoi ! 0_705‘01601‘) 5 He”%
ik

‘We conclude that

180 8] 615
Var(Zs,) S -——5—=.
( R

Next we study Z5;, using the decomposition

1 1 7 *

Zsp = S E ‘ a; W2, + - E a;jW;is Wi = Zsy + Z3,.
j,s(dist) J

s,t(dist)¢ {5}

from (Jin et al., 2021c, Supplement, pg.71), where a; = >, , o(dist)2 {5} T}iﬁkﬁkgﬁgi. Note that by

and (E20),
il S 0:0k (Brbi) (Bebe) *(Bibi) < 118 © OII3]16]]3-
ikl
Only ZSb above has nonzero mean, and we have

182 0113110113

[EZs| = [BZs| S gm0 > 0,0, S 1180 0113116113-
1 j’s

Similarly for the variances,

__Bodlslel 180 0]13]6114
VarlZsn) S g Z”< Uk

o U8 OIBIONE < 0 o 150 030N
Var(Z) S T 2 00 S T

gJst
and it follows that
1180 813116113

Var(Zsp) <
Z0) = )2

Next we study

Zse =Y (0 — )i (g — i) ey = > (007 eeu) (my = 733) (e — k)

1,5,k ¢ i,5,k,¢
(dist) (dist)
1 ~ ~ 1
= > (07 )W Wiy = " > Wi Wi
i,5,k,0(dist) j,k(dist)
stk sAj,t#k
where o = 32 (aist) 17QeQe;. Note that by (E20) and (ET8)
i,0¢{j,k}
el S 07 (Bk0k) (Be8e)* (B;6,) S (B;6;)(Brb) 10113118 © 0]]5- (E4D
it

We further decompose

Z O[jkW k + - Z ajijkut = Z5C + ch
7,k(dist)
(dzst) s,t¢{j,k}

Only the first term has nonzero mean. It follows that

> 19113115 0 0113 180 013116113
|EZsc| = [EZsc| S (8;0;)(Bbk) - 06k S —— 15—
Clel 2. (5 ! 19117

3,k,s,t
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Note that Z5. and Zs, have the same form, but with a different setting of the coefficient oy.
Mimicking the variance bounds for Z5, we obtain the bound

180 8lI516113
Var(Zs,) < 122121702
’ 16]1%

Combining the previous bounds we obtain

18061121915

[EZs| S 18001311013, Var(Zs) < TE
1

Next we study Zg = Zg, + Zep as defined in (Jin et al.;|2021cl Supplement, pg.72), where

Q.,0 g ~ 1 6a
Zga = Z (imeS25e) (0 — 10;) (e — 7k) = > Z a§,€ )stWk,t
i,j,k,¢ j.k(dist)
(dist) s gtk

=~ = . . 1 6b
Zep =2 (mime€xQu) (n; — 7;) (e — 7x) = " > 0‘;1« "W Wi
i,5,k,¢ Jik(dist)
(dist) s#7,t#£k
and
a§?ca) = Z Ni11eQx e

i,4(dist)
i {4k}

Oé;ib)z Z nz‘mﬁjeﬁki-
i,4(dist)
i.0¢ {5k}

Thus Zg, and Zg;, take the same form as Zs.., but with a different setting of c;. Note that by (E.24)
and similar arguments from before,

max (a5, [a$3”)) < (8,0;)(Br00) 10113118 0 013,

which is the same as the upper bound on || associated to Zs. given in (E4T). It follows that

0 4 0 4 2] 8 /] 4
2| 5 PO - v z,) < 10210l
1613 613
We have proved all claims in Lemma@ .

E.4.5 PROOF OF LEMMA [E. 10|

The terms 73 and F' do not depend on Q, and thus the claimed bounds transfer directly from (Jin et al.,
2021c, Lemma G.9). Thus we focus on 7. We use the decomposition 1o = 2(To, + Top + Toc + Toa)
from (Jin et al., 2021c, Supplement, pg.73) where

Tyo = Z NizMizMNiy [(7711 - 771‘1)(771'2 - 771'2)(771'3 - ﬁls)} ) Qi4i17
’il,iz,ig,izl(dist)

To= Y 0umn [ = i) Oy = 71ia) iy — 71ia)] - Qi
i1,i2,i3,54(dist)

Ty = Z Ny MigMiy [(77712 - 771‘2)2(77713 - ﬁls)] ’ Qm‘u
i17i27i3,i4(di8t)

Toq = Z Niq 771‘23 [(niz - f]i2)2(77i4 - f]u)] : Q1441'1'

il ,ig ,i3 ,i4 (dist)

We study each term separately.
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For Ty, in (Jin et al.,[2021c| Supplement, pg.89), we have the decomposition T, = X417 + Xg2 +
X3 + Xp where

1
Xa1 = 32 Z Z niznisnMW“QWZ%JsQHMa

i1,02,13,i4(dist) j3Fis

1
Xa2 = _W Z Z 7]i277i37714W1113W12]291114a

i1,02,i3,i4(dist) jaFiz

1
Xa3 = _m Z Z niznignl4W1213W11]1Qzli47

i1,i2,13,i4(dist) j1741

Xy = 7@3% Z Z NiaMizMiy Wiljlwizjé Wi3j3 Qm‘4-

i1,42,13,14 (dist) J1,J2,J3
JeFte,k,£=1,2,3

There it is shown that ET5, = 0. Further it is argued that
Var(X,1) = EXZ

1 PO
- v3 Z Z Thio Mis Mia M3, i T [Wlllg WlSJBW Wiéjé]QiIMQi/lii
i1,12,13,i4(dist) 73,75
01,1 5,14 (dist) jais,jg 7l
(E.42)
=Va+Ve+ Ve,

where the terms V4, Vg, Vo correspond to the contributions from cases A, B, C, respectively, de-
scribed in (Jin et al., [2021cl Supplement, pg.89). Concretely, the nonzero terms of @ fall into
three cases:

Case A. {i1,i2} = {i5, j5} and {i3, 73} = {i},i5}

Case B. {is,js} = {i%, j5} and {i1,i2} = {i}, %}

Case C. {is,js} = {i4,j5} and {41,142} # {¢], 45}

Here V4, Vp, and V- are defined to be the contributions from each case.
Applying (E.2). (E.22), and (E20).,
|7712 NiaMia it iy, iy 91114 Qlll iy ‘ S 05,0:,0:, 01'2 01% 0121 (le 05, ) (61'4 0i, ) (61'1 02'1 ) (5111 0121 )
S O, 0i30:, 91'2 91/3 912 (Bi10i,)(Bis 0, )01’1 (ﬂzi 0@21 )- (E.43)

Note that using the last inequality reduces the required casework while still yielding a good enough
bound. Mimicking the casework in Case A of (Jin et al.,|2021c| Supplement, pg.90) and applying

(E:Z4), we have
Vaz ||0||6 > Z Bir Biu By, 05 0710262, 03, 07,07,

i1,2,13 ba
i4,i4,]3 (bl+b2 1)

”0”6 (118 O131813 1011216115 + 118 o Bl Il 1013 110115) <
Similarly, applymg (E-43) along with (E:22)), (E:20), and (E:24) yields

3 7
VSpr X X Al et s gl

150 0131013
115

5
21,12 i3 C1,C2 ||9||1
Q4,53 (e1t+ca=1)
and
B00|5]0]l5
VoS 3030 BuBuB By 03 020201202 02 03,07 < ””w
11,12,13,14 €1,C2
i ih,i.ga (1Fe2=1)
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Thus
Var(Xa1) S (|80

The arguments for X,o and X,3 are similar, and the corresponding V4, Vg, V¢ satisfy the same
inequalities above. We simply state the bounds:

EX,, =EXa3 =0, Var(Xa2) < [B00l5, Var(Xas) S [1800]5.
Next we consider X, as defined in (Jin et al.} 2021c, Supplement, pg.89). We have EX; = 0 and
focus on the variance. In (Jin et al., 2021c, Supplement, pg.91) it is shown that
Var(X,) = E[X;]
=v7? Z Z 771'2771‘3Uiﬂh;ﬁi’ﬁh;ﬂwzulszWmsW131W232 Wzsjs]ﬂzli4gi’li’4,

i1,i2,i3,94(dist)  js,jg
-/ -/ -/ -/ . . . . .
i7,15,15,i4(dist) jatis,jh#iy

Note that
[Wllh Wiz W1373W 11 Wi 'QJQW ’3]:’,,] #0
if and only if the two sets of random variables {W;, j,, Wi, j,, Wiy, } and {Wy, jo, Wiy 5, Wir . } are

identical. Applying (E:22) and (E-20),

‘?7742777/377147712771377149111491/112| < 92‘291'39‘ 9"9’/ eza(ﬁh il)(/Bi4 ’i4) i (ﬂ’bg 1,:1)
ﬁi /Bz ﬁz 91+a19&291+a39a461+a59a692 92

J1 T2 J2 73 J3 TtaTy
if E[W;, 5, Wiy j, Wi i, Wis s Wiy s Wi 2] # 0, where a; € {0,1} and S2%_, a; = 3. Thus by (E-I),
(E.2), and ,

Var(Xp) Smax g > BinBi By 0505 0L 0 T gz g 0 g 67

‘9”6 11’%2,l3,24 o
i3,01,52,33
1
5 HQHG Z 5i16i451491216‘]1191229]1291239;39124912
L i/1,i2,i3,i4
14,J1,72:J3
180013013 N0N211015 _ 118 el310l3
S T L T
1

Combining the results for X, X2, X435 and X3, we conclude that

ETs =0,  Var(Tz) < (180 0]3]0]2.

The argument for T5;, is similar to the one for T5,, so we simply state the results:
ETy =0,  Var(To) S |50 6]3]0]l2-

Next we study 75, providing full details for completeness. Using the definition of 75, in (Jin et al.}
2021c), Supplement, pg.92), we have the following decomposition by careful casework.

1
Yo = T 32 Z 771'1772'37714W1213911i47

11,%2,13 7i4((iist)

1
Yo = _m Z Z Niq ni3n24W12]2W'LsJaQ'Ll’i4a

i1,i2,13,14(dist) (i2,52)#(Js,is)
J2Fi2,j3F#i3

1
Yb2 = _m Z Z 771'17]1‘37714W2223 W12f2911i47
il,i27i3,’i4(dist) EQQ{ig,ig}
1
Yoz = 7@ Z Z Niy Mig iy W1213 W22]2 Qlliu

i1,92,13,14(dist) jo&{iz,i2}
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1 ~
Y. = 7@ z Z Ny MigMiy Wi2j2 Wi2€2 Wi3j3 Qi1i4'

il,iz,i37i4(di5t) . . j27l2ﬁj3_
JoFLa,(i2,52)#(43,13),(i2,02) #(j3,3)
Note that, by the change of variables {5 — jo, it holds that Y5 = V3.

The only term with nonzero mean is Y,. We have by (E.18), (E:20), (E.22)), and (E.24)) that
1 1
EYa| S o8 D 00,0i,0,,(8,05,)(Bi0,) - [EW, | S e > BuBub; 0,076,

11,12,13,14 11,12,13,%4
< 1B BIBI8IE
~o e

For the variance, by independence of {W;; }~;, (E2), (E:20), and (E:24), we have

1 2 1
Var(Ya) S W Z (Z 0;,0i,6;, (5i19i1)(6i49i4)) 0;,0i, S W Z ”B °© 9||%||9||§9120223
1 1

92,13 11,04 12,13
18081511615
< U7 - PRalT e
~o e
For Y31, Y2, Y3 we make note of the identity
W2 = (1= 20;)Wi; + Q5 (1 — Q) = A; Wi + Bij. (E.44)
Write
1 ~
Yo =—-—35 > > MMy Adngs Wi js Wiy, i

i1,i2,i3,54(dist) (i2,52)7#(d3,i3)
J2F#i2,j37 13
1 _
) Z Z iy MiaMis Bizjo Wiajs Sivis = Yor,4 + Yo1, 5.

i1,i2,13,14(dist) (i2,52)#(Js,is)
JaFi2,j3F13

By similar arguments from before, and noting that |A4;, ;,| S 1,

2
1
Va‘r(Y;ﬂ’A) S H0||6 Z Z Ny Mis iy (ﬁileil)(ﬁueu)) |]EW7;2J'2W7;3]-3|
L (ig.go)# (s ia) ivsia
JeFi2,j3Fis

2
Z ( Z Ny MigMiy (/811 92'1 )(ﬂuau)) ! 9i2 0j20i3 9]'3

12,J2,13,J3 11,l4

1
1919

A

1 4 6
S MDD ERE
1 1

12,J2,13,]3

Similarly, using |B;;| < 45 S 6,6,

2
1
Var(YE?LB) S HQHG Z Z nilnisni49i29j2 (Bileil)(ﬁiz;eu)) : |EWi3,j3|
Lig ds(dist) Nityiosia,go
1 180 012116115
S W Z ||5°9||3\\9||3||9||%9?39j3 N W
1 1

13,J3
It follows that

- 828130615

Var(Ybl) N
19113

To control Var(Y}2), again we invoke the identity (E-44) to write

1 ~
Yo = 7@3? Z Z iy ni3ni4Ai2isWiziswiQKQQilu

i1,42,i3,14(dist) La@{iz,i2}
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1 _
s Z Z Ny NigMis Binis Wiot,iriy = Yoo, 4 + Yoo, B.

i1,92,13,1i4(dist) £2¢{i3,i2}

Using similar arguments from before, we have

2
Var( = Z (2911 14 511 7,1)(/814 24)> 9i39€2

Ligigts Nivig

: 5 0 0l31613
ST LR AR
Q21302 9
Furthermore,
2
VaI‘(YE)QB ~ Z( Z 0,050, 511 11)(524 14) > 0:,00,

11,%3,%4

Z 180 101365 6, < 182 OlB101E°
o ST

Since Yo = Yj3, we have

< 1Bo0l31012°

Var(Ys2) = Var(Yes) < TE

Next we study the variance of Ys.. For notational brevity, let

Riyinyis = {(jzfmjs)
We have
Var(Y,)

1 ~ ~
== Z Z Ty M Mia v ia Mg M, Mt it i B[ Wiy 5y Wiy 0, Wi s Wit s Wig or Wi i |

v3

Ja # d2, by # la, J3 # i3ja # U2, (l2,]2) # (J3,13), (12, l2) # (jsyis)}-

i1,d2,i3,i4(dist) (j2,02,53)ERiq ig,ig
R . . R
llxlzulgvzi(dlsw (Jé’ ;,jg)ER,L/ 1/ 1/3

(E.45)

Note that Wi, j, Wi, e, Wi, j, and Wiy s Wi g W, 51 above are uncorrelated unless

{tia, e}, G . tin ) b = {0 i 53, 0500 -

In particular, i € {is, jo, {2, 3, j3} When the above holds. Hence for some choice of a; € {0,1}
with Z?:l a; =1,

1
Var(Yo) S — Y 016526052600005 - 0,,0,,0,,(8,0i, ) (Bi,0,)0i, 0, (Biy 031 ) (Bi,01,) - 07,65,60,0:,05,
v 11,12,13,%4
ill)i:p.j27£27j3
1
S = Z ﬁzlﬁzll ﬁi4ﬂz46221 9?2+a1 92—‘,—&4034612 92 61+a201+a391+a0
11,12,13,14
i1,14,J2,02,]3

1
202 n2 pn2 n2 p2 nl pl pl
S -3 g 5i1ﬂigﬁi4ﬂz49n912923914@ 9 9 9@20j3 S
/il;i277:37i4
il,i4,j2,€2,j3

182 6115110113
[/

where in the last line we apply (E.2)) followed by (E:24). Combining our results above we have

182 lI2119113

0112||0/|4
IEThe| < M7 Var(Th.) < o
1

16117
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The argument for 754 is omitted since it is similar to the one for 75, (note that the two terms have
similar structure). The results are stated below.

o 0113116113

4 8
7l 5 12212100, < I8 oliel;
1

Var(Tsq) S -
’ 19117

Combining the results for T, . . ., Toq yields

ETy| < 182015002 < IBooldlels
ST e SR

as desired. O

Var(T5)

E.4.6 PROOF OF LEMMA [E.11]

As before, we only need to analyze the alternative hypothesis. In (Jin et al.,2021c, Supplement,pg.103)
it is shown that Q* — Q* is a sum of O(1) terms of the form

v\ N7
Y = (V) S abicueds, (E.46)
0,7,k L(dist)

where a, b, c,d € {§~27 W, 6, —(77—n)(7—n)"}, and N; denotes the number of a, b, ¢, d that are equal
to (7 —n)(7 —n)".
Similarly, let Ny denote the number of a, b, ¢, d that are equal to W, and Ng and N are similarly
defined. Write
v m
Y = (V) X, where X = Z aijbjrcrede;. (E.47)
i,5,k,£(dist)

Note that for this proof, we do not need the explicit decomposition: we only will use the fact that

Q* —Q* is a sum of O(1) terms. At times, we refer to these terms of the form Y composing QF—Q*
as post-expansion sums.

InJin et al.| (2021c) it is shown that 4 > N; > 1 for every post-expansion sum (note that the upper
bound of 4 is trivial). It turns out that this is the only constraint on the post-expansion sums; so we
need to analyze every single possible combination of nonnegative integers (Ng, Ny, Ns, Ni) where
their sum is 4 and N; > 1 and then arrange a, b, ¢, d € {Q, W, 8, — (77 — 1)(77 — 1) T} in all possible
ways according to (E.46). This leads to a total of 34 possibilities, all of which are shown in Table/I]
reproduced from Jin et al.|(2021c).

In (Jin et al., [2021c, Supplement,pg.103) it is shown that
[E[Y — X]| < o([l6]l3*)vE[X?] + o(1), and
Var(Y) < 2Var(X) + o(||0]3)E[X?] + o(1). (E.48)

The proof of (E.48) in[Jin et al| (2021¢) only requires the heterogeneity assumptions (E.2)—(E.4) and
the following two conditions. First, we must have the tail inequality

2exp(—”g—‘1|%t2), when z,,||0]], <t < [|0])3,

E.49
2exp(—Cat), when t > ||0]|3. (49

P(|Vv|>t)§{

Second, it must hold that |Y" — X| is dominated by a polynomial in V. See (Jin et al.,|[2021c, Lemma
G.10 and G.11) for further details. Both conditions are satisfied in our setting, so indeed (E.48)
applies.

Let Ny and Ns denote the number of a, b, ¢, d that are equal to W and 4, respectively. As in[Jin et al.
(2021c), we define

Ni, = Ny + Nj + 2Nj; (E.50)

and divide our analysis into parts based on this parameter.
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Table 1: Note: This table and caption reproduced from Table G.4 of Jin et al. (2021c).The 34 types
of the 175 post-expansion sums for (Q} — Q7).

n

Notation # Nz (Ns,Ng,Nw) Examples Nyy
2 i1 ©0.0.3) S wetaion T WirWeeWer 5
Ry 8 1 0, 1,2 D g kb (dist) P WieWe 4
Rs 4 D ik e(dist) Tis WikQueWe 4
By 8 1 0.2, i ikaist) ke Wes 3
Rs 4 D ij ke b(dist) fijﬁjkazfﬁei 3
Rg 4 1 0,3, 0) S icaion sk el 2
Ry g 1 (1.0.2) X sty Pk WeeWes 5
Rg 4 ik b (dist) Tid WikOreWes 5
Ry 8 1 1,1, 1 Zi’jyk’[(dist) fijéjkﬁkﬁwh 4
Fao 8 s k(aist) Tii Lk Wiedei 4
Ry 8 Digk(dist) Tig WkOkees 4
Ry 8 1 (1,2,0) D ik (dist) I’:ijéjkﬁkeﬁzi 3
B 4 2, Jk.e(dist) Tig Jk‘SMQh 3
R14 8 1 (2, 0, 1) Zl .k, e(dist) Tl](sjk(skgwh 5
Ras 4 ik t(dist) Ti705k WieOei 5
R 8 1 21,0 Di ik t(dist) 7~'ig5]k5kesz 4
Bz 4 2 ik, €(dist) leéijMéh 4
ng 4 1 (3, 0, 0) ZZ Juk L(dist) 7””(5];@516/521 5
R i 2 ©.0.2) > i eaise) Fii Tk WaeWer 6
R 2 i ke(dist) Tis WikTreWei 6
Ry 4 2 0,2,0) Z”kz(dwt) fijfjkﬁk[ﬁh 4
R 2 D i gk (dist) Tid Qe Qs 4
RQg 4 2 (2, 0, 0) ZZ .k 0(dist) 7“”’1“]1@(51@[(5& 6
Raa 2 0,5,k E(dist) rl]‘sjkrkiééz 6
Rgg, 8 2 (0, 1, 1) Zz,j,kl(dzst} TL]T]ka[W& 5
Fae 4 D ko(dist) Tij ﬁjkf'kfwéi 5
Ro7 8 2 (1,1,0) > ok (dist) fijfjk(;kzﬁu 5
Ras 4 D ik J(dist) TZJ‘SJWMQ% 5
Fao 8 2 (1,0, 1) D i gk t(dist) TidTikOkeWei 6
Rz 4 i je,t(dist) Tig 0kTre Wi 6
R 43 0,0.1) i.g.kb(dist) TiTikTReWes 7
Rso 43 ©.1,0) D i gk, t(dist) Fig ik re Qi 6
R33 4 3 (1, 0, 0) ZZ ok 0(dist) rumkru&z 7
Rsa 1 4 0.,0.0) ik b(dist) TisTRTRET L 8

Analysis of terms with Nj;, <4 For convenience, we reproduce Table G.5 from |Jin et al.[(2021c)
in Table@ The left column of Table|2|1ists all of the terms with Ny, < 4, where note that factors of

(%)N # are removed. In the right column terms are listed that have similar structure to those on the
left. Precisely, a term in the left column has the form

X = z : Cils---;iwnGilw--yim,’

i1, 0tmER

and its adjacent term on the right column has the form

* *
X' = E Cil,‘..,i,,LGn,..-,zm7

i1,..,im ER
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Table 2: For clarity, this table and caption are borrowed from Table G.5 of Jin et al.{(2021c).The 14
types of post-expansion sums with N3, < 4. The right column displays the post-expansion sums
defined before which have similar forms as the post-expansion sums in the left column. For some
terms in the right column, we permute (i, j, k, £) in the original definition for ease of comparison
with the left column. (In all expressions, the subscript “i, j, k, £(dist)” is omitted.)

Expression Expression
Ry 2 (1 = i) (75— 1)k Wie Wi Zp 27 = mi)n; (15 — 0;)mWikeWei
R (1 = ) (i = 1) Wik Qe Wos Z2a 22 ne(75 = ) Wik (i — ni) Wie
Ry (i = ) (i — 1)k e W Z3d 22 (i = mi)n; (5 — 03 ) ee W
Rs (1 = ) (i — 1)k WS Zap > Qi (75 — 1) Whene (i — 15)
Rs 2 = 1) (75— 1)k 20 e Zsa > mi(7y — n5) Qe Qeene (i — mi)
Ry (715 — i) (7l — 1) 20k W Tia 2 ey — 1720 (i — ni) Wie
S = ) (i — 1) (ke — ) e W Tia o me(7l = 1)n; (e — )k (T — 1:)Wie
Ry (i — i) (75 — W])Q]kWMW T S (715 = 0) e Wene (T — 1) %15
> (7 — )(77] 1)k Wie (ile — ne )i Tia 275 = )k Wie (e — ne)ni (7 — mi)n;
Ry (i = ) (i = ) Wikni (e — 1e) Qi Tia 2 (i = i)W (715 — 13)ne (e — 1e)ns
S = 1) (7 — 1) Wik (ke — mi)meQus T 221 (1 — i) Wiy (7 — )7 (7 — )
Ryz (77 Th)(ﬁ — 03) 2k ke Qs T S 0i (7 = 03) s Qe (i — i)
> (i = ma) (7 — 7)])71]( i — 1) Qe e Tsa 22157 = 1) (e — 1) Qiene (i — 10:)
Ris S = ) (i = 1)k (T — 1) e Ty i = n) Qe (e — i)z (7 — i)
Rig 2o = mi) (75 — nj)an(nk = k)8 F, 22 0i (7 = ;) 0k (e — ) (7 — i)
S0 = i) (i — 1) 07 (e — 10) Qs By iy — 1) (e — e 7713(7h )
S =) (g — n)nj (e — ) *neQes | Fy 2o mi(iy — m)m (7 — me)*n (7 — m)
D200 = ma) (7 — 1) (e — ) w (e — 0e)Qei | Fao o 22 mi(0y — 03)n; (e — nw ) (e — ne)ne (7 — i)
Riz (0 —n3) (5 — 0)n; (e — k) Qe (e —ne)mi | Faoo 2omilily — Tij)m (1 = ) (e — ne)ne (i — i)
(7 = 1i) (75— 7)1 ke (e — me)ms Fy (i — 1) mi (e — me)ne(i — ;)
22 = i) (5 — 1) Qe _ Fe > ne(i = mi) 0 (7 — 1) ne
Roy S0 =) (5 = 15)? (T — ) Qe | Fy Somiy — n3) 0k (T — i )ng (7 — i)
Ragy 320 — ) (75 — i) n (e — ) (e — 0e) i | Fa 35 mi(05 = 13)m; (e — 0w) e (e — me)ne (i — 1)

analogous to 7" and 7 from Lemma[E.T3] By inspection, we see that for each term in the left column,

the canonical upper bounds ¢;;; "and ¢;,  ; on the coefficients ¢;,, . ;,, and ¢j, ;= satisfy
. . *
Cit i S Ciprenyim ™

Recall that these canonical upper bounds were defined in Section [E:4.1} Thus the conclusion of
Lemma [E-T3]applies, and we have for each term X in the left column of Table 2]

EX| <EX*,  Var(X) < Var(X%).

As discussed in Section[E.4.1] the upper bounds on the means and variances in Lemmas

are in fact upper bounds on EX* and Var(X*). By (E48) and Lemmas E.10| for every post-
expansion sum Y with Ny, < 4 we have

[EY] < [EX] + o(|6]l;%)VEIX?] = [EX] + o(||6]32) VEX]? + Var(X)
S 32+ of|I0l152) - /AAZ 4 AL+ X6 + R
SR+ A2+ 0 4 AN = o(A)

by the assumption that |A|//A; — co. Similarly,
Var(Y) < Var(X) + o([|0]l; )E[X?] = Var(X) + o([|0]];*) (E[X]? + Var(X))
SATH A E RN +o([0]71) - (MAT + AT+ A%+ X2A3) < o(A%).
Analysis of terms with Ny, > 4 Recall that
1

1
— —(EA),, f=——A1,, v=1,(EA]1,
n ﬁ( o, 7 v=1,(EA)

NG
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Define
Gi =1 — ;. (E.51)

Among the post-expansion sums in Table (IJ) satisfying Ny;, = 5, only R7, Rs, and Ro5—R2g depend
on (2. Each of these terms falls into one of the types
Ji = Z ﬁjk(GiGijGlWh)v
i3,k 0(dist)
Jg > (GGG W)
4,3,k 0(dist)

Z i (GiG2GGy)

i,7,k,0(dist)

Jo= > m(GGIG}).

1,5,k £(dist)

Jo

See (Jin et al.l 2021c| Supplement, Section G.4.10.2) for more details.

To handle J; and J§, we compare them to

Js= Y, nmk(GiGGrGWe)
4,5,k 0(dist)
Jo= > mm(GiGGWe),
i,5,k,0(dist)
both of which are consjdered in (Jin et al.,2021c| Supplement, Section G.4.10.2). Note~that neither
Js nor J5 depends on . Setting T' = J{ and T = J5 in Lemma|E.13|and noting that [Q2;z| < 6,0
by (E.24), we see that the hypotheses of Lemma [E.T3]are satisfied. In (Jin et al., 2021cl Supplement,
Section G.4.10.2), it is shown that

2
E[J3] < E[J5] + Var(Js) = o(||0]3).
Applying Lemma[E.T3] we conclude that
E[J’] = o(||0]]5).

Similarly, it is shown in (Jin et al.,|2021c, Supplement, Section G.4.10.2) that

E[J2] < E[Jg]” + Var(Js) = o |6]3)-

Setting T' = Ji; and T* = Jg, the hypotheses of Lemma are satisfied because | Q| < 0x6,. We
conclude that
'2
E[Js"] = o([10]13)-

The terms Jy and Jjg can be analyzed explicitly using the strategy described in Section We
omit the full details and instead give a simplified proof in the case where ||0||2 > [log(n)]?/2. The

event
E = ﬂ?zlEZ‘, where Ei = {ﬁ|Gl| < 00\/9i||9||1 log(n)}. (E52)

is introduced in (Jin et al.| 2021c|, Supplement,pg.110). By applying Bernstein’s inequality and the
union bound, it is shown that E holds with probability at least 1 — n=°/2:91 Applying the crude
bound |G;| < n and triangle inequality, we see that |.Jo| < n? with high probability, and thus for Cy
sufficiently large,

E[|Jo|? - 1] = o(1).
Under the event E, we have by (E20),

ol < ) IneQuil|GiG2G LGyl
ikt
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\/oia§9k9g||9||§[1og(n)]5

< Z i010¢) N
@9,k !
log(”ne)}? (Z 67/?) (Z 0) (zk: 02/%) (XE: 02
[log(n)]*/

2 3/2
VIR @ei )
[log(n)]?/2 3/2 3/2
o () ()
< [log(n)]*/2|19]>.
It follows that
E[J3] = Var(Jy) + E[Jo]* = o(||0]|3).

We give a similar, simplified argument for .J;¢ assuming that ||0||o > [log(n)]®/2. Under the event
FE, we have

[Tl < ) el GiG3 G
i,5,k,4

6,620% 0] log (n) "

log(ﬁg)d? (Z 93/2) (Z 0. ) (Z Gk) (zﬁ: 9?)

Hence
E[Jfy] = Var(Ji0) + E[Jio]* = o([|6]]3)-

Next we consider the terms with Vy;, = 6. The only term that depends on Qis R35, which has the
form
K= Y QuGiGIGiGE.
i,3,k,£(dist)
The variance of K can be analyzed explicitly using the strategy described in Section To save
space, we give a simplified argument when ||0||2 > [log(n)]?/2. Again let E denote the event (E-52).
Under this event we have

0,030x0710]3 [log(n)]*

V3

K3l < Z (0:0x)

g o (Sa?)(Eo) (Sa”)(2e)
< L (o ) o

< llog(n)]? 101,
Above we apply (E:20) and (E:24) as well as Cauchy—Schwarz. It follows that

E[K:?] = Var(K}) + E[KS]? = o([10]13).
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Finally, all terms with IVy;, > 7 have no dependence on Q, and thus the bounds carry over immediately
(see (Jin et al.,|2021c, Supplement, Section G.4.10.4) for details). This completes the proof of the
lemma. O

E.4.7 PROOF OF LEMMA [E. 12

Define ( v "
1 * % 2 3
z(‘j) =05 — Minjs Gij) =(1- V)Wﬂlj, Ez(‘j) =—(1- V)‘Sij'

Note that eg;) is a nonstochastic term. As shown in (Jin et al., 2021c, Supplement, pg. 119), we have

€

1)) < 10l
€;: —— - 0,0,,
| 1] |N ||9H1 J
which implies that
1
IGS-)I S o5 - 0ib; (E.53)
1612

by (E.2).
As discussed in (Jin et al.,|2021c, Supplement, Section G.3), ) — Q* is a finite sum of terms of the
form

Z a;ibjkcredei, where a,b,c,d e {Q,I/V,(S,f,e(l),e@),e(?’)}. (E.54)
ik, €(dist)

Let Y denote an arbitrary term of the form above, and given X € {Q, W, 4,7, ¢, @ €3} let Nx
denote the total number of a, b, ¢, d that are equal to X. It holds that

)(7 X = Z aijbjkckgdgi.
i,4,k,0(dist)

. NP 4N
Y = ()" Y (1= 3)

where _
a? b? C? d 6 {Q’ W’ 57 (V/U)f’ 6(1)7 T’nT}7

number of 7;7; in the product is NE(Q),
number of d;; in the product is N5 + Ne(?’),
number of any other term in the product is same as before.

(E.55)

Let z,, denote a sequence of real numbers such that +/log(]|0]]1) < =, < [|0||1. Mimicking the
argument in (Jin et al., 2021cl Supplement,pg.121), it holds that

2 N£2)+Ne(3)
i) ‘E[X?] + o(1),

EYY S (1o
19112
By (E4), there exists a sequence log(||6]]1) < x,, < [|0]|1/]|0]|3. Hence,

|\ NN
) ‘E[X?] + o(1), (E.56)

BV S (o
1013

Thus we focus on controlling E[X 2.
Consider a new random variable X * defined to be

* *x 71k %k
X* = E aijbjkckedm
1,5,k 0(dist)

where
- ifa = e
i1z -
a* =007 ifa e {Q,m"}
a otherwise
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Wﬁ-%T if b= €™
2 ~
b*=14007 ifbe {Q,mm"}
b otherwise
o 007 ifc =€
. llels ~
ct=q007 ifce {Q,mm"}
c otherwise
Wﬁ'%T if d = ™)
2 ~
d* = <007 if € {Q,mm"}
d otherwise .
Also define _ _ _
X= Y aybjtrds
ijke(dist)
where
- 007 ifa € {eM, Q,nn"}
a otherwise
P 607 ifb e {eV, Q,mm"}
b otherwise
. 007 if ce {eM, Q,n"}
c otherwise
i 007 ifd e {eV,Q,n"}
d otherwise .
1 - - .
Note that X* = (”91”2 )N" X and @,b,¢,d € {007, W, 5, (V/v)7}. Later we show that
2

E[X? S E[X*] (E.57)

First we bound E[X 2] in the case when Ny + N + N; = 0. Note that for all such terms in Q — Q*,

we have Ne(l) + NE(Q) + NE(S) + Ng = 4 and Ng < 4. In particular, X and X* are nonstochastic. If
N¢, = 3, then by (E22) and (E-24),

~ = o~ = 1
1X| =] Z Qi Qe0:6e| S o2 Zﬁi9?5?9?ﬁ1%91%5293 < 1801510113
ijk(dist) 2 ijke
If Ng = 2, there are two cases. First,
1X| =| Z Qi Q10,000,0;] < Zﬁi@ﬂ?@zﬁkeief@i S 1180 0112116112,
ijkl(dist) ijke
and second
XI=1 D Qu60,6:Qu0:0:] S 8:i078,678:078:07 < 1826|3103
ijke(dist) ijkt
Finally if Ng =1,
X =] > Qi0;00070:;| S Bi07 ;050707 < 130 031015
ijke(dist) ijke

Note that when Ny + N5 + N =0
|X] < 1X7
by (E22), (E20), and (E.33). By the bounds above, we conclude that
1 )N§1)+N5<2)+NE(3)
10113

v < 2k |1g(|12(4=k) < 1}|3
XIS max 180013013 S AP (ES8)

V< (
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Next we bound E[X?] in the case when Ny + N5 4+ N; > 0. By Lemma|E.2|and the definition
of f € R? there, we have (;; = a;a;0;0; where o = TIf. Observe that in Lemmas [E.7HE. 11} we

bound the mean and variance of all terms of the form
Z= Y aibjrcredy,  where a,b,c,d € {Q,W,0,(V/v)i}.
1,5,k £(dist)
As aresult, the proofs of Lemmas|E.7 produce a function F' such that
E[Z?] < F(0, B; Ng, Nw, N5, N),
where recall that |«;| < 5.
Note that in what follows, we use ’ to denote a new variable rather than the transpose. As a direct

corollary to the proofs of Lemmas , if we define a new matrix Q' = aja’;0;0; where o is a
vector with a coordinate-wise bound of the form |o| < 7, then

Z'= Y aibjkcredy,  where a,b,c,d € {0, W, (V/v)i}
i,k L(dist)

satisfies

E[Z?) < F(0,8'; N, Njy, Nj, NL),
where, for example, N§ counts the number of appearances of § in Z’. This can be verified by

tracing each calculation in Lemmas line by line, replacing all occurences of Q with ', and
replacing every usage of the bound |«;| < 3; with |aj| < f! instead. In other words, our proofs make
no use of the specific value of o = IIf.

In particular, if v = 1, then Q) = 007 In this case we may set 3 = 1. Observe that X has the form
of Z’ with this choice of 2'. Hence,

E[X?] < F(0,1; Ng,, Nw, N5, N7). (E.59)
By careful inspection of the bounds in Lemmas[E-7HE.TT] we see that
F(6,1; Ny, Nw, Ns, N7) 5 11617 (E.60)

In (Jin et al.l [2021c| Supplement, Section G.3) it is shown that all terms in the decomposition of
Q — Q* satisfy NY £ N® L NS S, Using this fact along with (E-36), (E.37), (E.39) and

>

1 \NP+ND 1 ™
BV S (7o) (g )N
16112 16113

Observe that (E-38) and (E-61)) recover the bounds in Lemma [E.12]under the alternative hypothesis,
and the bounds under the null hypothesis transfer directly from (Jin et al.,2021c, Lemma G.12). Thus
it only remains to justify (E.S7) when Ny + Ns + Nz > 0. Let us write

X = g Cil,...,imGil,...,im
i1

yeestm

* * . .
X* = E Cil,...,szn,---,zm
i

1yeeeslm

E[X?] +0o(1) < [0]5. (E.61)

in the form described in Section[E.4.1] where now

® Ciyyoigy = H(S s)eA 1) is a nonstochastic term where A C [m] x [m] and

Tsydgr
F(S,s’) c {Q’ 77*1T7 an’ ]_]_T7 6(1), T]T]T}
* i = Hs5nea T is a nonstochastic term where A C [m] x [m] and

iS,Zlgl

P e (1T, 17,117,007 /|03, 007}
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° Gil,...,i

m

= H(s,s’)GB Wisfisl where B C [m] X [m]
If T(s5) € {907,007 /||0]|2}, we simply let ['(ss") = T'(=:5") and define

= _ (s,s)
Citosim — ” Fis,is/

(s,s")EA

as in Section We also define the canonical upper bound EX* on |[EX*| and the canonical
upper bound Var(X*) on Var(X*) similarly to Section m By the discussion above and (E.59),

* 1 Ne(l) N7 N 7 x
BT = ()™ VF0.1: Mgy, N, N5, Ny),
and
—_ 1 (o2n®m - - -~
Var(X*) = (||9H%) ° F(0,1; Ng,, Nw, N5, Ni).

Next observe that

*

< < |e*
|C’Ll7...,hn| ~ |Cll7...717n| ~ |Ci1,...,i7n .

By a mild extension of Lemma [E.T3]it follows that
EX| < EX

Var(X) < Var(X*),
which verifies and completes the proof. O

E.5 CALCULATIONS IN THE SBM SETTING

We compute the order of A\; and A1 = Ag in the SBM setting (which are the two nonzero eigenvalues
of 2). By basic algebra, A1, \o are also the two nonzero eigenvalues of the following matrix

3 %) 8 Y ] e Y]

where b is given by (H.I)). By direct calculations and pluging the definitions of b,

_aN+ (n— N)e+ /(aN — (n — N)c)2 +4N(n — N)b2

A1 5
aN +(n—N)c+|(n— N)c—aN| 55
= 5 )
Recall that
po M N(a+c)
N n—2N

It is required that b > 0. Therefore,

nc— (a+c)N >0, and so (n—N)c>aN. (E.62)

By direct calculations, it follows that

N = (n — N)2c — aN? _ (n—=N)e((n—N) - (ng]]\if)cN) N (n—N)c(n— N) e
! n —2N n—2N n—2N

where in the last two =, we have used (n — N)c¢ > aN and N = o(n). Similarly,

N Nt (n—N)c—/(aN —2(n —N)e)? +4N(n—N)»? _ (a fz)i_\fg]zvf N) N(a—c).
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F PROOF OF THEOREM [2.3| (POWERLESSNESS OF x? TEST)

We compare the SgnQ test with the x2 test. Recall we assume ; = 1,,. The x? test statistic is defined
to be

N
a(l—a)(n—1)

NE

A N2 . 1 N
Xn = 2 ((Al’n)l — an) 5 where & = m ;A”.

We also define an idealized x? test statistic by

. 1 - 2 1
X,=—F (A1,); — an)”, where ¢ = ——— Q.
a(l—a)(n—-1) i:l( ) n(n—l)g ’
The x? test is defined to be
2 | X — 1l
X, =1 7\/% > Zy/2 |,

where z. is such that P[|N(0,1)| > z.,] = ~. Similarly, the idealized x? test is defined by
~2 |Xn —n|
Xn =1 W > Zy/2 s

In certain degree-homogeneous settings, the x? test is known to have full power |Arias-Castro &
Verzelen| (2014)); (Cammarata & Kel (2022).

We prove the following, which directly implies Theorem 2.3]

Theorem F.1. Suppose that 2.7) holds and that |5\\/ VA1 — oo, and recall that under these
conditions, the power of the SgnQ test goes to 1. Next suppose that the following regularity conditions
hold under the null and alternative:

(i) 0=1,
(ii) « =0
(iii) o®n — oo
(iv) 32,5 (Qij — a)? = o(an®?).

Then the power of both the x>-test and idealized x*-test goes to v (which is the prescribed level of
the test).

Note that the previous theorem implies Theorem [2.3] By Theorem 2.2} SgnQ has full power even
without the extra regularity conditions (i)—(iv). On the other hand, for any fixed alternative DCBM
satisfying (i)—(iv), Theoremimplies that x? has power k.

Proof of Theorem Theorem [2.2] confirms that SgnQ has full power provided that (2.7) holds and
that [A|/v/A; — oo. It remains to justify the powerlessness of the x? test.

Consider an SBM in the alternative such that 21 = (an)1 and |A|/v/A{ < N(a—c)//nc — oc. To
cn—(a+c)N
n—2N

The remaining regularity conditions are satisfied if ¢ — 0 and cn < N(a — ¢)? < cn3/2. We show
that both X,, and X,, are asymptotically normal under the specified alternative, which is enough to
imply Theorem [F1]
In Cammarata & Kef(2022) it is shown that

T, =[n—1a(l-a))(Xp—n)= Y (Aw—&)(Aj—a). (F.1)

1,7,k (dist.)

do this we select an integer N > 0 to be the size of the smaller community and set b =

We introduce an idealized version 7, of Tn, which is

T, = Z (Aix — a)(Ajk — a),

1,7,k (dist.)
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Following |(Cammarata & Ke|(2022), we have

X, —n n—2 1/2
NoTS = (n — 1) U, VpnZ,. (E2)
where
. T,
an(l—ay) T, T DanT—an)
Un: ~ ~ N Vnzi’ Zn: o,
Oén(]. — Oén) T, 2n(n—2)

(n—1)

. R . P .
Since the terms of & are bounded, the law of large numbers implies that U,, — 1. Furthermore, since
an — oo by assumption that a®n — oo, a straightforward application of the Berry-Esseen theorem
implies that

nn—1) &, —a,

1).
5 EEr = N(p,1)

With the previous fact, mimicking the argument in (Cammarata & Kel 2022, pg.32), it also follows
that

V, 51,
provided we can show that Z,, = N (0,1). We omit the details since the argument is very similar.

Thus it suffices to study Z,,. We first analyze 7;,, which we decompose as

To= Y (A —Qu)(Ar—Qr) +2 Y (Qur —a)(Aje — Q)

4,4k (dist) ijk(dist)
+ Z (Qire — @) (Qjr — ) = Tt + To + Ths.
ijk(dist)

Observe that T},3 is non-stochastic. The second and third term are negligible compared to 7},1. Define
Q = Q — «11’. By direct calculations,

ET,2 =0,
and
Var(Tnz) =38 Z ( Z ﬁik)Qij(l - ij) =8 Z (ﬁjk +§kk)29jk(l - ij) s an2.
j<k(dist) i¢{j,k} j<k(dist)
Next,

T3l = |Z§ikﬁjk - Z Qini| = | Z Qi

ijk ijk(not dist.) ijk(not dist.)

5 |Z§nﬁ]z| + | Zﬁfﬁ + | Zﬁi| =0+ 0(an3/2) +n= 0(04’17,3/2)7
j ik i

where we apply the third regularity condition.

Now we focus on 7;,;. By direct calculations

ETnl = Oa
and
Var Tnl =2 Z Qlk(l - Qik)ij(l — Q]k)
i,5,k(dist)
=23 (1 - Q)1 — Q) =2 > Qa1 — Q) (1 — Q)
.7,k i,j,k(not dist.)

=21'0%1 -2 Z Qi (1 — Qi) Qi (1 — Q)

i,7,k(not dist.)
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Note that
21'0%1 ~ 2n(n — 1)(n — 2)a?
since o — 0. Moreover, with some simple casework we can show
Z Qi (1 — Qi) Q1 — Qi) S an’® = o(a®n?),
i,j,k(not dist.)
where we use that an — oo (because a>n — o). Hence

Var Ty ~ 2n(n — 1)(n — 2)a?(1 — a)? ~ 2n(n — 1)(n — 2)a?(1 — a)?.

To study 7,7 we apply the martingale central limit theorem using a similar argument to/Cammarata
& Ke (2022)) Deﬁne Wij = AU — Q” and

Tom= Y, WaWy,  and  T,0=0,
(4,5,k)ELm
-1 Thom
T = " d and Zno=0

’ 2n(n —2) (n — Dan (1 — ay)’ ’
where
I, ={(i,5,k) € [m]® s.t. i, j, k are distinct},

and m < n. Define a filtration {F,, ,,} where F,, ,, = o{W,;, (i,j) € [m]?} for all m € [n], and
let F,, 0 be the trivial o-field. It is straightforward to verify that T}, ,,, and Z,, ,,, are martingales with
respect to this filtration. We further define a martingale difference sequence

Xn,m = Zn,m - Zn,m—l
for all m € [n].

If we can show that the following conditions hold

(a) Z E[X?l,mlj:mmfl] E} L, (E.3)
m=1

n
(0) Ve >0, > E[X2,, 1{| Xnm > e[ HFnm-1] =0, (F4)

v,m
m=1

then the Martingale Central Limit Theorem implies that Z,, = N(0, 1).
Our argument follows closely Cammarata & Ke| (2022)). First consider (E.3)). It suffices to show that

E|> E[Xi,mlfn,m_l]] e, (E5)
m=1
and
Var (Z E[Xi,mlfn,m1]> ! (F.6)
m=1
For notational brevity, define
2n(n —2)
n ‘= -1 n 1-— n —_—
Co = (n = a1 = @) |

Mimicking the argument in (Cammarata & Kel 2022} pgs.33-34) shows the following. Note that all
sums below are indexed up to m — 1.
E[CIX2 o Frm-1l=4 > WiWiE [WpiWi] +4 Y WikE Wi Wi Wipn]
ks il ki il
+ ) E Wi WjmWem Wil - (F.7)
i#J; k#l
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Continuing, we have

]E[O?LXgL,m“Fn,m—l] = 42 Z WijWilQmi(l - Qmi) +2 Z Qim(l - Qim)Qjm(l - Qjm)

i gl i,7(dist)
=4 > WiWaQmi(l = Qi) +4 > WEQni(1 = Qi)
ije(dist) i,7(dist)
+2 > Qi (1 = Qi) (1 = Q). (E8)
i,7(dist)

Computing expectations,
E[E[CTQLX2 |]:n,m—1H

n,m

=4 Z sz(l - Qij)Q’mi(l - sz) + 2 Z sz(l - le)Q]m(l - anL)
4,7 (dist) 4,5 (dist)

Summing over m and a simple combinatorial argument yields

CRE[ Y EBIX? | Fam-1]] =2 > Qu(l—Qup)Q(1 — Q) ~ Cy.
m=1

i,4,k(dist)

Using the identity

Wi = (1= 2Q4)Wij + Qi5(1 - Q)
we have

E(CIX2 | Fnm1] =4 > WiiWalnmi(1 = Qi) +4 > W2Qni(1 = Qi)
ij(dist) i,j(dist)
=24 ) Wi Warlmi(1 = Qi) + 8> Wi (1= 22i) Qi (1 — Q)
i<j<l 1<j
4D Q51— Qi) Qi (1 = Qi)

1<J

Thus

iE[c,%ngmm,m_l] =24 3 () Qi1 = Q) ) Wi Wi

m=1 i<j<l m>max(i,j,0)
83 () il = Q) ) (1 — 20 Wi
i<j m>max(%,5,0)

All terms above are uncorrelated. Hence,

Var (f: E[ng,%,mfmmlo =225 (Y Qi Q) )51~ 24) (1 — Qig)

1<j<f m>max(i,j,0)

1643 Y Q= Q) ) (L - 202,)2Q5(1 - Q)

1<j m>max(%,5,0)
2 2
Sn®-Cx,
whence,

= 5 n? n?
Var Z E[X5 mlFrm-1] | S cz T 0

m=1
since a?n — co. Thus we have shown (E3) and (F:6), which together prove (F3).

Next we prove , again following the argument in {(Cammarata & Ke|(2022). In (Cammarata & Ke,
2022, pg.36) it is shown that it suffices to prove

n
> EX; ] =20, (F9)
m=1
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Further in (Cammarata & Ke} 2022} pg.37), it is shown that

E[CiX? ] =16 [Z EWS JE[(Wsy + W)
+3 Z ]E[me] E[(le + Wim)Z] E[me] E[(Wuv + Wum>2]

1<j,u<v
i#u,j v

+3 ) WL EWE(Wij + Win)*(Wiy + Win)?]
1<j,v
P
+3 ) E[(Wij + Wi ) | E[(Waj + Wam)* E[W, ]|
1, u<lyg
iFu

Going through term by term, we have for n sufficiently large

Z E[me]ﬂ“:[(WU + Wim)4] ,S Z Qjm (QU + Qi?n) 5 042712

i<j %]
Next
> EW]LE[(Wiy + Win) T EWS E(Wij + Win)l S Qi + Qo) Qom (R + Qum)
1<j,u<v ijuv
iFu,jF£v
= Z Qijiijmqu + Z QijiijmQum + Z Q?vamqu
1Juv 1juv 1juv
+> 0 Qo Qum
1Juv

4.4, 33
<a*n*+a’n

With a similar argument, we also have, for n sufficiently large,
Z E[Wij] E[Wva] E[(Wi; + Wi )2 (Wi, + Wim)Q} < o’n? +a’n?
1<j,v

J#v
> E[(Wij + Wim)* ] E[(Wa; + W) EW;,] | S on® + o®n.

i, u<lj

Thus
n 4.5 4,5
4 a*n®  a'n
Z E[Xn,m] /S C4 ~ W - O’
m=1 n
which verifies (F9). Since (E9) implies (F4), this completes the proof. O

G PROOF OF THEOREM [2.4] (STATISTICAL LOWER BOUND)

Let fo(A) be the density under the null hypothesis. Let x(IT) be the density of II, and let f; (A|IT)
be the conditional density of A given II. The L, distance between two hypotheses is

= %EANfO‘EHN“L(A,H) —1), LA = fi(A[T)/ fo(A).

Define
M = {II : I is an eligible membership matrix and }_, 7;(1) < 2ne}. (G.1)

Write LM (A, TI) = L(A,TI) - 1{TT € M} and define L™" (A, IT) similarly. By direct calculations,
we have

1 ;
=K Amfo|Erep LM (A TT) = 14 B LM (A, TD)|
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1 1 c

FEA~ o [ Entey LM (AT = 1] + SEac p, Erie L (A1)

1 1

= -/ —{. G.2

glo 540 (G.2)
Note that Er s, B, LM (AT = [ e LA pIDdIdA = [i; . p(ID)dIT = p(M©).
We bound the probability of u € M°. Note that 7;(1) are independent Bernoulli variables with
mean €, where € < n~'N. It follows by Bernstein inequality that if ¢ = 100,/N log N, the we have
conservatively,

p(\;m<1>—zv\>t)gzexp( LI gy ONIENIZ) ¢ e

IN

(G.3)

for some ¢ > 0. It follows that
by = p(M°) =o(1). (G.4)
By Cauchy-Schwarz inequality,

(3 <Eang|Enp L —1f’

)2 = 2E A~ B, LM(A D) + 1

)? = 2[1 — Ean gy Er, LM (A, ID)] +1
)? =1+ o(1),

A,TI) = 1 and the last line is from (G4). We plug it into

)

2

= Ean~fo (Briop L
< Eanfo (Enmp L

where the third line is from E 5z, Er~

G2 to get

)

M(A,TI)
= Eang, (Ene, LA T
M(A,TI
M(A,TI
L(
0 < \ly —140(1), where o = Eug, (B, LM (A4, 10))2. (G.5)
It suffices to prove that 5 < 1+ o(1).
Below, we study /5. Let II be an independent copy of II. Define
S(A,ILII) = L(A,II) - L(II, A).
It is easy to see that
by =B g i [S(A LI - {IT € M, TT € M}]. (G.6)
Denote by p;; and g;;(II) the values of €;; under the null and the alternative, respectively. Write
6ij (H) = (qij (H) — pl])/p” By definition,
¢ij (11)gi; (IT)
2
P

1—Aqj

s =]

i<j

Aij ~
[(1 — i (ID)(1 — g;5(10)

(1—pij)?

Write for short qij (H) = Gij> Gij (ﬁ) = (jij, (Sij (H) = 6ij and 62](ﬁ) = Sij. By straightforward
calculations, we have the following claims:

Eawp, [S(A L] = [T (1+ M) (G.7)

3 L=pi

and

In S(A, 11, II) ZAUI [( — (,1):6”32 u pL)J )]

pLJ

+ln[(1 1%;“51-]-) (1f 13";“&]-)} (G.8)

)

The expression (G.8) may be useful for the case of N¢ — 0. In the current case of N¢ — oo, we use

(G 1t follows from (G.6)) that

lto=Epg., {H(l + M) e M,Tle M}]

i<j 1= pij
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o (S 20)) e i v

1<]J 1 _p”

IN

~ 0704
Ep oy {exp(X) -H{II e M, 11 EM}}, with Xzzpljij_‘]. (G.9)

icy = P
where the last line is from the universal inequality of In(1 +¢) < ¢

We further work out the explicit expressions of p;;, d;; and ;. Let b = (¢,1 — €)', and recall that
ap = ae + b(1 — €). The condition of b in (H.I) guarantees that

Ph = aglo, apg =ae+b(l —e).
By direct calculations,
c(1—€)? —ae?

1
1—2¢ (G.10)

Qg =
It follows that

P =apl15 + M, where M = E=(1—¢—¢). (G.11)

Write z; = m; — h. Since Ph = a1z and z/15 = 0, we have
Qij =0;0;(h+ 2z)' P(h+ z)
=0,0;(W Ph + z,Pz;)
=0,0;(cv0 + 2;Pzj)
=0;0,(co + z’.sz)
= 0,0, {040 + (€z)(€'2)]

—c
1—2¢

Let ¢; be the indicator that node ¢ belongs to the first community and write u;, = t; — % Then,
m = (t;,1 —t;) and z; = u;(1,—1)". It follows that £’z; = u;. Therefore,
Q;; = 6,6, [ao + %uiuj}, where  u; ud Bernoulli(e) — e. (G.12)
— 2¢
Consequently,
9,0 () = 24—
iy — Qobiby, ij = Uiy
Pij OveYs J (1-26)ag "’
We plug it into (G.9) to obtain

2

(a—c) _
X = Z - a09 7, 2% Wil . (G.13)

Below, we use (G13) to bound ¢2. Since a2, = O(ch2,..) = o(1), by Taylor expansion of
(1 — a;0;)", we have

a — C ~ ~
1 —2¢)2ap
i<j s=1

Letb; = 6;0-1 < 1. We re-write X as

max

X = ’y Z wSst
s=1
where
92 _\2
v = max(0 — ) ws = (1 — a2, )as 10752 and X, Zb Sui U U

_ 9.2,
(1 — g2, ) (1 — 2€)2ag oy

(G.14)
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Let E be the conditional expectation by conditioning on the event of {II € M, Il e M} Tt follows

from (G.9) that

ly =PIl € M,T1 € M) - Elexp(X)]

=PMeM,IeM)E {exp< Zws s)]

<P eM,IeM)- ZwsE[exp(va)]

s=1

Z Elexp(yX,) - 1{Il € M, 1T € M}]. (G.15)

The third line follows using Jensen’s inequality and that 2521 ws = 1.
It suffices to bound the term in (G.13)) for each s > 1. Note that

X, <Y2 Y, = biugi. (G.16)
We recall that u; = t; — ¢, where ¢; = m;(1) € {0, 1}. The event {II € M,II € M} translates to
max{) ., t;, ».;ti} < 2ne. Note that

(1—¢€)2,  whent; +t; =2,
uiti; = —e(1—¢), whent; +t; =1,
€, where t; + ¢; = 0.

It follows that |w;i;| < (t; +t;)/2 + €2. Note that e = O(N/n). Therefore, on this event,

Yl < [(ti + 1) /2 + €] < 2ne + ne* < 3N.
We immediately have

E[exp(yX,) - {IT € M, 1T € M}] < E|exp(y¥2) - 1{|Ys| < 3N} . (G.17)

The following lemma is useful.
Lemma G.1. Let Z be a random variable satisfying that
P(|Z] > t) < Qexp(—%} forallt > 0.
o2+ bt
Then, for any v > 0 and B > 0 such that v(c? + bB) < 1/2, we have
4~(0* + bB)

Elexp(vZ*)1{|Z| < B} <1+ T 29(0? + 5B

Note that Y, = >, b7u,4; is a sum of independent, mean-zero variables, where |bJu,%;| < 2 and
>, Var(bfu;i;) < 3, b292€? < 2ne?. It follows from Bernstein’s inequality that

P(Ys| > 1) < t/2 forall ¢ > 0
f <exp|l ——F— ), or a )
P\ T one2 r 2t

To apply Lemma|[G.1] we set
b=2, 0% =2ne? < 2n N2, Z=Y,, B = 3N,

and 7y as in @ The choice of B is in light of (G.17). Furthermore, by (G.10), we have ay =< c.
Also we have 0- . oy — 0. Hence,

92

max

1—0[09

max

(a—c) Orax(a — )

( max

)(1 — 2¢€)2ayg = c )

T

max
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Thus by the hyp0thes1s M

Applying Lemma[G.I] we obtain

Elexp(yX) - 1{Il € M, Il € M}] <1+ C(v(o? +bB))
02 ( —6)2

— 0, it holds that v(0? + bB) < 1/2 for n sufficiently large.

<1 C . max
<140 -( . )
We further plug it into (G-13)) to get
> 62, N(a—c)? 62, N(a—c)?
0, < g[l C.m—}<1 max 7
2 < 5:21” + ( . ) <1+ ( c )
where we use that > ws = 1.
It follows immediately that
N(a —
t<1to(l), i emax‘ﬁi“[cc) )

This proves the claim. ]

G.1 PROOF OF LEMMA[G.T]

Let X denote a nonnegative random variable, and define F(z) = Px[X > z]. For any positive
number 3 > 0, we have

B
Elexp(vX)1{X < 8}] :/0 e dPx (x)

B

B
= —e"F(z) —l—/ ve"* F(x)dx
0

0

_ p _
=1-ePF(p) +/ ~e"* F(z)dx

0
B _
< 1+/ ~ve"* F(z)dx.
0

We apply itto X = Z2 and 8 = B? to get

B2
Eleso(r22)1(12) < BY] < 1+ | yexp(ra)B(2] > Va)da

<1+2y /0B2 exp(yx) exp{ 07+ b b\f }

)
B2
<1+ 27/0 exp(vyz) exp{ . bB }

° 1—2v(o? +bB)
<142 -1 ¢d
<1+ 7/0 exp{ 2(02 + bB) m} T

2
<14 4y(o® + bB) '
1—2y(02 + bB)

This proves the claim. O

H PROOF OF THEOREM [2.5]| (TIGHTNESS OF THE STATISTICAL LOWER BOUND)

Let p € R™. We consider the global testing problem in the DCBM model where

wre (i)
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B) b=1b/+/ac,
(&) 0;, = pl\/&forz €S,
D) 0; = p;\/efori ¢ S, and
E) aNo + b(n — No) = bNy + ¢(n — Np),
Recall that b = (No/n,1 — No/n)T, and Ny is the size of the smaller community in the alternative.

Observe that the null model K = 1 is parameterized by settinga = c=b = 1.
Recall that e = N/n. We define

aNy + l;(n — Np)

Qp =
n
Note that by Assumption (E)),
= ne—(a+c)Ny
b= ————"=— H.1
ae = O(c), and (H.2)
c~bn~ ayp. (H.3)

Our assumptions in this section are the following:

a) There exists an absolute constant C', > 0 such that pyax < C) Pmin

2
PmaxX0m
b) e — 0

¢) Aninteger N is known such that Ny = N|[1 4 o(1)].

Note that since we tolerate a small error in the clique size by Assumption (d)), our setting indeed
matches that of the statistical lower bound, by (G.3).

Define the signed scan statistic

o = 1, (A —nA")1p. H.4
bse peiex H(A—an")1p (H4)

For notational brevity, define n(?) = (72’) Let
L1 A
1= A
i,

The estimator 7 provides a constant factor approximation of the edge density of the least-favorable
null model. See Lemma [H.I] for further details.

Next let
h(u) = (14 u)log(l 4+ u) — u, (H.5)
and note that this function is strictly increasing on R>. Define a random threshold 7 to be
C* N log(%¢
= C*yN2p! ( BN )) (H.6)
AN

Let C* > 0 denote a sufficiently large constant, to be determined, that depends only on C, from
Assumption (d)). Finally define the scan test to be

Pse = 1[|¢sc| > 71]
Note that, if we assume a > c, as in the main text, then b < 1. In this case, we can simply take

Psc = ]-I:QSSC > 71}3

and the same guarantees hold. On the other hand, if b > 1, then the scan test skews negative, as our
proof shows.
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Theorem H.1. If

105131 —b°| log 3%
h = H.7
( p?rlaxaoNg > pIQnaXOéO—Z\/vO7 ( )

then the type I and 2 error of @s. tend to 0 as n — oc.

We interpret the previous result in the following concrete settings.
Corollary H.1. If

st
og No

then pg. has type 1 and 2 errors tending to 0 as n — oo, provided that

p?naxNO (CL — C)

> 1.
ne
log No
If
thatuls
og No

then @ has type 1 and 2 errors tending to 0 as n — oo, provided that
p?naxNO (a — C)

> 1.
\/p?naXNoao log %%

Proof. Note that

1051711 — 0| = piasc NG (a = 5% /V/€) ~ phoax NG (@ — €).

0s)2|1 — b? log %% log &%
h(” §||1| 2|>>>h< 5 No )Z > No .
pmaxaoNO pmaxaoNO pmaxaoNO

We use the fact that h(u) = u for u > 1.

In the first case,

In the second case,

. 2 ne ne ne
G(U0sE =2\ Moy Nomolos RN [Tlopge \ | lom 3
Prax0 NG Prax0 NG P2ax0No ) ™ ptaoNo

O

The upper bounds in the second part of Corollary is the best possible up to logarithmic factors.
For example, suppose that 0,2 < Opin in Theorem Then the upper bound for the second case
of Corollary [H.Tmatches the lower bound of Theorem [2.4] up to logarithmic factors.

To prove Theorem [2.5] first we establish concentration of 4.
Lemma H.1. Recall

. 1
i,j(dist)

There exists an absolute constant C' > 0 such that for all 6 > 0, it holds that

2 log(1/6
|'AY_E’AY| < C Pmax®0 Og( /)
n

with probability at least 1 — §.
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Proof. As a preliminary, we claim that

(Q1); < pf0on
To see this, note that if i € S, then by (E)

=35 = 6:(1165 + bll8se )

J
= pmax\/a (prmax + — \/7 \[PmaX) p?naxaon'

The claim for ¢ ¢ S follows by a similar argument applying (E). It follows that

vo = 1701 = p2,. agn?

The expectation is

= 2. Qi

4,5 (dist)

Q)
||

and the variance is

Var(¥) = Z Q5 (1 — Q).

4,7 (dist)
By Bernstein’s inequality,

P[n(

) <2ep( -
- P Zi,j(dist) Qij +t)

By Assumptions (d) and (5},

Z Q;; < P2 aon’? > n.
4,9 (dist)

Setting

t =1 = Cy\/p2..c0on?log(1/6)
for a large enough absolute constant C' > 0, (H.9) implies that

T _ p?naxao 10g(1/(5>
— n? n

with probability at least 1 — 4.

Next we control the error arising from the plug-in effect of approximating n* by 7.
Lemma H.2. Given D C [n], define
Lp =150 =i )1p.

Then under the null and alternative hypothesis,

max |LD| S \/NOpmaan log(

-1

|D No )

with probability at least 1 — ()~ — 2vy ', for an absolute constant ¢y > 0.

Proof. In this proof, ¢ > 0 is an absolute constant that may vary from line to line.

Given D C [n], let

Lp =150 =i )1p = 100" (" —9)"1p + 15(n* —#)7 1p

62
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Our first goal is to control

Define Q = Q — diag(f2). Note that
Q1 Al

n—mn

Al

*

115 (7 —

Al

We study each term of (H.11). First note that
(Q1); = (Q1); -

and thus

Next note that

vo =Y (Q1); ~

%

lvg —v| S1

Var(1,(A1 - Q1)) <

By Bernstein’s inequality,

B[] (A1 - Q1)| > ] <26xp<—

"W v W v

n)|-
IE
Vo Vo

Qi = phaxon + O(1),

%

Z(ﬁl)l = v, and

oo
Vo Vo

Z Ql] ~ ‘D‘pmax
i€[n],j€D

i#]

ct?

n+t>

| D] pfax0

= /(ID|/n) -log(1/5)

} <2 exp(fczi).

(H.11)

(H.12)

(H.13)

(H.14)

for all £ > 0. Setting
t =7 =/4/c- \/|D|paxconlog(1/6),
we have
1 D log(1/6
‘1'15 (A]_ )’ < \/‘ ‘pmaxaon Og( / )
\/% V pmaxaon2
with probability at least 1 — 4.
Next, it is shown in (Jin et al.,[2021c, Supplement, pg.100) that for \/log ||0|; < =, < ||0]|1,
2n|0]2
PV ol > 2allh] = B[IV7 - V51 >
| 1= NN
Hence
xn”‘ng 2
VV — V| > < 2exp(—cx),
PV - vil> 2
Note that by (H.2) and (H.3),

By (H.12)), we have

Hence with probability at least 1 — 2 exp(—

It follows that

p“

1 1

NN

||9||1 - NOpmax\/& + (n - No)pmax\ﬁ

~

NG

Pmax+/ XN

= 1.

]P’{|\/‘7— Vol > xn\llfinl] < 2exp(—ca?).

@l
1}0\/5

|

cr?),

>’U0.

VY = il .zl

:p[

63

V-

Vo

Uoﬁ

} < 2exp(—cz?).

(H.15)
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Hence with probability at least 1 — § — 2 exp(—cz?),

A1 AL | _ @ (IDlpRaxon + /ID[pd onlog(1/6))

1}, <
(f r) —_— UO
- (|D|pmaxa0n + \/|D|pmaxa0n log(l/é))
A pmaxa0n2
For the last term of (H.TT)),
1 ( o1 a1 ) _ ZiED Qii - plznaxa|DmS| +p12naxc|DmSC|
h——-—) =

\/% \/% \/1TO B V p?naxa0n2
< Pmax@€/y/ A0 S pmaxVe S 1.
Next we control 15,7. By (H:13) and (H.13),
15,A1] _ |DIpscon + /Dl Amaon og(1/6)
NATA Vo — €Ty,
with probability at least 1 — § — 2 exp(—ca2). It also holds that

15| =

1501] _ |D|phaxro
vV Vo pmmx\/ on

Next we set z,, = /log||0||1 < /log vg. Then from (H.16) and (H.I8),

15| =

|D|pmax\/

Al Al \% IOg’UO ! (‘D|p12naxa0n + \/|D|p12naxa0n10g(1/5))

AL AL Vi
\/V \/770 Pmax@oT

(D1 + VD 1og(173)
loguo - ((IDY/m) + 2P ZE B,

and

< 1Dlaon + DI oun og(1/0)
~ \/170
- |D|p?naxa0n + \/|D|p?naxa0n IOg(]./(S)
pmax\/ aon
= |D|pmax+/a0 + /(|D|/n) - 1og(1/3)
with probability at least 1 — § — 2v; “*.

By (FL.T4),(H.17), (FL19), (H20), and (FL21)
|Lp| < [1pn*(n* = 9)"1p| + [1p(m* —9)7"1p|

1150

(H.16)

(H.17)

(H.18)

(H.19)

(H.20)

(H21)

< (IDlpmaxv/a0 + v/(IDI/n) -10g(1/0)) - (Vlogvo(ID|/n) + /(|D|/n) log(1/6) +1).

—c1

with probability at least 1 — § — 2v,

It follows that, setting § = 1/ (1’\’,) above and applying the union bound,

“rjn‘ax |LD|<(NpmaX\/7+,/Ne log ) (\/logvoqt,/Ne log ) )

with probability at least 1 — () - 2v, “* — 1. Note that

nlog %7 nlog 57

logvg ~ log(p2,., con?)

21=
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N2 ne N
71 g ﬁ 2 = 10g(l)12nax040”2) =

Ne - log ) 2 ev/log vg.
Further, since (N/n) log %¢ < 1 and p2,,, con — oo by Assumption (B),

2 2
N Pmax@on” =

N
— 10g % 5 V Np?naxao =
n

Nelog = < \/ N3p2,. a0 log .

Nlogﬁ<

N

Hence

i (Lol £ |/ Npcolon() + Nelog(50) S | [N%48 o)

with probability at least 1 — (X,) " — 205", Recalling that N = Ny[1 + o(1)] yields the statement
of the lemma.

O
Next we study an ideal version of ¢..
Lemma H.3. Define the ideal scan statistic
Pse = max, 15 (A—n"n*")1p,
and corresponding test

@sc =1 |:(£sc > 7::|7

- _ CN'Nlog(@)
— Fian2y—1 N

and C > 0is a sufficiently large absolute constant that depends only on C, from Assumption (d)).
Then under the null hypothesis,

where

IP’[|<;~SSC| > ﬂ <n7% +exp ( — Nlog %)

and under the alternative hypothesis,

N
Pecl < 7] <m0+ ()

for n sufficiently large, where cq is an absolute constant.

Proof. In this proof, ¢ > 0 is an absolute constant that may vary form line to line.
Define the ideal scan statistic
bse = |mlax 15(A—n*n*")1p.
D

Also define
ZD = Z (AZJ - Qij)

i,jED(dist)

First consider the type 1 error. Under the null hypothesis, we have n* = 6 = p and ap = 1. Observe
that

op =Var(Zp) =Var( Y (A —0:0;)) S 100]17 < phaxN? ~ phas NG
i,5€D(dist)
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By the Bennett inequality, (Vershyninl 2018| Theorem 2.9.2),
t
IP’[ Z (A;; —0:05) >t} Sexp(—a%h(Q)), (H.22)
i,jED 9D
where h(u) = (1 4+ u)log(1l + u) — u.
Next, by Lemma[H.1]

with probability n ™. Also recall that

Vdlogn

n

R 1
]E’Y = W Z Q’ij = p?naxao = pfnax >
i.j(dist)

by Assumptions (a) and (B). It follows that there exist absolute constants co, ¢, C, > 0 such that
C’Yp12nax < 'AY < O’ngnax (H23)
with probability n~ . Let £ denote this event. Under £, we have that for C sufficiently large,
~ CN log(2e) 2N log &&
A Ar27—1 N 271 N
It follows from this, the union bound, and the Bennett inequality,
i . C'N log(2e) - . CN log(%¢)
P||ds| > CAN?h ™| ——=L2 ) | < PIEC] + P||gpse| > CAN?R | ——=DN2 ) €
el > O (S | < Ple P60l 09 i),
CN log(”J\[e))}

—c ~anr27,—1
<4 > ]P’{|ZD|>Cth < N

|D|=N
2N log &¢
<n ot Y IP’{|ZD| > o3 h! ((;gN)]
)
|D|=N
<pC 4 (%)N exp (— 2N log %)
This shows that the type 1 error for the ideal scan statistic is o(1).

Next consider the type 2 error. We have by Lemma (E.2),

EE 3 ~ 9 c 2
A - mr s = 3 (Ay -0+ 1501s = Zg + |30 — 1) 10T

i,j€S(dist)

Note that by (H.12)
Oall2(1 — p2 ||9SC||% Oall2(1 — p2
16513 ( ) ~ 1015 ( )-
Vo
Next,
Var(Zs) = > Qi(1— Q) S 1057 = phaxNa ~ phaNoa

i,j€S(dist)

By Bernstein’s inequality,

Zs| < \/110s]1 log(1/6) v log(1/) < [|0s]l1 log(1/0)

with probability at least 1 — 4. Setting § = (2£)1°, we have

n

ne
1Zs| < ||93H110g(ﬁ)
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with probability at least 1 — (2L)10,

Next we show that

ne
10s]11]1 = 5| 2 log —= (H.24)
using (H7), which we rewrite as
log %< log &
051211 — b?| > yN2Zh ™t (NO) ~yN2p 1 <N) (H.25)
IR Ay i St
where v = p2,. . Recall that ap = 1 under the null, and oy ~ ¢ under the alternative. Let
u= log iy .
YN

Consider two cases: (i) « < 0.01, and (ii) u > 0.01. For v’ < h=1(0.01), we have h(v') < (u')?,
and therefore 2! (u) < u? for u < 0.01. In this case (H.23) implies

log & ne
10s[I7[1 = %] 3> YN?y | T\f—v =/ 1V?log .
H95||1 :N\/apmaxv

5 | YN log 7 ne
[0s]]1(1 = %) > m 2 logﬁ

< 1. Thus in case (i), is satisfied for n sufficiently large.

~

In addition,

so that

since u < 0.01 and ap?,,

Now consider case (ii) where v > 0.01. Note that h(u) < (u + 1)log(u + 1), and thus
1
i(u +1) <u < h H(u+1)log(u+1)).

Let o = (u+ 1)log(u + 1) > u and observe that

P P
1= > .
ut log(u+1) ~ logp

Hence
(u+1)log(u+1)

1
2 log [(u+1)log(u+1)]

R ((u 4+ 1) log(u + 1)) >

Applying (H23),

log 2F

log &&
(SR + Dlog(ZR- +1)

log Z& log Z&
g (SR + 1) log(Zx- + 1)

ne
851311 = 57 > yN? 2 Nlog 2.
Hence

ne
log %7 ne

0511 — b?] > —N— >log —.
Ieslhlt = 8] > —2 82 1og T

Thus in case (i), (H:24) is also satisfied.

Next we have,
- - CN log(2e)
P||ps| < CAN?*R~H ——=22
|psc| < CF ( e

- . CN log(2e
<neo 4 P{|¢SC| < GANZR! ((’g(“) 5]
AN2
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CN log(%¢
<n7% 4 ]P’{ ‘|es||§(1 — %)+ Zs| < CyN*h™! <°g2( N )) ]
YN
CN log(2£)
—co 2 2 271 -1 N
<n +P[|Zs| > [[l6s]7(1 = b%)] = CyN?h (W :

where C' > 0 is a sufficiently large absolute constant. In the second line and third lines we use
the event £ from (H.23), and in the last line we use the triangle inequality. By (H.7), we have
conservatively that

CN log(%7)

2 2 27 —1
165131~ #2)] - ot (S0

1 ne
) > S0l (1 = )] > 16511 log =7
for n sufficiently large. Thus for n sufficiently large,

CN log(2¢)

P||ps.| < CANZ2H!
|Psc| < CF ( N

1
)] e izl > gl ioslia - )
e N |10
Sn 0+(%) .

Therefore the type 2 error for the ideal scan statistic is also o(1). O

Lemma H4. Let ¢ denote the scan statistic defined in (]Hjl), and let T denote the random threshold
defined in (H.6). Then under the null hypothesis,

-1
P(|¢sc| > 7] < (;) + v +n"% +exp (— Nlog %),
and under the alternative hypothesis,for n sufficiently large we have

—1
P[|¢sc| < 72] < <]7:/[) +U661 4 4 (%)10-

Proof. We show that the plug-in effect is negligible compared to the threshold and signal-strength.

By Lemma[H:2]
max |Lp| < 4/ Nivl g
\D\a)I{V| Dl o Og(NO)

with high probability. Since h(u) < u? for u > 0, it follows that

h( Névlog(}bf,)) _ Nivlog(je) _log i
VNG N 7N

ne log &%
N3ylog(—) < N2h_1(N°> =
0 g(NO)_v 0 "o

3y log (%) < 2,1 (08 N
N’ylog(N)_[l—&-o(l)hN h ( N )

Under the null, we have by Lemma [H.3] that

Pllgsel = 7] <P[lse = 7 — ng}vlLDl]

|D
-1
n _ . _,{C*Nlog(%¢) _, [log 2
< C1 P > *AN2 1 N _ N2 1 N
_(N> +v ¢+ [I%C_Cv h <&N2 YN=h N
-1
n —C —C ne
S(N) +vg?t +n °+exp(leogﬁ)

for C* > 0 a sufficiently large absolute constant. It suffices to take C* > 2C.
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Under the alternative hypothesis, we have by Lemma[H.3]that

Pllgsel < 7] < P[Idwc] <7+ max [Lol]

—1 * ne ne
n —c b can2p—1( € Nlog(FF) 2, —1( 108 ¥

_1 * ne
n —c 1 * 2 a727 —1 c Nlog(ﬁ)

<(" _l—i—v Cl—l—n_c"—i—(N)lO
AN 0 ne

for n sufficiently large.

Observe that Theorem [2.5]follows directly from Lemma [H.4]

I PROOF OF THEOREM [2.6] (COMPUTATIONAL LOWER BOUND)

In this section, we provide the proof of Theorem|2.6/ For convenience, we denote b = w ,d =

%. Under Hy, all upper triangular entries A are i.i.d. Bernoulli distributed with probability

d. Then an orthonormal basis of the adjacency matrix of graph D is

Ay —d
frd) = ] ——.
i<jiipyer VAL —d)

Here,I" C {(i,7) : 1 <i < j < n} takes all subsets of all upper triagonal entries of A. Denote |T'| as
the cardinality of T and B(D) = {T" C {unordered pairs (i, 7) : i # j,i,7 € [n]},T # 0,|T| < D}
as all subsets of off-diagonal entries of A of cardinality at most D. By Proposition[[.T]and the property
of the orthonormal basis function of A,

sup En, f(A) = |ILR=P — 1]
f is polynomial; degree(f)<D
]EHof(A):O;VaIHO (A):l

1/2 1/2
Y B frERPA) - D)y ST (B fr(A)LR(A))?
reB(D) reB(D)
1/2 2 1/2
= Em, (fr(A)°*p =
F€§(D) F€§(D) (z]j;[€FV d(l —d

Here, (*) is due to Eg, fr LRSP = Ep, fr LR by the property of projection and Egy, fr(A) = 0 for
any I' € B(D). Therefore, to establish the desired computational lower bound, we only need to prove

2

=o(1
re%;m <zg[er V(1= v
under the described asymptotic regime. For convenience, we denote
a—d b—d c—d
noVan—a P Vao-a P Van -
We can calculate that
(n—N)*(a—c) b_d:_(an)N(a—c)

a-d= n(n—2N) ' n(n—2N) ' - n(2-2N)’
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and

c—d=-—" w—@:<

N 2
p— N)(a—@. 1.1)

n —

cn=N)—aN ~ and N < n/3, we know a < ¢(n — N)/N and

Since b = =——

c(n—N)>—aN? _¢(n—N)>—~N(n— N)c
n(n — 2N) = n(n — 2N) = (n -

N)/n-c¢>2/3-c.

c(n—N)?>—aN?

n(n—2N) and

Under the asymptotic regime of this theorem, we have d =

(n—N)%(a—rc) a—c

b= n(n —2N)/d(1 — d) =

1.2)

i.e., there exists constant § > 1 such that § ¢ < p; < de. By (1), we have p3 = —N/(n— N)ps =
N2/(n— N)?p;. For any fixed I’ C {(4,5) : 1 <i < j <n},

A has two communities assigned by I1

=Eng<E
zglel—‘ \ 1_ ! }_[a“ \

INK®K| |[PNKQK®| |TNK°®KC| S
B '-p‘g” S oK gy ] {p«(—N/(n—N)) )

(i,5)eT
= 7| . i Z(i’j)er(m—‘rﬂj_z) — |T] . i Z(’isj)el‘(ﬂi"rﬂj—Q)
" n—N ! n—N
:pm 12[ _N O\ T DG erd @ pm ﬁ ﬁ . n—N N\ NeTH
1 So\n— N 1 1 " - S )

Here, (a) is because P(m; = 1) = N/n; P(m; = 2) = (n — N)/n. Thus, the following fact
holds: if there exists a node 7 that appears exactly one time in T, i.e., [{j’ : (¢,5') € T}| =
424 _ (). On the other hand, for all I" that each node appear zero times or at least

Em Ileyer 7

two times, we have

|{4:7 appears at least 2 times in I"}|
H — \F| {N+n—N<—N )2}
(Z Fer Jdd—d) n n n—N
_ | <2N> |{4:7 appears at least 2 times in I" } |
=P - :

n
Finally, we denote

By(D) ={T € B(D) : each node in [n] appears zero time or at least 2 times} ,

m(T") = |{i : i appears in some pair of I'}|.
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For any I" € By(D), we must have m(I') < |I'| < m(T')(m(T") — 1)/2. Then,

2 2
_ Aij—d
2 \/ a0 N a1 —d
reB(D) (” yer - I'eBy(D) (4,5)€T (1-d)

2|{4:i appears at least 2 times in I"}|
-y g 2N
! n
o

IA
™
E
el
P
[
N—
[\v]
Gl

m=2 g=m reBo(D) m=2g=m
m(I)=m
IT|=g
D DA™= g aN)2m L Dmax { (mp?)™, (mp?)Prmm-1/2Y L (o N)2m
oy oy meNE s S
= m! - nm o n
m—o g—m m=2
D m
_py (maxtmt (D)) VPN 0
=03 "

Here, M = max,,>1 W < /D/2 — 1; (a) is because the number of I" € By (D) with
m(I') =mand |T'| = g is at most () - m¥; (b) is due to the asymptotic assumption and ([2), which
leads to N

NG (prvpl') <nc

We have thus finished the proof of this theorem. [
Proposition 1.1 (Proposition 1.15 of [Kunisky et al.| 2019)). Given data A, consider the simple

hypothesis testing problem: Hy versus Hy. Let the likelihood ratio function be LR(A) = z Zl Ef‘;.
0
Define || f|| = \/Eu, f2(A) and f<P as the projection of any function f to the subspace of polyno-
mials of degree at most D, i.e., f<P = argming is poyynomial|| f — gl|. Then for any positive integer D,
degree(g)<D
we have -
LR="(A)—1]|= max Eg, f(A);
ILRPA) 1) = s B4
EHU.f (A):
En, f(A)=
LR=P(A) -1
T P<D(A) _ 11l = argmaxf:degree( <D E f(A)
[LR=P(A) 1] v
]EHUf( )

J PROOF OF THEOREM [2.7] (POWER OF EST)

The EST statistic is defined to be

and the EST is defined to be ")
psT = 1[dper > €],
where v, e are relatively prime and satisfy
w
a— < - <.
1-p
Such v and e exist because
— <,



Published as a conference paper at ICLR 2023

by assumption. Furthermore, we have
v<e

since w, d € (0,1).
To prove the statement, we require some preliminaries. Let G(n, p) denote an ErdGs-Rényi graph with

parameter p. A graph H with v vertices and e edges is said to be balanced if for all (not necessarily
induced) subgraphs H' C H with v vertices and ¢’ edges, it holds that

efv>ce/v.

Next, the power of EST hinges on two well-known facts from probabilistic combinatorics. The first
concerns the appearance of an arbitrary graph H in G(n, p).

Theorem J.1 (Adapted from Theorem 4.4.2. of |Alon & Spencer| (2016)). Let H denote a graph
with v vertices and e edges. Then if p < n~"/¢, the random graph G(n,p) does not have H as a
subgraph, with high probability as n — oo.

On the other hand, if H is balanced and p > n~"/¢, the random graph G(n,p) contains H as a
subgraph, with high probability as n — oo.

Theorem J.2 (Rucinski & Vince|(1986);[Catlin et al.|(1988)). There exists a balanced graph with v
vertices and e edges if and only if 1 <v—1<e < (;’)

Now we continue the proof. Recall that v and e are integers chosen such that ﬁ <wv/e<d.

Type 1 error: Observe that

and thus

a:a5+b(1—5):a€+(1—5)(0~n

N N - N N? - N
a((ls) )+(15)-: c=—a-—— =+ (1—¢) " ¢~ e,

n n—2N
where above we use that ae < c.
Thus under the alternative, A is distributed as Erdos-Rényi with parameter
a~c=n"<nve,

by our choice of v and e. By the first part of Theorem [J.I] no subset of size v of A contains more
than e edges, with high probability as n — oco.

To be more precise, there are a finite number of graphs Hi, ..., Hy with v vertices and at least e
edges, where L is a constant depending only on v. For each graph H;, Theorem[J.T|contains H; as a
subgraph with probability tending 0 as n — oco. The type 1 error of EST thus vanishes by the union
bound.

Type 2 error: Let H denote a balanced graph on v vertices and e edges, whose existence is guaranteed
by Theorem[J.2] Consider the induced subgraph on Cy, the smaller community, which is an Erd&s-
Rényi random graph on IV vertices with parameter a = n~“. By our choice of v and e, we have

a=n"Y=N T75 > N Ve,

By Theorem[J.1] C; contains a copy of H with high probability. Since H has e edges, we conclude
that ¢\".. > e, and thus the null is rejected with high probability as n — cc.
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