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ABSTRACT

How to detect a small community in a large network is an interesting problem,
including clique detection as a special case, where a naive degree-based χ2-test
was shown to be powerful in the presence of an Erdős-Renyi background. Using
Sinkhorn’s theorem, we show that the signal captured by the χ2-test may be a
modeling artifact, and it may disappear once we replace the Erdős-Renyi model by
a broader network model. We show that the recent SgnQ test is more appropriate
for such a setting. The test is optimal in detecting communities with sizes com-
parable to the whole network, but has never been studied for our setting, which
is substantially different and more challenging. Using a degree-corrected block
model (DCBM), we establish phase transitions of this testing problem concerning
the size of the small community and the edge densities in small and large commu-
nities. When the size of the small community is larger than

√
n, the SgnQ test is

optimal for it attains the computational lower bound (CLB), the information lower
bound for methods allowing polynomial computation time. When the size of the
small community is smaller than

√
n, we establish the parameter regime where the

SgnQ test has full power and make some conjectures of the CLB. We also study
the classical information lower bound (LB) and show that there is always a gap
between the CLB and LB in our range of interest.

1 INTRODUCTION

Consider an undirected network with n nodes and K communities. We assume n is large and the
network is connected for convenience. We are interested in testing whether K = 1 or K > 1 and the
sizes of some of the communities are much smaller than n (communities are scientifically meaningful
but mathematically hard to define; intuitively, they are clusters of nodes that have more edges “within”
than “across” (Jin, 2015; Zhao et al., 2012)). The problem is a special case of network global testing,
a topic that has received a lot of attention (e.g., Jin et al. (2018; 2021b)). However, existing works
focused on the so-called balanced case, where the sizes of communities are at the same order. Our
case is severely unbalanced, where the sizes of some communities are much smaller than n (e.g., nε).

The problem also includes clique detection (a problem of primary interest in graph learning (Alon
et al., 1998; Ron & Feige, 2010)) as a special case. Along this line, Arias-Castro & Verzelen (2014);
Verzelen & Arias-Castro (2015) have made remarkable progress. In detail, they considered the
problem of testing whether a graph is generated from a one-parameter Erdős-Renyi model or a
two-parameter model: for any nodes 1 ≤ i, j ≤ n, the probability that they have an edge equals b
if i, j both are in a small planted subset and equals a otherwise. A remarkable conclusion of these
papers is: a naive degree-based χ2-test is optimal, provided that the clique size is in a certain range.
Therefore, at first glance, it seems that the problem has been elegantly solved, at least to some extent.

Unfortunately, recent progress in network testing tells a very different story: the signal captured by
the χ2-test may be a modeling artifact. It may disappear once we replace the models in Arias-Castro
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& Verzelen (2014); Verzelen & Arias-Castro (2015) by a properly broader model. When this happens,
the χ2-test will be asymptotically powerless in the whole range of parameter space.

We explain the idea with the popular Degree-Corrected Block Model (DCBM) (Karrer & Newman,
2011), though it is valid in broader settings. Let A ∈ Rn,n be the network adjacency matrix, where
A(i, j) ∈ {0, 1} indicates whether there is an edge between nodes i and j, 1 ≤ i, j ≤ n. By
convention, we do not allow for self-edges, so the diagonals of A are always 0. Suppose there
are K communities, C1, . . . , CK . For each node i, 1 ≤ i ≤ n, we use a parameter θi to model
the degree heterogeneity and πi to model the membership: when i ∈ Ck, πi(`) = 1 if ` = k and
πi(`) = 0 otherwise. For a K ×K symmetric and irreducible non-negative matrix P that models the
community structure, DCBM assumes that the upper triangle of A contains independent Bernoulli
random variables satisfying1

P(A(i, j) = 1) = θiθjπ
′
iPπj , 1 ≤ i, j ≤ n. (1.1)

In practice, we interpret P (k, `) as the baseline connecting probability between communities k and
`. Write θ = (θ1, θ2, . . . , θn)′, Π = [π1, π2, . . . , πn]′, and Θ = diag(θ) ≡ diag(θ1, θ2, . . . , θn).
Introduce n×n matrices Ω and W by Ω = ΘΠPΠ′Θ and W = A−E[A]. We can re-write (1.1) as

A = Ω− diag(Ω) +W. (1.2)

We call Ω the Bernoulli probability matrix and W the noise matrix. When θi in the same community
are equal, DCBM reduces to the Stochastic Block Model (SBM) (Holland et al., 1983). When K = 1,
the SBM reduces to the Erdős-Renyi model, where Ω(i, j) take the same value for all 1 ≤ i, j ≤ n.

We first describe why the signal captured by the χ2-test in Arias-Castro & Verzelen (2014); Verzelen
& Arias-Castro (2015) is a modeling artifact. Using Sinkhorn’s matrix scaling theorem (Sinkhorn,
1974), it is possible to build a null DCBM with K = 1 that has no community structure and an
alternative DCBM with K ≥ 2 and clear community structure such that the two models have the
same expected degrees. Thus, we do not expect that degree-based test such as χ2 can tell them apart.
We make this Sinkhorn argument precise in Section 2.1 and show the failure of χ2 in Theorem 2.3.

In the Erdős-Renyi setting in Arias-Castro & Verzelen (2014), the null has one parameter and the
alternative has two parameters. In such a setting, we cannot have degree-matching. In these cases,
a naive degree-based χ2-test may have good power, but it is due to the very specific models they
choose. For clique detection in more realistic settings, we prefer to use a broader model such as the
DCBM, where by the degree-matching argument above, the χ2-test is asymptotically powerless.

This motivates us to look for a different test. One candidate is the scan statistic Bogerd et al.
(2021). However, a scan statistic is only computationally feasible when each time we scan a very
small subset of nodes. For example, if each time we only scan a finite number of nodes, then
the computational cost is polynomial; we call the test the Economic Scan Test (EST). Another
candidate may come from the Signed-Polygon test family (Jin et al., 2021b), including the Signed-
Quadrilateral (SgnQ) as a special case. Let η̂ = (1nA1n)−1/2A1n and Â = A − η̂η̂. Define
Qn =

∑
i1,i2,i3,i4(dist) Âi1i2Âi2i3Âi3i4Âi4i1 where the shorthand (dist) indicates we sum over

distinct indices. The SgnQ test statistic is

ψn =
[
Qn − 2(‖η̂‖2 − 1)2

]
/
√

8(‖η̂‖2 − 1)4. (1.3)

SgnQ is computationally attractive because it can be evaluated in timeO(n2d̄), where d̄ is the average
degree of the network (Jin et al., 2021b).

Moreover, it was shown in Jin et al. (2021b) that (a) when K = 1 (the null case), ψn → N(0, 1), and
(b) when K > 1 and all communities are at the same order (i.e., a balanced alternative case), the
SgnQ test achieves the classical information lower bound (LB) for global testing and so is optimal.
Unfortunately, our case is much more delicate: the signal of interest is contained in a community with
a size that is much smaller than n (e.g., nε), so the signal can be easily overshadowed by the noise
term of Qn. Even in the simple alternative case where we only have two communities (with sizes N
and (n−N)), it is unclear (a) how the lower bounds vary as N/n→ 0, and especially whether there
is a gap between the computation lower bound (CLB) and classical information lower bound (LB),
and (b) to what extent the SgnQ test attains the CLB and so is optimal.

1In this work we use M ′ to denote the transpose of a matrix or vector M .
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1.1 RESULTS AND CONTRIBUTIONS

We consider the problem of detecting a small community in the DCBM. In this work, we specifically
focus on the case K = 2 as this problem already displays a rich set of phase transitions, and we
believe it captures the essential behavior for constant K > 1. Let N � n denote the size of this
small community under the alternative. Our first contribution analyzes the power of SgnQ for this
problem, extending results of Jin et al. (2021b) that focus on the balanced case. Let λ1 = λ1(Ω). In
Section 2.2, we define a population counterpart Ω̃ of Â and let λ̃ = λ1(Ω̃). We show that SgnQ has
full power if λ̃1/

√
λ2 →∞, which reduces to N(a− c)/

√
nc→∞ in the SBM case.

For optimality, we obtain a computational lower bound (CLB), relying on the low-degree polynomial
conjecture, which is a standard approach in studying CLB (e.g., Kunisky et al. (2019)). Consider a
case where K = 2 and we have a small community with size N . Suppose the edge probability within
the community and outside the community are a and c, where a > c. The quantity (a− c)/

√
c acts as

the Node-wise Signal-to-Noise Ratio (SNR) for the detection problem.2 When N �
√
n, we find that

the CLB is completely determined by N and node-wise SNR; moreover, SgnQ matches with the CLB
and is optimal. When N �

√
n, the situation is more subtle: if the node-wise SNR (a− c)/

√
c→ 0

(weak signal case), we show the problem is computationally hard and the LB depends on N and the
node-wise SNR. If (a− c)/

√
c� n1/2 (strong signal case), then SgnQ solves the detection problem.

In the range 1� (a− c)/
√
c� n1/2 (moderate signal case), the CLB depends on not only N and

the node-wise SNR but also the background edge density c. In this regime, we make conjectures of
the CLB, from the study of the aforementioned economic scan test (EST). Our results are summarized
in Figure 1 and explained in full detail in Section 2.7.

Figure 1: Phase diagram ((a− c)/
√
c = n−γ and

N = n1−β).

We also obtain the classical information lower
bound (LB), and discover that as N/n → 0,
there is big gap between CLB and LB. Notably
the LB is achieved by an (inefficient) signed
scan test. In the balanced case in Jin et al.
(2021b), the SgnQ test is optimal among all tests
(even those that are allowed unbounded compu-
tation time), and such a gap does not exist.

We also show that that the naive degree-based
χ2-test is asymptotically powerless due to the
aforementioned degree-matching phenomenon.

Our statistical lower bound, computational
lower bound, and the powerlessness of χ2 based
on degree-matching are also valid for all K > 2
since any model with K ≥ 2 contains K = 2
as a special case. We also expect that our lower
bounds are tight for these broader models and
that our lower bound constructions for K = 2
represent the least favorable cases when community sizes are severely unbalanced.

Compared to Verzelen & Arias-Castro (2015); Arias-Castro & Verzelen (2014), we consider network
global testing in a more realistic setting, and show that optimal tests there (i.e., a naive degree-based
χ2 test) may be asymptotically powerless here. Compared with Bogerd et al. (2021), our setting is
very different (they considered a setting where both the null and alternative are DCBM with K = 1).
Compared to the study in the balanced case (e.g., Jin et al. (2018; 2021b); Gao & Lafferty (2017)),
our study is more challenging for two reasons. First, in the balanced case, there is no gap between
the UB (the upper bound provided by the SgnQ test) and LB, so there is no need to derive the CLB,
which is usually technical demanding. Second, the size of the smaller community can get as small as
nε, where ε > 0 is any constant. Due this imbalance in community sizes, the techniques of Jin et al.
(2021b) do not directly apply. As a result, our proof involves the careful study of the 256 terms that
compose SgnQ, which requires using bounds tailored specifically for the severely unbalanced case.

2Note that the node-wise SNR captures the ratio of the mean difference and standard deviation of Bernoulli(a)
versus Bernoulli(c), which motivates our terminology.
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Our study of the CLB is connected to that of Hajek et al. (2015) in the Erdös-Renyi setting of
Arias-Castro & Verzelen (2014). Hajek et al. (2015) proved via computational reducibility that the
naive χ2-test is the optimal polynomial-time test (conditionally on the planted clique hypothesis).
We also note work of Chen & Xu (2016) that studied a K-cluster generalization of the Erdös-Renyi
model of Arias-Castro & Verzelen (2014); Verzelen & Arias-Castro (2015) and provided conjectures
of the CLB. Compared to our setting, these models are very different because the expected degree
profiles of the null and alternative differ significantly. In this work we consider the DCBM model,
where due to the subtle phenomenon of degree matching between the null and alternative hypotheses,
both CLB and LB are different from those obtained by Hajek et al. (2015).

Notations: We use 1n to denote a n-dimensional vector of ones. For a vector θ = (θ1, . . . , θn),
diag(θ) is the diagonal matrix where the i-th diagonal entry is θi. For a matrix Ω ∈ Rn×n, diag(Ω)
is the diagonal matrix where the i-th diagonal entry is Ω(i, i). For a vector θ ∈ Rn, θmax =
max{θ1, . . . , θn} and θmin = min{θ1, . . . , θn}. For two positive sequences {an} and {bn}, we
write an � bn if c1 ≤ an/bn ≤ c2 for constants c2 > c1 > 0. We say an ∼ bn if (an/bn) = 1+o(1).

2 MAIN RESULTS

In Section 2.1, following our discussion on Sinkhorn’s theorem in Section 1, we introduce calibrations
(including conditions on identifiability and balance) that are appropriate for severely unbalanced
DCBM and illustrate with some examples. In Sections 2.2-2.3, we analyze the power of the SgnQ
test and compare it with the χ2-test. In Sections 2.4-2.5, we discuss the information lower bounds
(both the LB and CLB) and show that SgnQ test is optimal among polynomial time tests, when
N �

√
n. In Section 2.6, we study the EST and make some conjectures of the CLB when N �

√
n.

In Section 2.7, we summarize our results and present the phase transitions.

2.1 DCBM FOR SEVERELY UNBALANCED NETWORKS: IDENTIFIABILITY, BALANCE METRICS,
AND GLOBAL TESTING

In the DCBM (1.1)-(1.2), Ω = ΘΠPΠ′Θ. It is known that the matrices (Θ,Π, P ) are not identifiable.
One issue is that (Π, P ) are only unique up to a permutation: for a K ×K permutation matrix Q,
ΠPΠ = (ΠQ)(Q′PQ)(ΠQ)′. This issue is easily fixable in applications so is usually neglected. A
bigger issue is that, (Θ, P ) are not uniquely defined. For example, fixing a positive diagonal matrix
D ∈ RK×K , let P ∗ = DPD and Θ∗ = diag(θ∗1 , θ

∗
2 , . . . , θ

∗
n) where θ∗i = θi/

√
D(k, k) if i ∈ Ck,

1 ≤ k ≤ K. It is seen that ΘΠPΠ′Θ = Θ∗ΠP ∗Π′Θ∗, so (Θ, P ) are not uniquely defined.

To motivate our identifiability condition, we formalize the degree-matching argument discussed in the
introduction. Fix (θ, P ) and let h = (h1, . . . , hK)′ and hk > 0 is the fraction of nodes in community
k, 1 ≤ k ≤ K. By the main result of Sinkhorn (1974), there is a unique positive diagonal matrix
D = diag(d1, . . . , dK) such that DPDh = 1K . Consider a pair of two DCBM, a null with K = 1
and an alternative with K > 1, with parameters Ω = Θ1n1

′
nΘ ≡ θθ′ and Ω∗(i, j) = θ∗i θ

∗
jπ
′
iPπj

with θ∗i = dkθi if i ∈ Ck, 1 ≤ k ≤ K, respectively. Direct calculation shows that node i has the
same expected degree under the null and alternative.

There are many ways to resolve the issue. For example, in the balanced case (e.g., Jin et al. (2021b;
2022)), we can resolve it by requiring that P has unit diagonals. However, for our case, this is
inappropriate. Recall that, in practice, P (k, `) represents as the baseline connecting probability
between community k and `. If we forcefully rescale P to have a unit diagonal here, both (P,Θ) lose
their practical meanings.

Motivated by the degree-matching argument, we propose an identifiability condition that is more
appropriate for the severely unbalanced DCBM. By our discussion in Section 1, for any DCBM with
a Bernoulli probability matrix Ω, we can always use Sinkhorn’s theorem to define (Θ, P ) (while Π is
unchanged) such that for the new (Θ, P ), Θ = ΘΠPΠ′Θ and Ph ∝ 1K , where h = (h1, . . . , hK)′

and hk > 0 is the fraction of nodes in community k, 1 ≤ k ≤ K. This motivates the following
identifiability condition (which is more appropriate for our case):

‖θ‖1 = n, Ph ∝ 1K , where hk is fraction of nodes in Ck, 1 ≤ k ≤ K. (2.1)
Lemma 2.1. For any Ω that satisfies the DCBM (1.2) and has positive diagonal elements, we can
always find (Θ,Π, P ) such that Ω = ΘΠPΠ′Θ and (2.1) holds. Also, any (Θ, P ) that satisfy
Ω = ΘΠPΠ′Θ and (2.1) are unique.
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Moreover, for network balance, the following two vectors in RK are natural metrics:

d = (‖θ‖1)−1Π′Θ1n, g = (‖θ‖)−2Π′Θ2Π1K , (2.2)

In the balanced case (e.g., Jin et al. (2021b; 2022)), we usually assume the entries of d and g are at
the same order. For our setting, this is not the case.

Next we introduce the null and alternative hypotheses that we consider. Under each hypothesis, we
impose the identifiability condition (2.1).

General null model for the DCBM. When K = 1 and h = 1, P is scalar (say, P = α), and
Ω = αθθ′ satisfies ‖θ‖1 = n by (2.1). The expected total degree is α(‖θ‖21−‖θ‖2) ∼ α‖θ‖21 = n2α
under mild conditions, so we view α as the parameter for network sparsity. In this model, d = g = 1.

Alternative model for the DCBM . We assume K = 2 and that the sizes of the two communities,
C0 and C1, are (n−N) and N , respectively. For some positive numbers a, b, c, we have

P =

[
a b
b c

]
, and Ω(i, j) =

{
θiθj · a, if i, j ∈ C1,
θiθj · c, if i, j ∈ C0,
θiθj · b, otherwise.

(2.3)

In the classical clique detection problem (e.g., Bogerd et al. (2021)), a and c are the baseline
probability where two nodes have an edge when both of them are in the clique and outside the clique,
respectively. By (2.1), aε+ b(1− ε) = bε+ c(1− ε) if we write ε = N/n. Therefore,

b = (c(n−N)− aN)/(n− 2N). (2.4)

Note that this is the direct result of Sinkhorn’s theorem and the parameter calibration we choose,
not a condition we choose for technical convenience. Write d = (d0, d1)′ and g = (g0, g1)′. It is
seen that d0 = 1− d1, g0 = 1− g0, d1 = ‖θ‖−1

1

∑
i∈C1 θi, and g1 = ‖θ‖−2

∑
i∈C1 θ

2
i . If all θi are

at the same order, then d1 � g1 � (N/n) and d0 ∼ g0 ∼ 1. We also observe that b = c + O(aε)
which makes the problem seem very close to Arias-Castro & Verzelen (2014); Bogerd et al. (2021),
although in fact the problems are quite different.

Extension . An extension of our alternative is that, for the K communities, the sizes of m of them are
at the order of N , for an N � n and an integer m, 1 ≤ m < K, and the sizes of remaining (K −m)
are at the order of n. In this case, m entries of d are O(N/n) and other entries are O(1); same for g.

2.2 THE SGNQ TEST: LIMITING NULL, P-VALUE, AND POWER

In the null case, K = 1 and we assume Ω = αθθ′, where ‖θ‖1 = n. As n → ∞, both (α, θ) may
vary with n. Write θmax = ‖θ‖∞. We assume

nα→∞, and αθ2
max log(n2α)→ 0. (2.5)

The following theorem is adapted from Jin et al. (2021b) and the proof is omitted.
Theorem 2.1 (Limiting null of the SgnQ statistic). Suppose the null hypothesis is true and the
regularity conditions (2.1) and (2.5) hold. As n→∞, ψn → N(0, 1) in law.

We have two comments. First, since the DCBM has many parameters (even in the null case), it is
not an easy task to find a test statistic with a limiting null that is completely parameter free. For
example, if we use the largest eigenvalue of A as the test statistic, it is unclear how to normalize
it so to have such a limiting null. Second, since the limiting null is completely explicit, we can
approximate the (one-sided) p-value of ψn by P(N(0, 1) ≥ ψn). The p-values are useful in practice,
as we show in our numerical experiments.. For example, using a recent data set on the statisticians’
publication (Ji et al., 2022), for each author, we can construct an ego network and apply the SgnQ
test. We can then use the p-value to measure the co-authorship diversity of the author. Also, in many
hierarchical community detection algorithms (which are presumably recursive, aiming to estimate
the tree structure of communities), we can use the p-values to determine whether we should further
divide a sub-community in each stage of the algorithm (e.g. Ji et al. (2022)).

The power of the SgnQ test hinges on the matrix Ω̃ = Ω− (1′nΩ1n)−1Ω1n1
′
nΩ. By basic algebra,

Ω̃ = ΘΠP̃Π′Θ, where P̃ = P − (d′Pd)−1Pdd′P . (2.6)

Let λ̃1 be the largest (in magnitude) eigenvalue of Ω̃. Lemma 2.2 is proved in the supplement.

5



Published as a conference paper at ICLR 2023

Lemma 2.2. The rank and trace of the matrix Ω̃ are (K−1) and ‖θ‖2diag(P̃ )′g, respectively. When
K = 2, λ̃1 = trace(Ω̃) = ‖θ‖2(ac− b2)(d2

0g1 + d2
1g0)/(ad2

1 + 2bd0d1 + cd2
0).

As a result of this lemma, we observe that in the SBM case, d = h and thus λ̃1 = λ2 � N(a− c).
To see intuitively that the power of the SgnQ test hinges on λ̃4

1/λ
2
1, if we heuristically replace the

terms of SgnQ by population counterparts, we obtain

Qn =
∑

i1,i2,i3,i4(distinct)

Âi1i2Âi2i3Âi3i4Âi4i1 ≈ trace([Ω− ηη′]4) = trace(Ω̃4) = λ̃4
1.

We now formally discuss the power of the SgnQ test. We focus on the alternative hypothesis in
Section 2.1. Let d = (d1, d0)′ and g = (g1, g0)′ be as in (2.2), and let θmax,0 = maxi∈C0 θi and
θmax,1 = maxi∈C1 θi. Suppose

d1 � g1 � N/n, aθ2
max,1 = O(1), cn→∞, cθ2

max,0 log(n2c)→ 0. (2.7)

These conditions are mild. For example, when θi’s are at the same order, the first inequality in (2.7)
automatically holds, and the other inequalities in (2.7) hold if a ≤ C for an absolute constant C > 0,
cn→∞, and c log(n)→ 0.

Fixing 0 < κ < 1, let zκ > 0 be the value such that P(N(0, 1) ≥ zκ) = κ. The level-κ SgnQ
test rejects the null if and only if ψn ≥ zκ, where ψn is as in (1.3). Theorem 2.2 and Corollary 2.1
are proved in the supplement. Recall that our alternative hypothesis is defined in Section 2.1. By
power we mean the probability that the alternative hypothesis is rejected, minimized over all possible
alternative DCBMs satisfying our regularity conditions.

Theorem 2.2 (Power of the SgnQ test). Suppose that (2.7) holds, and let κ ∈ (0, 1). Under the
alternative hypothesis, if |λ̃1|/

√
λ1 →∞, the power of the level-κ SgnQ test tends to 1.

Corollary 2.1. Suppose the same conditions of Theorem 2.2 hold, and additionally θmax ≤ Cθmin

so all θi are at the same order. In this case, λ1 � cn and |λ̃1| � N(a − c), and the power of the
level-κ SgnQ test tends to 1 if N(a− c)/

√
cn→∞.

In Theorem 2.2 and Corollary 2.1, if κ = κn and κn → 0 slowly enough, then the results continues
to hold, and the sum of Type I and Type II errors of the SgnQ test at level-κn→ 0.

The power of the SgnQ test was only studied in the balanced case (Jin et al., 2021b), but our setting is
a severely unbalanced case, where the community sizes are at different orders as well as the entries of
d and g. In the balanced case, the signal-to-noise ratio of SgnQ is governed by |λ2|/

√
λ1, but in our

setting, the signal-to-noise ratio is governed by |λ̃1|/
√
λ1. The proof is also subtly different. Since

the entries of P are at different orders, many terms deemed negligible in the power analysis of the
balanced case may become non-negligible in the unbalanced case and require careful analysis.

2.3 COMPARISON WITH THE NAIVE DEGREE-BASED χ2-TEST

Consider a setting where Ω = αΘ1n1
′
nΘ ≡ αθθ′ under the null and Ω = ΘΠPΠ′Θ under the

alternative, and (2.1) holds. When θ is unknown, it is unclear how to apply the χ2-test: the null
case has n unknown parameters θ1, . . . , θn, and we need to use the degrees to estimate θi first. As
a result, the resultant χ2-statistic may be trivially 0. Therefore, we consider a simpler SBM case
where θ = 1n. In this case, Ω = α1n1n, and Ω = ΠPΠ′ and the null case only has one unknown
parameter α. Let yi be the degree of node i, and let α̂ = [n(n− 1)]−11′nA1n. The χ2-statistic is

Xn =

n∑
i=1

(yi − nα̂)2/[(n− 1)α̂(1− α̂)]. (2.8)

It is seen that as nα → ∞ and α → 0, (Xn − n)/
√

2n → N(0, 1) in law. For a fixed level
κ ∈ (0, 1), consider the χ2-test that rejects the null if and only if (Xn − n)/

√
2n > zκ. Let

α0 = n−2(1′nΩ1n). The power of the χ2-test hinges on the quantity (nα0)−1‖(Ω1n − nα0)‖2 =
(nα0)−1‖ΠPh− (h′Ph)−11n‖2 = 0, if Ph ∝ 1K . The next theorem is proved in the supplement.

Theorem 2.3. Suppose θ = 1n and (2.7) holds. If |λ̃1|/
√
λ1 →∞ under the alternative hypothesis,

the power of the level-κ SgnQ test goes to 1, while the power of the level-κ χ2-test goes to κ.
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2.4 THE STATISTICAL LOWER BOUND AND THE OPTIMALITY OF THE SCAN TEST

For lower bounds, it is standard to consider a random-membership DCBM (Jin et al., 2021b), where
‖θ‖1 = n, P is as in (2.3)-(2.4) and for a number N � n, Π = [π1, π2, . . . , πn]′ satisfies

πi = (Xi, 1−Xi), where Xi are iid Bernoulli(ε) with ε = N/n. (2.9)

Theorem 2.4 (Statistical lower bound). Consider the null and alternative hypotheses of Section 2.1,
and assume that (2.9) is satisfied, θmax ≤ Cθmin and Nc/ log n→∞. If

√
N(a− c)/

√
c→ 0, then

for any test, the sum of the type-I and type-II errors tends to 1.

To show the tightness of this lower bound, we introduce the signed scan test, by adapting the idea in
Arias-Castro & Verzelen (2014) from the SBM case to the DCBM case. Unlike the SgnQ test and
the χ2-test, signed scan test is not a polynomial time test, but it provides sharper upper bounds. Let
η̂ be the same as in (1.3). For any subset S ⊂ {1, 2, . . . , n}, let 1S ∈ Rn be the vector whose ith
coordinate is 1{i ∈ S}. Define the signed scan statistic

φsc = max
S⊂{1,2,...,n}:|S|=N

1′S
(
A− η̂η̂′

)
1S . (2.10)

Theorem 2.5 (Tightness of the statistical lower bound). Consider the signed scan test (2.10)
that rejects the null hypothesis if φsc > tn. Under the assumptions of Theorem 2.4, if√
N(a − c)/

√
c log(n) → ∞, then there exists a sequence tn such that the sum of type I and

type II errors of the signed scan test tends to 0.

By Theorems 2.4-2.5 and Corollary 2.1, the two hypotheses are asymptotically indistinguishable if√
N(a−c)/

√
c→ 0, and are asymptotically distinguishable by the SgnQ test ifN(a−c)/

√
cn→∞.

Therefore, the lower bound is sharp, up to log-factors, and the signed scan test is nearly optimal.
Unfortunately, the signed scan test is not polynomial-time computable. Does there exist a polynomial-
time computable test that is optimal? We address this in the next section.

2.5 THE COMPUTATIONAL LOWER BOUND

Consider the same hypothesis pair as in Section 2.4, where K = 2, P is as in (2.3)-(2.4), and Π
is as in (2.9). For simplicity, we only consider SBM, i.e., θi ≡ 1. The low-degree polynomials
argument emerges recently as a major tool to predicting the average-case computational barriers in a
wide range of high-dimensional problems (Hopkins & Steurer, 2017; Hopkins et al., 2017). Many
powerful methods, such as spectral algorithms and approximate message passing, can be formulated
as functions of the input data, where the functions are polynomials with degree at most logarithm
of the problem dimension. In comparison to many other schemes of developing computational
lower barriers, the low-degree polynomial method yields the same threshold for various average-case
hardness problems, such as community detection in the SBM (Hopkins & Steurer, 2017) and (hyper)-
planted clique detection (Hopkins, 2018; Luo & Zhang, 2022). The foundation of the low-degree
polynomial argument is the following low-degree polynomial conjecture (Hopkins et al., 2017) :

Conjecture 2.1 (Adapted from Kunisky et al. (2019)). Let Pn and Qn denote a sequence of proba-
bility measures with sample space Rnk where k = O(1). Suppose that every polynomial f of degree
O(log n) with EQnf

2 = 1 is bounded under Pn with high probability as n → ∞ and that some
further regularity conditions hold. Then there is no polynomial-time test distinguishing Pn from Qn
with type I and type II error tending to 0 as n→∞.

We refer to Hopkins (2018) for a precise statement of this conjecture’s required regularity conditions.
The low-degree polynomial computational lower bound for our testing problem is as follows.

Theorem 2.6 (Computational lower bound). Consider the null and alternative hypotheses in Section
2.1, and assume θi ≡ 1 and (2.9) holds. As n→∞, assume c < a, c < 1−δ for constant δ > 0,N <

n/3, D = O(log n), and lim supn→∞

{(
logn

N√
n

+ logn
a−c√
c

)
∨
(√

D/2− 1 logn
a−c√
c

)}
< 0.

For any series of degree-D polynomials φn : A→ R, whenever EH0
φn(A) = 0,VarH0

(φn(A)) = 1,
we must have EH1

φn(A) = o(1). This implies if Conjecture 2.1 is true, there is no consistent
polynomial-time test for this problem.

7
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Figure 2: Left: Null distribution of SgnQ (n = 500). Middle and right: Power comparison of
SgnQ and χ2 (n = 100, N = 10, 50 repetitions). We consider a 2-community SBM with P11 = a,
P22 = 0.1, P12 = 0.1 (middle plot) and P12 = an−(a+0.1)N

n (right plot, the case of degree matching).

By Theorem 2.6, if both (a− c)/
√
c . 1 and N(a− c)/

√
cn→ 0, the testing problem is computa-

tionally infeasible. The region where the testing problem is statistically possible but the SgnQ test
loses power corresponds to N(a − c)/

√
cn → 0. If N &

√
n, Theorem 2.6 already implies that

this is the computationally infeasible region; in other words, SgnQ achieves the CLB and is optimal.
If N = o(

√
n), SgnQ solves the detection problem only when (a − c)/

√
c � n1/2, i.e. when the

node-wise SNR is strong. We discuss the case of moderate node-wise SNR in the next subsection.

2.6 THE POWER OF EST, AND DISCUSSIONS OF THE TIGHTNESS OF CLB

When N = o(
√
n) and (a− c)/

√
c→∞ both hold, the upper bound by SgnQ does not match with

the CLB. It is unclear whether the CLB is tight. To investigate the CLB in this regime, we consider
other possible polynomial-time tests. The economic scan test (EST) is one candidate. Given fixed
positive integers v and e, the EST statistic is defined to be φ(v)

EST ≡ sup|S|≤v
∑
i,j∈S Aij , and the

EST is defined to reject if and only if φ(v)
EST ≥ e. EST can be computed in time O(nv), which is

polynomial time. For simplicity, we consider the SBM, i.e. where θ = 1n, and a specific setting of
parameters for the null and alternative hypotheses.

Theorem 2.7 (Power of EST). Suppose β ∈ [1/2, 1) and 0 < ω < δ < 1 are fixed constants. Under
the alternative, suppose θ = 1n, (2.9) holds, N = n1−β , a = n−ω, and c = n−δ. Under the null,
suppose θ = 1n and α = a(N/n) + b(1 −N/n). If ω/(1 − β) < δ, the sum of type I and type II
errors of the EST with v and e satisfying ω/(1− β) < v/e < δ tends to 0.

Theorem 2.7 follows from standard results in probabilistic combinatorics (Alon & Spencer, 2016).
It is conjectured in Bhaskara et al. (2010) that EST attains the CLB in the Erdös-Renyi setting
considered by Arias-Castro & Verzelen (2014); Verzelen & Arias-Castro (2015). This suggests that
the CLB in Theorem 2.6 is likely not tight when N = o(

√
n) and (a− c)/

√
c→∞. However, this

is not because our inequalities in proving the CLB are loose. A possible reason is that the prediction
from the low-degree polynomial conjecture does not provide a tight bound. It remains an open
question whether other computational infeasibility frameworks provide a tight CLB in our problem.

2.7 THE PHASE TRANSITION

We describe more precisely our results in terms of the phase transitions shown in Figure 1. Consider
the null and alternative hypotheses from Section 2.1. For illustration purposes, we fix constants
β ∈ (0, 1) and γ ∈ R and assume that N = n1−β and (a− c)/

√
c = n−γ . In the two-dimensional

space of (γ, β), the region of β > 1/2 and β < 1/2 corresponds to that the size of the small
community is �

√
n and o(

√
n), respectively, and the regions of γ > 0, −1/2 < γ < 0 and

γ < −1/2 correspond to ‘weak node-wise signal’, ‘moderate node-wise signal,’ and the ‘strong
node-wise signal’, respectively. See Figure 1. By our results in Section 2.4, the testing problem is
statistically impossible if β + 2γ > 1 (orange region). By our results in Section 2.2, SgnQ has a
full power if β + γ < 1/2 (blue region). Our results in Section 2.5 state that the testing problem is
computationally infeasible if both γ > 0 and β + γ > 1/2 (green and orange regions). Combining
these results, when β < 1/2, we have a complete understanding of the LB and CLB.
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3 NUMERICAL RESULTS

Simulations. First in Figure 2 (left panel) we demonstrate the asymptotic normality of SgnQ under a
null of the form Ω = θθ′, where θi are i.i.d. generated from Pareto(4, 0.375). Though the degree
heterogeneity is severe, SgnQ properly standardized is approximately standard normal under the null.
Next in Figure 2 we compare the power of SgnQ in an asymmetric and symmetric SBM model. As
our theory predicts, both tests are powerful when degrees are not calibrated in each model, but only
SgnQ is powerful in the symmetric case. We also compare the power of SgnQ with the scan test to
show evidence of a statistical-computational gap. We relegate these experiments to the supplement.

Real data: Next we demonstrate the effectiveness of SgnQ in detecting small communities in
coauthorship networks studied in Ji et al. (2022). In Example 1, we consider the personalized network
of Raymond Carroll, whose nodes consist of his coauthors for papers in a set of 36 statistics journals
from the time period 1975 – 2015. An edge is placed between two coauthors if they wrote a paper in
this set of journals during the specified time period. The SgnQ p-value for Carroll’s personalized
network GCarroll is 0.02, which suggests the presence of more than one community. In Ji et al. (2022),
the authors identify a small cluster of coauthors from a collaboration with the National Cancer
Institute. We applied the SCORE community detection module with K = 2 (e.g. Ke & Jin (2022))
and obtained a larger community G 0

Carroll of size 218 and a smaller community G 1
Carroll of size 17.

Precisely, we removed Carroll from his network, applied SCORE on the remaining giant component,
and defined G 0

Carroll to be the complement of the smaller community. The SgnQ p-values in the
table below suggest that both G 0

Carroll and G 1
Carroll are tightly clustered. Refer to the supplement for a

visualization of Carroll’s network and its smaller community labeled by author names. In Example
2, we consider three different coauthorship networks Gold, Grecent, and Gnew corresponding to time
periods (i) 1975-1997, (ii) 1995-2007, and (iii) 2005-2015 for the journals AoS, Bka, JASA, and
JRSSB. Nodes are given by authors, and an edge is placed between two authors if they coauthored
at least one paper in one of these journals during the corresponding time period. For each network,
we perform a similar procedure as in the first example. First we compute the SgnQ p-value, which
turns out to be ≈ 0 (up to 16 digits of precision) for all networks. For each i ∈ {old, recent, new},
we apply SCORE with K = 2 to Gi and compute the SgnQ p-value on both resulting communities,
let us call them G0

i and G1
i . We refer to the table below for the results. For Gold and Grecent, SCORE

with K = 2 extracts a small community. The SgnQ p-value further supports the hypothesis that this
small community is well-connected. In the last network, SCORE splits Gnew into two similarly sized
pieces whose p-values suggests they can be split into smaller subcommunities.

Example Network Size SgnQ p-value Communities Sizes SgnQ p-values
1 GCarroll 235 0.02 (G 0

Carroll, G
1
Carroll) (218, 17) (0.134, 0.682)

2 Gold 2647 0 (G0
old, G

1
old) (2586, 61) (0, 0.700)

Grecent 2554 0 (G0
recent, G

1
recent) (2540,14) (0, 0.759)

Gnew 2920 0 (G0
new, G

1
new) (1685,1235) (0, 0)

Discussions: Global testing is a fundamental problem and often the starting point of a long line of
research. For example, in the literature of Gaussian models, certain methods started as a global testing
tool, but later grew into tools for variable selection, classification, and clustering and motivated many
researches (e.g., Donoho & Jin (2004; 2015)). The SgnQ test may also motivate tools for many other
problems, such as estimating the locations of the clique and clustering more generally. For example,
in Jin et al. (2022), the SgnQ test motivated a tool for estimating the number of communities (see
also Ma et al. (2021)). SgnQ is also extendable to clique detection in a tensor (Yuan et al., 2021; Jin
et al., 2021a) and for network change point detection. The LB and CLB we obtain in this paper are
also useful for studying other problems, such as clique estimation. If you cannot tell whether there is
a clique in the network, then it is impossible to estimate the clique. Therefore, the LB and CLB are
also valid for the clique estimation problem (Alon et al., 1998; Ron & Feige, 2010).

The limiting distribution of SgnQ is N(0, 1). This is not easy to achieve if we use other testing ideas,
such as the leading eigenvalues of the adjacency matrix: the limiting distribution depends on many
unknown parameters and it is hard to normalize (Liu et al., 2019). The p-value of the SgnQ test is easy
to approximate and also useful in applications. For example, we can use it to measure the research
diversity of a given author. Consider the ego sub-network of an author in a large co-authorship or
citation network. A smaller p-value suggests that the ego network has more than 1 communitiy and
has more diverse interests. The p-values can also be useful as a stopping criterion in hierarchical
community detection modules.
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A ADDITIONAL EXPERIMENTS

A.1 VISUALIZATION OF CARROLL’S NETWORK

In Figure 3, we display a subgraph of high-degree nodes of Raymond Carroll’s personalized coau-
thorship network (figure borrowed with permission from Ji et al. (2022)). On the right of Figure 3 is
shown the small community extracted by SCORE, and this cluster of size 17 is labeled by author
names.

A.2 SGNQ VS. SCAN

In this section we demonstrate evidence of a statistical-computational gap by means of numerical
experiments.
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Figure 3: Left: Carroll’s personalized network, figure taken from Ji et al. (2022). Right: A small
community of 17 authors extracted by SCORE and whose SgnQ p-value is 0.6818.

We consider a SBM null and alternative model (as in Example 2 with θ ≡ 1) with

P0 =

(
α α
α α

)
, P1 =

(
a b
b c

)
where aN + b(n−N) = α. For this simple testing problem, we compare the power of SgnQ and
the scan test. In our experiments, we set α = 0.2 and allow the parameter a to vary from a = α to
a = amax ≡ an/N . Once a and α are fixed, the parameters b and c are determined by

c =
aN2 + αn2 − 2αnN

(n−N)2
,

b =
nc− (a+ c)N

n− 2N
.

In particular, amax is the largest value of a such that b ≥ 0.

Since the scan test φsc we defined is extremely computationally expensive, we study the power of an
‘oracle’ scan test φ̃sc which knows the location of the true planted subset C1. The power of the oracle
scan test is computed as follows. Let κ denote the desired level.

1. Using Mcal repetitions under the null, we calculate the (non-oracle) scan statistic
φ

(1)
sc , . . . , φ

(Mcal)
sc for each repetition. We set the threshold τ̂ to be the empirical 1 − κ

quantile of φ(1)
sc , . . . , φ

(Mcal)
sc .

2. Given a sample from the alternative model, we compute the power using Mpow repetitions,
where we reject if

φ̃sc ≡ 1C1(A− η̂η̂′)1C1 > τ̂.

In our experiments, we set Mcal = 75 and Mpow = 200.

Note that since φ̃sc ≤ φsc, the procedure above gives an underestimate of the power of the scan
test (provide the threshold is correctly calibrated), which is helpful since this can be used to show
evidence of a statistical-computational gap.

In our plots we also indicate the statistical (information-theoretic) and computational thresholds in
addition to the power. Inspired by the sharp characterization of the statistical threshold in (Arias-
Castro & Verzelen, 2014, Equation (10)) for planted dense subgraph, in all plots we draw a black
vertical dashed line at the first value of a such that

(1/2)
√
N(a− c)/

√
c(1− c) > 1.

We draw a blue vertical dashed line at the first value of a such that

N(a− c)/
√
nc > 1.
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Figure 4: The power of SgnQ (blue curve) and oracle scan (black curve) for n = 30, N ∈ {4, 6, 7}
(left) and n = 40, N ∈ {4, 6, 7} (right). The black dashed line indicates the theoretical statistical
threshold, and the blue dashed line indicates the theoretical computational threshold.

A.3 χ2 VS. SGNQ

We also show additional experiments demonstrating the effect of degree-matching on the power of
the χ2 test. We compute the power with respect to the following alternative models (as in Example 2
with θ ≡ 1) with

P (1) =

(
a b
b c

)
, P (2) =

(
a c
c c

)
where b = cn−(a+c)N

n−2N , c is fixed, and a ranges from c to a′max = c(n−N)/N for the experiments
with P (1). Similar to before, a′max is the largest value of a such that b ≥ 0. See Figure 5 for further
details.

B PROOF OF LEMMA 2.1 (IDENTIFIABILITY)

To prove identifiability, we make use of the following result from (Jin et al., 2021c, Lemma 3.1),
which is in line with Sinkhorn’s work Sinkhorn (1974) on matrix scaling.
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Figure 5: Power comparison of SgnQ and χ2 (n = 500, N = 22, 50 repetitions). We consider a
2-community SBM with P11 = a, P22 = c, P12 = c (left) and P12 = an−(a+c)N

n (right plot, the
case of degree matching) where c = 0.05 (top row) and c = 0.20 (bottom row).

Lemma B.1 (Jin et al. (2021c)). Given a matrix A ∈ RK,K with strictly positive diagonal entries
and non-negative off-diagonal entries, and a strictly positive vector h ∈ RK , there exists a unique
diagonal matrix D = diag(d1, d2, . . . , dK) such that DADh = 1K and dk > 0, 1 ≤ k ≤ K.

We apply Lemma B.1 with h = (h1, . . . , hK)′ and A = P to construct a diagonal matrix D =
diag(d1, . . . , dK) satisfying DADh = 1K . Note that P has positive diagonal entries since Ω does.

Define P ∗ = DPD and D∗ = diag(d∗1, . . . , d
∗
n) ∈ Rn where

d∗i ≡ dk if i ∈ Ck
Observe that

ΠD−1 = (D∗)−1Π.

Define Θ∗ = Θ(D∗)−1, and let θ∗ = diag(Θ∗). Next, let Θ = n
‖θ∗‖1 ·Θ

∗, let θ = diag(Θ), and let

P =
‖θ∗‖21
n2 · P ∗. Note that ‖θ‖1 = n and Ph ∝ 1K .

Using the previous definitions and observations, we have

Ω = ΘΠD−1DPDD−1Π′Θ = Θ∗ΠP ∗Π′Θ∗ = ΘΠPΠ′Θ

which justifies existence.

To justify uniqueness, suppose that

Ω = Θ(1)ΠP (1)Π′Θ(1) = Θ(2)ΠP (2)Π′Θ(2),

where θ(i) = diag(Θ(i)) satisfy ‖θ(i)‖1 = n for i = 1, 2 and

P (1)h ∝ 1K , P (2)h ∝ 1K .

Observe that
ΠP (1)Π′1n = α(1)n · 1n, ΠP (2)Π′1n = α(2)n · 1n.
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for positive constants α(i), i ∈ {1, 2}. Since Ω has nonnegative entries and positive diagonal elements,
by Lemma B.1, there exists a unique diagonal matrix D such that

DΩD1n = 1n.

We see that taking D = 1√
α(i)n

(Θ(i))−1 satisfies this equation for i = 1, 2, and therefore by
uniqueness,

1√
α(1)n

(Θ(1))−1 =
1√
α(2)n

(Θ(2))−1.

Since ‖θ(1)‖1 = ‖θ(2)‖1 = n, further we have α(1) = α(2), and hence

Θ(1) = Θ(2).

It follows that
ΠP (1)Π′ = ΠP (2)Π′,

which, since we assume hi > 0 for i = 1, . . . ,K, further implies that P (1) = P (2).

C PROOF OF THEOREM 2.1 (LIMITING NULL OF THE SGNQ STATISTIC)

Consider a null DCBM with Ω = θ∗(θ∗)′. Note that this is a different choice of parameterization
than the one we study in the main paper. In (Jin et al., 2021c, Theorem 2.1) it is shown that the
asymptotic distribution of ψn, the standardized version of SgnQ, is standard normal provided that

‖θ∗‖ → ∞, θ∗max → 0, and (‖θ∗‖2/‖θ∗‖1)
√

log(‖θ‖∗1)→ 0. (C.1)

We verify that, in a DCBM with Ω = αθθ′ and ‖θ‖1 = n, these conditions are implied by the
assumptions in (2.5), restated below:

nα→∞, and αθ2
max log(n2α)→ 0 (C.2)

In the parameterization of Jin et al. (2021c), we have θ∗ =
√
αθ. First, ‖θ∗‖2 → ∞ because by

(C.2),

‖θ∗‖2 ≥ 1

n
· ‖θ∗‖21 = αn→∞.

Next, θ∗max → 0 because by (C.2),

θmax =
√
αθmax → 0.

To show the last part of (C.1), note that

(‖θ∗‖2/‖θ∗‖1)
√

log(‖θ‖∗1) ≤
√
αθmax

√
log(
√
αn) =

1√
2

√
αθmax

√
log(αn2)→ 0

by (C.2). Thus (C.1) holds, and ψn is asymptotically standard normal under the null.

D PROOF OF LEMMA 2.2 (PROPERTIES OF Ω̃)

Lemma. The rank and trace of the matrix Ω̃ are (K − 1) and ‖θ‖2diag(P̃ )′g, respectively. When
K = 2, λ̃1 = trace(Ω̃) = ‖θ‖2(ac− b2)(d2

0g1 + d2
1g0)/(ad2

1 + 2bd0d1 + cd2
0).

Proof of Lemma 2.2. By basic algebra,

Ω̃ = ΘΠP̃Π′Θ, where P̃ = (P − (d′Pd)−1Pdd′P ).

It is seen P̃ d = Pd− (d′Pd)−1Pdd′Pd = 0, so rank(P̃ ) ≤ K − 1. At the same time, since for any
matrix A and B of the same size, rank(A+B) ≤ rank(A) + rank(B), it follows P̃ ≥ (K − 1), as
rank(P ) = K and rank(Pdd′P ) ≤ 1. This proves that rank(P̃ ) = K − 1.
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At the same time, since for any matrices A and B, trace(AB) = trace(BA),

trace(Ω̃) = trace(P̃Π′Θ2Π) = ‖θ‖2trace(P̃G) = ‖θ‖2diag(P̃ )′g.

This proves the second item of the lemma.

Last, when K = 2, Ω̃ is rank 1, and its eigenvalue is the same as its trace. First

(P̃ )11 = a− (ad1 + bd0)2

ad2
1 + 2bd0d1 + cd2

0

= (ac− b2)
d2

0

ad2
1 + 2bd0d1 + cd2

0

(P̃ )22 = c− (bd1 + cd0)2

ad2
1 + 2bd0d1 + cd2

0

= (ac− b2)
d2

1

ad2
1 + 2bd0d1 + cd2

0

.

Thus

λ̃1 = ‖θ‖2diag(P̃ )′g = ‖θ‖2(ac− b2) · d2
0g1 + d2

1g0

ad2
1 + 2bd0d1 + cd2

0

This proves the last item and completes the proof of the lemma.

E PROOF OF THEOREM 2.2 (POWER OF THE SGNQ TEST) AND COROLLARY
2.1

E.1 SETUP AND RESULTS

Notation: Given sequences of real numbers A = An and B = Bn, we write A . B to signify that
A = O(B), A � B to signify that A . B and B . A, and A ∼ B to signify that A/B = 1 + o(1).

Throughout this section, we consider a DCBM with parameters (Θ, P ) where P ∈ R2×2 has unit
diagonals, and we analyze the behavior of SgnQ under the alternative. At the end of this subsection
we explain how Theorem 2.2 and Corollary 2.1 follow from the results described next. Our results
hinge on

λ̃ ≡ λ̃1 = tr(Ω̃).

Given a subset U ⊂ [n], let θU ∈ R|U | denote the restriction of θ to the coordinates of U . For
notational convenience, we let S = {i : πi(1) = 1}, which was previously written as C1 in the main
paper.

In a DCBM where P has unit diagonals, our main results hold under the following conditions.

Ωij . θiθj (E.1)
‖θ‖∞ = O(1), and (E.2)

‖θ‖22 →∞. (E.3)

(‖θ‖22/‖θ‖1)
√

log(‖θ‖1)→ 0. (E.4)

First we justify that these assumptions are satisfied by an equivalent DCBM with the same Ω
represented with the parameterization (2.1) and satisfying (2.7). Thus all results proved in this section
transfer immediately to the main paper.
Lemma E.1. Consider a DCBM with parameters (Θ∗, P ∗) satisfying (2.1) and satisfying (2.7).
Define Θ = diag(θ) where

θi =

{√
aθ∗i if i ∈ S√
cθ∗i if i ∈ Sc,

and

P =

(
1 b√

ac
b√
ac

1

)
.

Then
Ω = ΘΠPΠΘ = Θ∗ΠP ∗Π′Θ∗

and (E.1)–(E.4) are satisfied.
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Proof. The statement regarding Ω follows by basic algebra. (E.1) follows if we can show that

b√
ac
. 1. (E.5)

Since

b =
cn− (a+ c)N

n− 2N
= c · n−N

n− 2N
− a · N

n− 2N
,

we have a ≥ c & b, so (E.5) follows.

Next, (E.2) follows directly from aθ2
max,1 . 1 since cθ2

max,0 = o(1) by (2.7).

For (E.3),

‖θ‖22 ≥
1

n
· ‖θ‖21 ≥ cn→∞

by (2.7).

For the last part, note that

b = c · n−N
n− 2N

− a · N

n− 2N
≥ 0⇒ aε . c.

Thus,

‖θ‖22
‖θ‖1

=
a‖θ∗S‖22 + c‖θ∗Sc‖22√
a‖θ∗S‖1 +

√
c‖θ∗Sc‖1

.
a(N/n)‖θ∗Sc‖22 + c‖θ∗Sc‖22√

c‖θ∗Sc‖1

.
c‖θ∗Sc‖22√
c‖θ∗Sc‖1

.
√
cθmax,0 = o

( 1√
log cn2

)
= o
( 1√

log(‖θ‖1)

)
,

which implies (E.4). Above we use that a ≥ c and g1 � d1 � N/n, by assumption. Precisely, in the
first line, we used

a‖θ∗S‖22 � a · (1−N/n)−1N

n
‖θ∗Sc‖22 . c‖θ∗Sc‖22,

and in the second line we used

‖θ‖1 ≥
√
c‖θ∗Sc‖1 �

√
c(1−N/n)−1‖θ∗‖1 �

√
cn.

With Lemma E.1 in hand, we restrict in the remainder of this section to the setting where P has unit
diagonals and (E.1)–(E.4) are satisfied.

Define v0 = 1′Ω1, and let η∗ = (1/
√
v0)Ω1. Recall Ω̃ = Ω − η∗η∗T, and λ̃ = tr(Ω̃). Our main

result concerning the alternative is the following.
Theorem E.1 (Limiting behavior of SgnQ test statistic). Suppose that the previous assumptions
hold and that |λ̃|/

√
λ1 → ∞. Then under the null hypothesis, as n → ∞, E[Q] ∼ 2‖θ‖42,

Var(Q) ∼ 8‖θ‖82, and (Q − EQ)/
√

Var(Q) → N(0, 1) in law. Under the alternative hypothesis,
as n→∞, EQ ∼ λ̃4 and Var(Q) . |λ̃|6 + |λ̃|2λ3

1 = o(λ̃8).

Following Jin et al. (2021c), we introduce some notation:

Ω̃ = Ω− (η∗)(η∗)′, where η∗ =
1
√
v0

Ω1n, v0 = 1′nΩ1n;

δij = ηi(ηj − η̃j) + ηj(ηi − η̃i), where η =
1√
v

(EA)1n, η̃ =
1√
v
A1n, v = 1′n(EA)1n;

rij = (η∗i η
∗
j − ηiηj)− (ηi − η̃i)(ηj − η̃j) + (1− v

V
)η̃iη̃j , where V = 1′nA1n.

The ideal and proxy SgnQ statistics, respectively, are defined as follows:

Q̃n =
∑

i,j,k,`(dist)

(Ω̃ij +Wij)(Ω̃jk +Wjk)(Ω̃k` +Wk`)(Ω̃`i +W`i) (E.6)
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Q∗n =
∑

i,j,k,`(dist)

(Ω̃ij +Wij + δij)(Ω̃jk +Wjk + δjk)(Ω̃k` +Wk` + δk`)(Ω̃`i +W`i + δ`i).

(E.7)

Moreover, we can express the original or real SgnQ as

Qn =
∑

i,j,k,`(dist)

[
(Ω̃ij +Wij + δij + rij)(Ω̃jk +Wjk + δjk + rjk)

(Ω̃k` +Wk` + δk` + rk`)(Ω̃`i +W`i + δ`i + r`i)

]
.

The next theorems handle the behavior of these statistics. Together the results imply Theorem E.1.
Again, the analysis of the null carries over directly from Jin et al. (2021c), so we only need to study
the alternative. The claims regarding the alternative follow from Lemmas E.7–E.12 below.
Theorem E.2 (Ideal SgnQ test statistic). Suppose that the previous assumptions hold and that
|λ̃|/
√
λ1 → ∞. Then under the null hypothesis, as n → ∞, E[Q̃] = 0 and Var(Q̃) = 8‖θ‖82 ·

[1 + o(1)]. Furthermore, under the alternative hypothesis, as n → ∞, E[Q̃] ∼ λ̃4 and Var(Q̃) .
λ4

1 + |λ̃|6 = o(λ̃8).
Theorem E.3 (Proxy SgnQ test statistic). Suppose that the previous assumptions hold and that
|λ̃|/
√
λ1 →∞. Then under the null hypothesis, as n→∞, |E[Q̃−Q∗]| = o(‖θ‖42) and Var(Q̃−

Q∗) = o(‖θ‖82). Furthermore, under the alternative hypothesis, as n→∞, |E[Q̃−Q∗]| . |λ̃|2λ1 =

o(λ̃4) and Var(Q̃−Q∗) . |λ̃|2λ3
1 + |λ̃|6 = o(λ̃8).

Theorem E.4 (Real SgnQ test statistic). Suppose that the previous assumptions hold and that
|λ̃|/
√
λ1 → ∞. Then under the null hypothesis, as n → ∞, |E[Q− Q̃]| = o(‖θ‖42) and Var(Q−

Q̃) = o(‖θ‖82). Furthermore, under the alternative hypothesis, as n→∞, |E[Q−Q∗]| . |λ̃|2λ1 =

o(λ̃4) and Var(Q−Q∗) . |λ̃|2λ3
1 = o(λ̃8).

The previous work Jin et al. (2021c) establishes that under the assumptions above, if ‖θS‖1/‖θ‖1 � 1,
then SgnQ distinguishes the null and alternative provided that |λ2|/

√
λ1 → ∞. To compare with

the results above, note that λ2 � λ̃ if ‖θS‖1/‖θ‖1 � 1 (c.f. Lemma E.5 of Jin et al. (2021c)).
Thus when K = 2, our main result extends the upper bound of Jin et al. (2021c) to the case when
‖θS‖1/‖θ‖1 = o(1). We note that |λ̃| & |λ2| in general (see Lemma E.3 and Corollary E.1).

The theorems above apply to the symmetric SBM. Recall that in this model,

Ωij =


a if i, j ∈ S
c if i, j /∈ S
b̃ = nc−(a+c)N

n−2N otherwise.

where N = |S| and a, b, c ∈ (0, 1). To obtain this model from our DCBM, set

P =

(
1 b̃/

√
ac

b̃/
√
ac 1

)
, (E.8)

and

θ =
√
a1S +

√
c1Sc . (E.9)

The assumption (E.1) implies that b̃ .
√
ac, which is automatically satisfied since we assume a ≥ c.

In SBM, it holds that λ2 = λ̃ (see Lemma E.3). Furthermore, explicit calculations in Section E.5
reveal that

λ1 ∼ nc, and (E.10)

λ2 = λ̃ ∼ N(a− c).

In addition, with P, a, b̃, c as above, if we have

θi =

{
ρi
√
a if i ∈ S

ρi
√
c if i /∈ S
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for ρ > 0 with ρmin & ρmax in the DCBM setting, a very similar calculation, which we omit, reveals
that

λ1 � nc, and (E.11)

λ̃ � N(a− c).

With the previous results of this subsection in hand (which are proved in the remaining subsections)
we justify Theorem 2.2 and Corollary 2.1.

Proof of Theorem 2.2. The SgnQ test has level κ by Theorem 2.1, so it remains to study the type II
error. Using Theorem E.1 and Lemma E.1, the fact that the type II error tends to 0 directly follows
from Chebyshev’s inequality and the fact that ‖η̂‖22 − 1 ≈ ‖θ‖22 with high probability. In particular,
note that since |λ̃| �

√
λ1, the expectation of SgnQ under the alternative is much larger than its

standard deviation, under the null or alternative. We omit the details as they are very similar to the
proof of Theorem 2.6 in (Jin et al., 2021c, Supplement,pgs. 5–6).

Proof of Corollary 2.1. This result follows immediately from (E.11) and Theorem 2.2.

E.2 PRELIMINARY BOUNDS

Define v0 = 1TΩ1, and let η∗ = 1/
√
v0 · Ω1. For the analysis of SgnQ, it is important is to

understand Ω̃ = Ω − η∗η∗T. The next lemma establishes that Ω̃ is rank one and has a simple
expression when K = 2.
Lemma E.2. Let f = (‖θSc‖1,−‖θS‖1)T It holds that

Ω̃ =
(1− b2)

v0
·ΘΠffTΠTΘ.

Proof. Let ρ0 = ‖θS‖1 and ρ1 = ‖θSc‖1. Note that

(Ω1)i = θi
∑
j

θjπ
T
i Pπj =

{
θi(ρ0 + bρ1) if i ∈ S
θi(bρ0 + ρ1) if i /∈ S.

Hence

v0 = 1TΩ1 = ρ2
0 + 2bρ0ρ1 + ρ2

1.

If i, j ∈ S, then

Ω̃ij = θiθj
(
1− (ρ0 + bρ1)2

v0

)
= θiθj ·

(1− b2)ρ2
1

v0

Similarly if i ∈ S and j /∈ S,

Ω̃ij = θiθj
(
b− (ρ0 + bρ1)(bρ0 + ρ1)

v0

)
= −θiθj ·

(1− b2)ρ0ρ1

v0

and

Ω̃ij = θiθj
(
1− (bρ0 + ρ1)2

v0

)
= θiθj ·

(1− b2)ρ2
0

v0

if i, j ∈ Sc. The claim follows.

Let

w = ΘΠf = θS‖θSc‖1 − θSc‖θS‖1 = ρ1θS − ρ0θSc

Using the previous lemma, we have the rank one eigendecomposition

Ω̃ = λ̃ξ̃ξ̃T, (E.12)
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where we define

ξ̃ =
ρ1θS − ρ0θSc

‖ρ1θS − ρ0θSc‖2
=

ρ1θS − ρ0θSc√
ρ2

1‖θS‖22 + ρ2
0‖θSc‖22

, and (E.13)

λ̃ =
(1− b2)

v0
·
(
ρ2

1‖θS‖22 + ρ2
0‖θSc‖22

)
. (E.14)

Lemma E.5 of Jin et al. (2021c) implies that if ‖θS‖1/‖θ‖1 � 1, then λ2 � λ̃1 . If ‖θS‖1/‖θ‖1 =

o(1), then this guarantee may not hold. Below, in the case K = 2, we express λ̃ in terms of the
eigenvalues and eigenvectors of Ω. This allows us to compare λ2 with λ̃ more generally, as in
Corollary E.1.

Lemma E.3. Let Ω have eigenvalues λ1, λ2 and eigenvectors ξ1, ξ2. Let λ̃ denote the eigenvalue of
Ω̃. Then

λ̃ =
λ1λ2

(
〈ξ1,1〉2 + 〈ξ2,1〉2

)
λ1〈ξ1,1〉2 + λ2〈ξ2,1〉2

. (E.15)

Proof. By explicit computation,

Ω̃ = Ω− η∗η∗T

= λ1

(
1− λ1〈ξ1,1〉2

v0

)
ξ1ξ

T
1 + λ2

(
1− λ2〈ξ2,1〉2

v0

)
ξ2ξ

T
2 −

λ1λ2〈ξ1,1〉〈ξ2,1〉
v0

(
ξ1ξ

T
2 ξ2 + ξT1

)
=
λ1λ2

v0

(
〈ξ2,1〉ξ1 + 〈ξ1,1〉ξ2

)
·
(
〈ξ2,1〉ξ1 + 〈ξ1,1〉ξ2

)T
.

From (E.13) and (E.14), it follows that

ξ̃ =
〈ξ2,1〉ξ1 + 〈ξ1,1〉ξ2√
〈ξ1,1〉2 + 〈ξ2,1〉2

λ̃ =
λ1λ2

v0

(
〈ξ1,1〉2 + 〈ξ2,1〉2

)
.

Corollary E.1. It holds that

|λ2| . |λ̃| . λ1. (E.16)

If λ2 ≥ 0, then

λ2 ≤ λ̃ ≤ λ1 (E.17)

Proof. Suppose that λ2 ≥ 0. Then

λ2

(
〈ξ1,1〉2 + 〈ξ2,1〉2

)
≤ λ1〈ξ1,1〉2 + λ2〈ξ2,1〉2 = v0 ≤ λ1

(
〈ξ1,1〉2 + 〈ξ2,1〉2

)
,

implies (E.17).

Suppose that λ2 < 0. Note that

λ1

(
〈ξ1,1〉2 + 〈ξ2,1〉2

)
≥ λ1〈ξ1,1〉2 + λ2〈ξ2,1〉2 = v0 ≥ 0,

which combined with (E.15) implies that |λ̃| ≥ |λ2|.
Next,

λ2 ≤ ξ̃TΩξ̃ = λ̃+ 〈ξ̃, η∗〉2,

which implies that

|λ̃| ≤ |λ2|+ 〈ξ̃, η∗〉2 ≤ λ1 + ‖η∗‖22 . λ1 + ‖θ‖21 . λ1,

where the last inequality follows from Lemma E.5.
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The next results are frequently used in our analyis of SgnQ.
Lemma E.4. Let v = 1T(Ω− diag(Ω))1 and v0 = 1TΩ1. Then

v0 ∼ v ∼ ‖θ‖21. (E.18)

Proof. By (E.4), ‖θ‖22 = o(‖θ‖1). By (E.3), ‖θ‖1 →∞. Hence

v = 1T(Ω− diag(Ω))1 = ‖θ‖21 − ‖θ‖22 ∼ ‖θ‖21 ∼ v0 = 1TΩ1.

The next result is a direct corollary of Lemmas E.2 and E.4.
Corollary E.2. Define β ∈ Rn by

β =

√
|1− b2|
v0

·
(
‖θSc‖11S + ‖θS‖11Sc

)
(E.19)

Then
|Ω̃ij | . βiθiβjθj . (E.20)

Lemma E.5. Let λ1 denote the largest eigenvalue of Ω. Then
λ1 & ‖θ‖22. (E.21)

Proof. Using the universal inequality a2 + b2 ≥ 1
2 (a+ b)2, we have

λ1 ≥
θTΩθ

‖θ‖22
≥ 1

‖θ‖22
·
∑
i,j

θiθjΩij ≥
1

‖θ‖22
·
( ∑
i,j∈S

θ2
i θ

2
j +

∑
i,j /∈S

θ2
i θ

2
j

)
≥ ‖θS‖

4
2 + ‖θSc‖42
‖θ‖22

& ‖θ‖22.

Lemma E.6. Define η = 1√
v
(Ω− diag(Ω))1. Then

ηi . η
∗
i . θi (E.22)

Proof. The left-hand side is immediate, so we prove that η∗i . θi. We have

(Ω1)i =

{
θi(‖θS‖1 + b‖θSc‖1) if i ∈ S
θi(b‖θS‖1 + ‖θSc‖1) if i /∈ S

Since Ωii = θ2
i ,

√
v0 · ηi =

{
θi(‖θS‖1 + b‖θSc‖1)− θ2

i if i ∈ S
θi(b‖θS‖1 + ‖θSc‖1)− θ2

i if i /∈ S.
Since b = O(1), θi = O(1), and v0 & ‖θ‖21 (c.f. Lemma E.4),

η∗i .
θi‖θ‖1√
‖θ‖21

= θi,

as desired.

We use the bounds (E.18) – (E.22) throughout. We also use repeatedly that
‖θ‖pp . ‖θ‖qq, if p ≥ q, (E.23)

which holds by (E.2), and

‖β ◦ θ‖22 = |λ̃|
|βi| . 1

‖β ◦ θ◦2‖1 ≤ ‖β ◦ θ‖2‖θ‖2 . ‖θ‖22, (E.24)
where the second line holds by Cauchy–Schwarz.
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E.3 MEAN AND VARIANCE OF SGNQ

The previous work Jin et al. (2021c) decomposes Q̃ and Q̃−Q∗ into a finite number of terms. For
each term an exact expression for its mean and variance is derived in Jin et al. (2021c) that depends
on θ, η, v, and Ω̃. These expression are then bounded using the inequalities (E.2), (E.3), (E.18),
(E.21)–(E.23), as well as an inequality of the form

|Ω̃ij | . αθiθj .

In our case, an inequality of this form is still valid, but it does not attain sharp results because it does
not properly capture the signal |λ̃| from the smaller community. Instead, we use the inequality (E.20),
followed by the bounds in (E.24) to handle terms involving Ω̃.

Therefore, for terms of Q̃ and Q̃−Q∗ that do not depend on Ω̃, the bounds in Jin et al. (2021c) carry
over immediately. In particular, their analysis of the null hypothesis carries over directly. Hence we
can focus solely on the alternative hypothesis.

Furthermore, any terms with zero mean in Jin et al. (2021c) also have zero mean in our setting : for
every term that is mean zero, it is simply the sum of mean zero subterms, and each mean zero subterm
is a product of independent, centered random variables (eg, X1 below).

E.3.1 IDEAL SGNQ

The previous work Jin et al. (2021c) shows that Q̃ = X1 + 4X2 + 4X3 + 2X4 + 4X5 +X6, where
X1, . . . , X6 are defined in their Section G.1. For convenience, we state explicitly the definitions of
these terms.

X1 =
∑

i,j,k,`(dist)

WijWjkWk`W`i, X2 =
∑

i,j,k,`(dist)

Ω̃ijWjkWk`W`i,

X3 =
∑

i,j,k,`(dist)

Ω̃ijΩ̃jkWk`W`i, X4 =
∑

i,j,k,`(dist)

Ω̃ijWjkΩ̃k`W`i,

X5 =
∑

i,j,k,`(dist)

Ω̃ijΩ̃jkΩ̃k`W`i, X6 =
∑

i,j,k,`(dist)

Ω̃ijΩ̃jkΩ̃k`Ω̃`i.

Since X1 does not depend on Ω̃, the bounds for X1 below are directly quoted from Lemma G.3 of
Jin et al. (2021c). Also note that X6 is a non-stochastic term.
Lemma E.7. Under the alternative hypothesis, we have

E[Xk] = 0 for 1 ≤ k ≤ 5,

Var(X1) . ‖θ‖82 . λ4
1

Var(X2) . ‖β ◦ θ‖42 ‖θ‖42 . |λ̃|2λ2
1

Var(X3) . ‖β ◦ θ‖82 ‖θ‖22 . |λ̃|4λ1

Var(X4) . ‖β ◦ θ‖82 ≤ |λ̃|4

Var(X5) . ‖β ◦ θ‖12
2 . |λ̃|6, and

E[X6] = X6 ∼ |λ̃4|

Since we assume |λ̃|/
√
λ1 →∞ under the alternative hypothesis, it holds that

Var(Q̃) . λ4
1 + |λ̃|6.

Theorem E.2 follows directly from this bound and that EX6 = EQ̃ ∼ λ̃4.

E.3.2 PROXY SGNQ

The previous work Jin et al. (2021c) shows that

Q̃−Q∗ = Ua + Ub + Uc,
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where

Ua = 4Y1 + 8Y2 + 4Y3 + 8Y4 + 4Y5 + 4Y6

Ub = 4Z1 + 2Z2 + 8Z3 + 4Z4 + 4Z5 + 2Z6

Uc = 4T1 + 4T2 + F.

These terms are defined in Section G.2 of Jin et al. (2021c), and for convenience, we define them
explicitly below. The previous equations are obtained by expanding carefully Q̃ and Q∗ as defined in
(E.6) and (E.7). Thus, the terms on the right-hand-side above are referred as post-expansion terms,
and we can analyze each one individually. Now we proceed to their definitions.

First Y1, . . . , Y6 are defined as follows.

Y1 =
∑

i,j,k,`(dist)

δijWjkWk`W`i, Y2 =
∑

i,j,k,`(dist)

δijΩ̃jkWk`W`i,

Y3 =
∑

i,j,k,`(dist)

δijWjkΩ̃k`W`i, Y4 =
∑

i,j,k,`(dist)

δijΩ̃jkΩ̃k`W`i,

Y5 =
∑

i,j,k,`(dist)

δijΩ̃jkWk`Ω̃`i, Y6 =
∑

i,j,k,`(dist)

δijΩ̃jkΩ̃k`Ω̃`i.

Next, Z1, . . . , Z6 are defined as follows.

Z1 =
∑

i,j,k,`(dist)

δijδjkWk`W`i, Z2 =
∑

i,j,k,`(dist)

δijWjkδk`W`i,

Z3 =
∑

i,j,k,`(dist)

δijδjkΩ̃k`W`i, Z4 =
∑

i,j,k,`(dist)

δijΩ̃jkδk`W`i,

Z5 =
∑

i,j,k,`(dist)

δijδjkΩ̃k`Ω̃`i, Z6 =
∑

i,j,k,`(dist)

δijΩ̃jkδk`Ω̃`i.

Last, we have the definitions of T1, T2, and F .

T1 =
∑

i,j,k,`(dist)

δijδjkδk`W`i, T2 =
∑

i,j,k,`(dist)

δijδjkδk`Ω̃`i,

F =
∑

i,j,k,`(dist)

δijδjkδk`δ`i.

The following post-expansion terms below appear in Lemma G.5 of Jin et al. (2021c). The term Y1

does not depend on Ω̃, so we may directly quote the result.

Lemma E.8. Under the alternative hypothesis, it holds that

|EY1| = 0, Var(Y1) . ‖θ‖22‖ ‖θ‖63 . λ4
1

|EY2| = 0, Var(Y2) . ‖β ◦ θ‖22 ‖θ‖62 . |λ̃|λ3
1

|EY3| = 0, Var(Y3) . ‖β ◦ θ‖42 ‖θ‖42 . |λ̃|2λ2
1

|EY4| . ‖β ◦ θ‖42‖θ‖22 . |λ̃|2λ1, Var(Y4) .
‖β ◦ θ‖62 ‖θ‖62
‖θ‖1

. |λ̃|3λ2
1

|EY5| = 0, Var(Y5) .
‖β ◦ θ‖62 ‖θ‖42
‖θ‖1

. |λ̃|3λ1

|EY6| = 0, Var(Y6) .
‖β ◦ θ‖12

2 ‖θ‖22
‖θ‖1

. |λ̃|6.
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As a result,

|EUa| . |λ̃|2λ1 = o(λ̃4). (E.25)

Also using Corollary E.1 and that |λ̃|/
√
λ1 →∞, we have

Var(Ua) . λ4
1 + |λ̃|3λ2

1 + |λ̃|6. (E.26)

The terms below appear in Lemma G.7 of Jin et al. (2021c). The bounds on Z1 and Z2 are quoted
directly from Jin et al. (2021c).
Lemma E.9. Under the alternative hypothesis, it holds that

|EZ1| . ‖θ‖42 . λ2
1, Var(Z1) . ‖θ‖22 ‖θ‖63 . λ4

1

|EZ2| . ‖θ‖42 . λ2
1, Var(Z2) .

‖θ‖62 ‖θ‖33
‖θ‖1

. λ3
1

|EZ3| = 0, Var(Z3) . ‖β ◦ θ‖42 ‖θ‖62 . |λ̃|2λ3
1

|EZ4| . ‖β ◦ θ‖22 ‖θ‖22 . |λ̃|λ1, Var(Z4) .
‖β ◦ θ‖42 ‖θ‖62
‖θ‖1

. |λ̃|2λ2
1

|EZ5| . ‖β ◦ θ‖42 ‖θ‖22 . |λ̃|2λ1, Var(Z5) .
‖β ◦ θ‖82 ‖θ‖62
‖θ‖21

. |λ̃|4λ1

|EZ6| .
‖β ◦ θ‖42 ‖θ‖42
‖θ‖21

. |λ̃|2, Var(Z6) .
‖β ◦ θ‖82 ‖θ‖42
‖θ‖21

. |λ̃|4.

Using Corollary E.1 and the fact that |λ̃|/
√
λ1 →∞ under the alternative hypothesis, we have

|EUb| . |λ̃|2λ1, (E.27)

and

Var(Ub) . |λ̃|2λ3
1. (E.28)

The terms below appear in Lemma G.9 of Jin et al. (2021c). The bounds on T1 and F are quoted
directly from Jin et al. (2021c) since they do not depend on Õmega.
Lemma E.10. Under the alternative hypothesis, it holds that

|ET1| ≤
‖θ‖62
‖θ‖21

. λ1, Var(T1) .
‖θ‖62 ‖θ‖33
‖θ‖1

. λ3
1

|ET2| ≤
‖β ◦ θ‖22 ‖θ‖42
‖θ‖21

. |λ̃|, Var(T2) .
‖β ◦ θ‖42 ‖θ‖82
‖θ‖21

. |λ̃|2λ2
1

|EF | . ‖θ‖42 . λ2
1, Var(F ) .

‖θ‖10
2

‖θ‖21
. λ3

1

Using Corollary E.1 and the fact that |λ̃|/
√
λ1 →∞ under the alternative hypothesis, we have

|EUc| . λ2
1, (E.29)

and

Var(Uc) . |λ̃|2λ2
1. (E.30)

Using Corollary E.1 and that |λ̃|/
√
λ1 →∞, the inequalities (E.25)–(E.30) imply Theorem E.3.

E.3.3 REAL SGNQ

Our first lemma regarding real SgnQ plays the part of Lemma G.11 from Jin et al. (2021c).
Lemma E.11. Under the previous assumptions, as n→∞,
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• Under the null hypothesis, |E[Q∗ − Q̃∗]| = o(‖θ‖42) and Var(Q∗ − Q̃∗) = o(‖θ‖82).

• Under the alternative hypothesis, if |λ̃|/
√
λ1 → ∞, then |E[Q∗ − Q̃∗]| . |λ̃|2λ1 and

Var(Q∗ − Q̃∗) . |λ̃|2λ3
1.

The following lemma plays the part of Lemma G.12 from Jin et al. (2021c).
Lemma E.12. Under the previous assumptions, as n→∞,

• Under the null hypothesis, |E[Q− Q̃∗]| = o(‖θ‖42) and Var(Q− Q̃∗) = o(‖θ‖82).

• Under the alternative hypothesis, if |λ̃|/
√
λ1 → ∞, then |E[Q − Q̃∗]| . λ2

1 + |λ̃|3 and
Var(Q− Q̃∗) . λ4

1.

E.4 PROOFS OF LEMMAS E.7–E.12

E.4.1 PROOF STRATEGY

First we describe our method of proof for Lemmas E.7–E.10. We borrow the following strategy from
Jin et al. (2021c). Let T denote a term appearing in one of the Lemmas E.7–E.10, which takes the
general form

T =
∑

i1,...,im∈R
ci1,...,imGi1,...,im

where

• m = O(1),
• R is a subset of [n]m,

• ci1,...,im =
∏

(s,s′)∈A Γ
(s,s′)
is,is′

is a nonstochastic coefficient where A ⊂ [m] × [m] and

Γ(s,s′) ∈ {Ω̃, η∗1T, η1T,11T}, and
• Gi1,...,im =

∏
(s,s′)∈BWis,is′ where B ⊂ [m]× [m].

Since we are studying signed quadrilateral, one can simply take m = 4 above, though we wish to
state the lemma in a general way.

Define a canonical upper bound Γ
(s,s′)
is,is′

(up to constant factor) on Γ
(s,s′)
is,is′

as follows:

Γ
(s,s′)
is,is′

=


βisθisβis′ θis′ if Γ(s,s′) = Ω̃,

θis if Γ(s,s′) ∈ {η∗1T, η1T}
1 otherwise.

(E.31)

Define

ci1,...,im =
∏

(s,s′)∈A

Γ
(s,s′)
is,is′

. (E.32)

By Corollary E.1 and Lemma E.6,

|ci1,...im | . ci1,...,im .

In Jin et al. (2021c), each term T is decomposed into a sum of L = O(1) terms:

T =

L∑
`=1

T (L) =

L∑
`=1

∑
i1,...,im∈R(`)

ci1,...,imGi1,...,im . (E.33)

In our analysis below and that of Jin et al. (2021c), an upper bound ET on |ET | is obtained by

|ET | ≤
L∑
`=1

|ET (`)| ≤
L∑
`=1

∑
i1,...,im∈R(`)

|ci1,...,im | · |EGi1,...,im |
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≤
L∑
`=1

∑
i1,...,im∈R(`)

ci1,...,im · |EGi1,...,im |

=: ET . (E.34)

Also an upper bound VarT on VarT is obtained by

VarT ≤ L
L∑
`=1

Var(T (`))

≤ L
L∑
`=1

∑
i1,...,im∈R(`)

i′1,...,i
′
m∈R

(`)

|ci1,...,imci′1,...,i′m | ·
∣∣Cov

(
Gi1,...,im , Gi′1,...,i′m

)∣∣

≤ L
L∑
`=1

∑
i1,...,im∈R(`)

i′1,...,i
′
m∈R

(`)

ci1,...,im · ci′1,...,i′m ·
∣∣Cov

(
Gi1,...,im , Gi′1,...,i′m

)∣∣
=: VarT . (E.35)

In Lemmas E.7–E.10, all stated upper bounds are obtained in this manner and are therefore upper
bounds on ET and VarT .

Note that the definition of ET and VarT depends on the specific decomposition (E.33) of T given in
Jin et al. (2021c). Refer to the proofs below for details including the explicit decomposition. Again
we remark that the difference between our setting and Jin et al. (2021c) is that the canonical upper
bound on |Ω̃ij | used in Jin et al. (2021c) is of the form αθiθj rather than the inequality βiθiβjθj
which is required for our purposes.

The formalism above immediately yields the following useful fact that allows us to transfer bounds
between terms that have similar structures.
Lemma E.13. Suppose that

T =
∑

i1,...,im∈R
ci1,...,imGi1,...,im ,

T ∗ =
∑

i1,...,im∈R
c∗i1,...,imGi1,...,im ,

where

|ci1,...,im | . c∗i1,...,im
Then

|ET | . E[T ∗]

and

VarT . VarT ∗.

In the second part of our analysis, we show that Lemmas E.11 and E.12 follow from Lemmas
E.7–E.10 and repeated applications of Lemma E.13.

E.4.2 PROOF OF LEMMA E.7

The bounds for X1 follow immediately from Jin et al. (2021c).

In (Jin et al., 2021c, Supplement, pg.37) it is shown that EX2 = 0, and

Var(X2) = 2
∑

i,j,k,`(dist.)

Ω̃2
ij ·Var(WjkWk`W`i).
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Thus by (E.1) and (E.2),

Var(X2) .
∑

i,j,k,`(dist.)

Ω̃2
ij ·Var(WjkWk`W`i) .

∑
i,j,k,`

β2
i θ

2
i β

2
j θ

2
j · ΩjkΩk`Ω`i

.
∑
i,j,k,`

β2
i θ

2
i β

2
j θ

2
j · θjθ2

kθ
2
` θi = ‖β ◦ θ‖42 ‖θ‖42

In (Jin et al., 2021c, Supplement, pg. 38) it is shown that EX3 = 0 and

Var(X3) .
∑

i,k,`(dist)

( ∑
j /∈{i,k,`}

Ω̃ijΩ̃jk
)2 ·Var(Wk`W`i).

By (E.20) and (E.24), ( ∑
j /∈{i,k,`}

Ω̃ijΩ̃jk
)2 ≤ β2

i θ
2
i β

2
kθ

2
k ‖β ◦ θ‖42

Thus by (E.1) and (E.2),

Var(X3) .
∑
i,k,`

β2
i θ

2
i β

2
kθ

2
k ‖β ◦ θ‖42 · Ωk`Ω`i .

∑
i,k,`

β2
i θ

3
i β

2
kθ

3
k ‖β ◦ θ‖42 · θ2

` . ‖β ◦ θ‖82 ‖θ‖22.

In (Jin et al., 2021c, Supplement, pg. 38) it is shown that EX4 = 0 and

Var(X4) .
∑

i,j,k,`(dist.)

Ω̃2
ijΩ̃

2
k` ·Var(WjkW`i).

By (E.1) and (E.20),

Var(X4) .
∑
i,j,k,`

β2
i θ

2
i β

2
j θ

2
jβ

2
kθ

2
kβ

2
` θ

2
` · θjθkθ`θi . ‖β ◦ θ‖82.

In (Jin et al., 2021c, Supplement, pg. 39) it is shown that EX5 = 0 and

Var(X5) = 2
∑
i<`

( ∑
j,k/∈{i,`}
j 6=k

Ω̃ijΩ̃jkΩ̃k`
)2 ·Var(W`i).

We have ∣∣ ∑
j,k/∈{i,`}
j 6=k

Ω̃ijΩ̃jkΩ̃k`
∣∣ . βiθi‖β ◦ θ‖42β`θ`.

Thus by (E.1) and (E.2),

Var(X5) .
∑
i,`

(
βiθi‖β ◦ θ‖42β`θ`

)2 · θ`θi . ‖β ◦ θ‖12
2 .

Note that X6 is a nonstochastic term. Mimicking (Jin et al., 2021c, Supplement, pg. 39), we have by
(E.24),

|X6 − λ̃4| .
∑

i,j,k,`(not dist.)

β2
i θ

2
i β

2
j θ

2
jβ

2
kθ

2
kβ

2
` θ

2
` .

∑
i,j,k

β2
i θ

2
i β

2
j θ

2
jβ

4
kθ

4
k . ‖β ◦ θ‖62 . |λ̃|3.

This completes the proof.

E.4.3 PROOF OF LEMMA E.8

The bounds on Y1 carry over directly from (Jin et al., 2021c, Lemma G.5).
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In (Jin et al., 2021c, Supplement, pg. 43) it is shown that EY2 = 0. To study Var(Y2), we write
Y = Y2a + Y2b + Y2c where as in (Jin et al., 2021c, Supplement, pg. 43), we define

Y2 = − 1√
v

∑
i,j,k,`(dist)

s6=j

ηiΩ̃jkWjsWk`W`i

− 1√
v

∑
i,k,`(dist)

( ∑
j /∈{i,k,`}

ηjΩ̃jk

)
W 2
i`Wk`

− 1√
v

∑
i,k,`(dist)
s/∈{i,`}

( ∑
j /∈{i,k,`}

ηjΩ̃jk

)
WisWk`W`i

≡ Y2a + Y2b + Y2c. (E.36)

There it is shown that

Var(Y2a) .
1

v

∑
ijk`s

∣∣ηiΩ̃jk + ηiΩ̃sk + ηkΩ̃ji + ηkΩ̃si
∣∣2 ·Var(WjsWk`W`i).

We have by (E.22)∣∣ηiΩ̃jk + ηiΩ̃sk + ηkΩ̃ji + ηkΩ̃si
∣∣ . θiβjθjβkθk + θiβsθsβkθk + θkβjθjβiθi + θkβsθsβiθi.

Hence by (E.1), (E.2), and (E.18),

Var(Y2a) .
1

v

∑
ijk`s

(
θiβjθjβkθk + θiβsθsβkθk + θkβjθjβiθi + θkβsθsβiθi

)2 · θjθsθkθ2
` θi

.
‖β ◦ θ‖42‖θ‖42
‖θ‖1

Next, in (Jin et al., 2021c, Supplement, pg. 43), it is shown that

Var(Y2b) .
1

v

∑
ik`(dist)
i′k′`′(dist)

|αik`αi′k′`′ | · E[W 2
i`Wk`,W

2
i′`′Wk′`′ ]

where αik` =
∑
j /∈{i,k,`} ηjΩ̃jk. By (E.24),

|αik`| . ‖β ◦ θ‖2‖θ‖2 θk.
By (E.1), (E.18), the inequalities above, and the casework in (Jin et al., 2021c, Supplement, pg.44)
on E[W 2

i`Wk`,W
2
i′`′Wk′`′ ],

Var(Y2b) .
1

v

∑
ik`(dist)
i′k′`′(dist)

‖β ◦ θ‖22‖θ‖22θkθk′E[W 2
i`Wk`,W

2
i′`′Wk′`′ ]

.
‖β ◦ θ‖22‖θ‖22

v

(∑
ik`

θiθ
3
kθ

2
` +

∑
ik`i′

θiθ
3
kθ

3
` θi′ +

∑
ik`

θ2
i θ

2
kθ

2
`

)
. ‖β ◦ θ‖22‖θ‖62.

Next, in (Jin et al., 2021c, Supplement, pg.44) it is shown that

Var(Y2c) .
1

v

∑
ik`(dist)
s/∈{i,`}

β2
ik`Var(WisWk`W`i)

where αik` is defined the same as with Y2b. Thus

Var(Y2c) .
1

v

∑
ik`(dist)
s/∈{i,`}

‖β ◦ θ‖22‖θ‖22θ2
k · θkθ2

` θs .
‖β ◦ θ‖22‖θ‖82
‖θ‖1

.
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Combining the results for Y2a, Y2b, Y2c gives the claim for Var(Y2).

In (Jin et al., 2021c, Supplement, pg.45) it is shown that EY3 = 0 and the decomposition

Y3 = − 2√
v

∑
i,j,k,`(dist)

ηiΩ̃k`W
2
jkW`i −

2√
v

∑
i,j,k,`(dist)
s/∈{j,k}

ηiΩ̃k`WjsWjkW`i

≡ Y3a + Y3b, (E.37)

is introduced. There it is shown that

Var(Y3a) =
4

v

∑
i,j,k,`(dist)

i′,j′,k′,`′(dist)

(ηiΩ̃k`ηi′Ω̃k′`′) · E[W 2
jkW`iW

2
j′k′W`′i′ ].

Using (E.1), (E.2) (E.24) and the casework in (Jin et al., 2021c, Supplement, pg.45),

Var(Y3a) .
1

‖θ‖21

(∑
ijk`

[β2
kβ

2
` + βiβjβkβ`]θ

2
i θ

2
j θ

2
kθ

2
` +

∑
ijk`j′k′

βkβ
2
`βk′θ

3
i θjθ

2
kθ

3
` θj′θ

2
k′

)

.
‖β ◦ θ‖42‖θ‖42
‖θ‖21

+ ‖β ◦ θ‖42‖θ‖42 . ‖β ◦ θ‖42‖θ‖42

Similar to the study of Y2a we have

Var(Y3b) .
1

v

∑
ijk`s

(
θiβkθkβ`θ` + θ`βkθkβiθi + θiβsθsβ`θ` + θ`βsθsβiθi

)2 ·Var(WsjWjkW`i)

.
1

v

∑
ijk`s

(
θiβkθkβ`θ` + θ`βkθkβiθi + θiβsθsβ`θ` + θ`βsθsβiθi

)2 · θsθ2
j θkθ`θi

.
‖β ◦ θ‖42‖θ‖42
‖θ‖1

.

Combining the bounds on Var(Y3a) and Var(Y3b) yields the desired bound on Var(Y3).

Following (Jin et al., 2021c, Supplement, pg.46) we obtain the decomposition

Y4 = − 1√
v

∑
i,j,`(dist)
s 6=j

( ∑
k/∈{i,j,`}

ηiΩ̃jkΩ̃k`

)
WjsW`i −

1√
v

∑
i,`(dist)
s6=i

( ∑
j,k/∈{i,`}

ηjΩ̃jkΩ̃k`

)
WisW`i

≡ Y4a + Y4b.

First we study Y4a, which is shown in Jin et al. (2021c) to have zero mean and satisfy the following:

Var(Y4a) .
1

v

∑
ij`(dist)
s6=j

α2
ij`Var(WjsW`i)

where αij` =
∑
k/∈{i,j,`} ηiΩ̃jkΩ̃k`. Simlar to previous arguments, we have

Var(Y4a) .
1

‖θ‖21

∑
ij`s

θ2
i (βjθj)

2(β`θ`)
2‖β ◦ θ‖42 · θiθjθ`θs

.
‖β ◦ θ‖42‖θ‖22
‖θ‖1

.

Next we study Y4b using the decomposition

Y4b = − 1√
v

∑
i,`(dist)

βi`W
2
`i −

1√
v

∑
i,`(dist)
s/∈{i,`}

βi`WisW`i ≡ Ỹ4b + Y ∗4b.
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from (Jin et al., 2021c, Supplement,pg.47). There it is shown that only EỸ4b is nonzero and

|EỸ4b| .
1

‖θ‖1

∑
i,`

|αi`|θiθ`.

where αi,` =
∑
j,k/∈{i,`} ηjΩ̃jkΩ̃k`. In our case, we derive from (E.24),

|αi`| . β`θ`‖β ◦ θ‖32‖θ‖2.

Using similar arguments from before,

|EỸ4b| .
1

‖θ‖1

∑
i`

β`θ`‖β ◦ θ‖32‖θ‖2 · θiθ` . ‖β ◦ θ‖42‖θ‖22.

Now we study Var(Y4b). Using the bound above on |αi`| and direct calculations,

Var(Ỹ4b) =
2

v

∑
i,`(dist)

α2
i` ·Var(W 2

i`) .
1

‖θ‖21

∑
i,`

β2
` θ

2
`‖β ◦ θ‖62‖θ‖22 · θiθ` .

‖β ◦ θ‖82‖θ‖22
‖θ‖1

,

Var(Y ∗4b) ≤
1

v

∑
i,`(dist)
s/∈{i,`}

α2
i` ·Var(WisW`i) ≤

1

‖θ‖21

∑
i,`,s

β2
` θ

2
`‖β ◦ θ‖62‖θ‖22 · θ2

i θ`θs ≤
‖β ◦ θ‖82‖θ‖42
‖θ‖1

.

Combining the results above yields the required bounds on EY4b and Var(Y4b).

In (Jin et al., 2021c, Supplement, pg.48) it is shown that EY5 = 0 and

Var(Y5) .
1

v

∑
j,k,`(dist)

s 6=j

α2
jk` ·Var(WjsWk`)

where

αjk` ≡
∑

i/∈{j,k,`}

ηiΩ̃jkΩ̃`i.

We have using (E.20), (E.24) and the triangle inequality,

|αjk`| . ‖θ‖22(βjθj)(βkθk)(β`θ`).

Thus, by similar arguments to before,

Var(Y5) .
1

‖θ‖21

∑
jk`

(
‖θ‖42(βjθj)

2(βkθk)2(β`θ`)
2
)
θjθsθkθ` .

‖θ‖42‖β ◦ θ‖62
‖θ‖1

.

Next, in (Jin et al., 2021c, Supplement, pg.49) it is shown that EY6 = 0 and

Var(Y6) =
8

v

∑
j,s(dist)

( ∑
i,k,`(dist)/∈{j}

ηiΩ̃jkΩ̃k`Ω̃`i

)2

·Var(Wjs).

We have using (E.20), (E.24) and the triangle inequality,∣∣ ∑
i,k,`(dist)/∈{j}

ηiΩ̃jkΩ̃k`Ω̃`i
∣∣ . βjθj‖β ◦ θ‖52‖θ‖2.

Thus

Var(Y6) .
1

‖θ‖21

∑
j,s

(
β2
j θ

2
j‖β ◦ θ‖10

2 ‖θ‖22
)
θjθs .

‖β ◦ θ‖12
2 ‖θ‖22

‖θ‖1
.

This completes the proof.
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E.4.4 PROOF OF LEMMA E.9

The bounds on Z1 and Z2 carry over directly from (Jin et al., 2021c, Lemma G.7) since neither term
depends on Ω̃.

We consider Z3. In (Jin et al., 2021c, Supplement, pg.61), the decomposition

Z3 =
∑
i,j,k,`
(dist)

ηi(ηj − η̃j)ηj(ηk − η̃k)Ω̃k`W`i +
∑
i,j,k,`
(dist)

ηi(ηj − η̃j)2ηkΩ̃k`W`i

+
∑
i,j,k,`
(dist)

(ηi − η̃i)η2
j (ηk − η̃k)Ω̃k`W`i +

∑
i,j,k,`
(dist)

(ηi − η̃i)ηj(ηj − η̃j)ηkΩ̃k`W`i

≡ Z3a + Z3b + Z3c + Z3d. (E.38)

is introduced. We study each term separately.

In (Jin et al., 2021c, Supplement, pg.61) it is shown that EZ3a = 0 and the decomposition

Z3a =
1

v

∑
i,j,k,`(dist)

αijk`W
2
jkW`i +

1

v

∑
i,j,k,`(dist)

s6=j,t 6=k,(s,t)6=(k,j)

αijk`WjsWktW`i

≡ Z̃3a + Z∗3a.

is introduced, where αijk` ≡ ηiηjΩ̃k`. Then

Var(Z̃3a) .
∑

ijk`(dist)
i′j′k′`′(dist)

|αijk`||αi′k′j′`′ | · |Cov(W 2
jkW`i,W

2
j′k′W`′i′)|.

Using the casework in (Jin et al., 2021c, Supplement, pg.62), (E.1), (E.2), and (E.24), we obtain

Var(Z̃3a) .
1

v2

(∑
ijk`

[β2
kβ

2
` + βkβ`βiβj ]θ

3
i θ

3
j θ

3
kθ

3
` +

∑
ijk`j′k′

βkβ
2
`βk′θ

3
i θ

2
j θ

2
kθ

3
` θ

2
j′θ

2
k′
)

.
1

‖θ‖41

(
‖β ◦ θ‖42‖θ‖22 + ‖β ◦ θ‖42‖θ‖42 + ‖β ◦ θ‖42‖θ‖82

)
.
‖β ◦ θ‖42‖θ‖82
‖θ‖41

.

Similarly,

Var(Z∗3a) .
1

v2

( ∑
ijk`st

β2
kβ

2
` θ

3
i θ

3
j θ

3
kθ

3
` θsθt +

∑
ijk`st

[β2
kβ`βj + βkβ

2
`βj ]θ

2
i θ

3
j θ

3
kθ

3
` θ

2
sθt

)

.
1

‖θ‖41

(
‖β ◦ θ‖42‖θ‖42‖θ‖21 + ‖β ◦ θ‖42‖θ‖62‖θ‖1

)
.
‖β ◦ θ‖42‖θ‖42
‖θ‖21

.

It follows that

Var(Z3a) . ‖β ◦ θ‖42.

Next, in (Jin et al., 2021c, Supplement, pg.63), it is shown that EZ3b] = 0 and the decomposition

Z3b =
1

v

∑
i,j,`(dist)
s6=j

βij`W
2
jsW`i +

1

v

∑
i,j,`(dist)

s,t(dist)/∈{j}

βij`WjsWjtW`i ≡ Z̃3b + Z∗3b.

is given. Using (Jin et al., 2021c, Supplement, pg.63) we have

Var(Z̃3b) .
∑

i,j,`,s,t
i′,j′,`′,s′,t′

|αij`||αi′j′`′ ||Cov(W 2
jsW`i ,W

′2
j′sW`′i′)|.

where

αij` =
∑

k/∈{i,j,`}

ηiηkΩ̃k`.

30



Published as a conference paper at ICLR 2023

Using (E.24), (E.18), and similar arguments to before,

|αij`| . θi(β`θ`)‖θ‖22.

By the casework in (Jin et al., 2021c, Supplement, pg.63), (E.1), and (E.2),

Var(Z̃3b) .
1

v2

(∑
ij`s

β2
` ‖θ‖42θ3

i θjθ
3
` θs +

∑
ij`sj′s′

β2
` ‖θ‖42θ3

i θjθ
3
` θsθj′θs′ +

∑
ij`s

β`βj‖θ‖42θ2
i θ

2
j θ

2
` θ

2
s

)

.
1

‖θ‖41

(
‖β ◦ θ‖22‖θ‖62‖θ‖1 + ‖β ◦ θ‖22‖θ‖62‖θ‖31 + ‖β ◦ θ‖22‖θ‖82

)
.
‖β ◦ θ‖22‖θ‖62
‖θ‖1

.

By a similar argument,

Var(Z∗3b) .
‖β ◦ θ‖22‖θ‖82
‖θ‖1

.

Hence by (E.2),

Var(Z3b) .
‖β ◦ θ‖22‖θ‖82
‖θ‖1

. ‖β ◦ θ‖22‖θ‖62.

For Z3c, in (Jin et al., 2021c, Supplement, pg.64), it is shown that EZ3c = 0 and the decomposition

Z3c =
1

v

∑
i,k,`(dist)

t6=k

αik`W
2
i`Wkt +

1

v

∑
i,k,`(dist)
s/∈{i,`},t6=k

αik`WisWktW`i ≡ Z̃3c + Z∗3c.

is given. We have

|αik`| = |
∑

j /∈{i,k,`}

η2
j Ω̃k`| . (βkθk)(β`θ`)‖θ‖22.

By the casework in (Jin et al., 2021c, Supplement, pg.65)

Var(Z̃3c) .
∑

ik`(dist)
s/∈{i,`},t6=k

∑
i′k′`′(dist)

s′ /∈{i′,`′},t′ 6=k′

|αik`αi′k′`′ ||EW 2
i`WktW

2
i′`′Wk′t′ |

.
‖θ‖42
‖θ‖41

∑
ik`t

[
β2
kβ

2
` θiθ

3
kθ

3
` θt + β2

kβ`βiθ
2
i θ

3
kθ

2
` θt + βkβ

2
`βtθ

1
i θ

2
kθ

3
` θ

2
t

+ βkβ`βtβiθ
2
i θ

2
kθ

2
` θ

2
t + β2

kβ`βiθ
2
i θ

3
kθ

2
` θ

1
t + βkβ

2
`βtθiθ

2
kθ

3
` θ

2
t + β2

kβ
2
` θiθ

3
kθ

3
` θt

]
+
∑

ik`ti′`′

[
β2
kβ`β`′θiθ

3
kθ

2
` θtθi′θ

2
`′ + βkβ`β`′βtθiθ

2
kθ

2
` θ

2
t θi′θ

2
`′

]

We have by (E.2) and (E.24) that∑
ik`t

[
β2
kβ

2
` θiθ

3
kθ

3
` θt+β

2
kβ`βiθ

2
i θ

3
kθ

2
` θt + βkβ

2
`βtθ

1
i θ

2
kθ

3
` θ

2
t + βkβ`βtβiθ

2
i θ

2
kθ

2
` θ

2
t

+ β2
kβ`βiθ

2
i θ

3
kθ

2
` θ

1
t + βkβ

2
`βtθiθ

2
kθ

3
` θ

2
t + β2

kβ
2
` θiθ

3
kθ

3
` θt

]
. ‖β ◦ θ‖42‖θ‖21 + ‖β ◦ θ‖22‖θ‖42‖θ‖1 + ‖β ◦ θ‖42‖θ‖42 + ‖β ◦ θ‖42‖θ‖21

and∑
ik`ti′`′

[
β2
kβ`β`′θiθ

3
kθ

2
` θtθi′θ

2
`′ + βkβ`β`′βtθiθ

2
kθ

2
` θ

2
t θi′θ

2
`′

]
. ‖β ◦ θ‖22‖θ‖42‖θ‖31 + ‖β ◦ θ‖42‖θ‖42‖θ‖21
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Thus

Var(Z̃3c) .
‖θ‖42
‖θ‖41

(
‖β ◦ θ‖42‖θ‖21 + ‖β ◦ θ‖22‖θ‖42‖θ‖31 + ‖β ◦ θ‖42‖θ‖42‖θ‖21

)
.
‖β ◦ θ‖42‖θ‖82
‖θ‖1

To study Z∗3c, in (Jin et al., 2021c, Supplement, pg.65) the decomposition

Z∗3c =
1

v

∑
i,k,`(dist)

αik`W
2
ikW`i +

1

v

∑
i,k,`(dist)

s/∈{i,`},t6=k,(s,t)6=(k,i)

αik`WisWktW`i ≡ Z∗3c,1 + Z∗3c,2

is used, where recall αik` =
∑
j /∈{i,k,`} η

2
j Ω̃k`. Using a similar argument as before, we have

Var(Z∗3c,1) .
‖θ‖42
‖θ‖41

(∑
ik`

β2
kβ

2
` θ

2
i θ

3
kθ

3
` +

∑
ik`k′

[βkβk′β
2
` + βkβk′βiβ`]θ

3
i θ

2
kθ

3
` θ

2
k′

)
.
‖θ‖42
‖θ‖41

(
‖β ◦ θ‖42‖θ‖22 + ‖θ‖42‖β ◦ θ‖22‖θ‖33 + ‖β ◦ θ‖42‖θ‖42

)
.
‖β ◦ θ‖42‖θ‖10

2

‖θ‖41
.

We omit the argument for Z∗3c,2 as it is similar and simply state the bound:

Var(Z∗3c,2) .
‖β ◦ θ‖42‖θ‖62
‖θ‖21

.

Combining the results for Z̃3c and Z∗3c, we have

Var(Z3c) .
‖β ◦ θ‖42‖θ‖82
‖θ‖1

. ‖β ◦ θ‖42‖θ‖62.

Next we study Z3d, which is defined as

Z3d =
∑
i,j,k,`
(dist)

(ηkηjΩ̃j`)(ηi − η̃i)(ηk − η̃k)W`i =
∑

i,k,`(dist)
s6=i,t6=k

αik`WisWktW`i

where αik` =
∑
j /∈{i,k,`} ηkηjΩ̃j`. We see that EZ3d = 0. To study the variance, we use a similar

decomposition to that of Z3c. Write

Z3d =
1

v

∑
i,k,`(dist)

t 6=k

αik`W
2
i`Wkt +

1

v

∑
i,k,`(dist)
s/∈{i,`},t6=k

αik`WisWktW`i ≡ Z̃3d + Z∗3d.

Mimicking the arguments for Z̃3c and Z∗3c we obtain

Var(Z̃3d) .
‖β ◦ θ‖42‖θ‖62
‖θ‖1

,

and

Var(Z∗3d) .
‖β ◦ θ‖42‖θ‖10

2

‖θ‖41
.

Hence

Var(Z3d) .
‖β ◦ θ‖42‖θ‖62
‖θ‖1

.

Combining the results for Z3a, . . . , Z3d, we have

EZ3 = 0, Var(Z3) . ‖β ◦ θ‖42‖θ‖62.

We proceed to study Z4. In (Jin et al., 2021c, Supplement,pg.67) the following decomposition is
given:

Z4 = 2
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jkηk(η` − η̃`)W`i
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+
∑

i,j,k,`(dist)

ηi(ηj − η̃j)Ω̃jk(ηk − η̃k)η`W`i

+
∑

i,j,k,`(dist)

(ηi − η̃i)ηjΩ̃jkηk(η` − η̃`)W`i

≡ Z4a + Z4b + Z4c. (E.39)

There it is shown that EZ4a = 0. To study Var(Z4a), we note that Z4a and Z3c have similar structure.
In particular we have the decomposition

Z4a =
1

v

∑
i,k,`(dist)

t 6=k

αik`W
2
i`Wkt +

1

v

∑
i,k,`(dist)
s/∈{i,`},t6=k

αik`WisWktW`i ≡ Z̃4a + Z∗4a.

where αik` =
∑
j /∈{i,k,`} ηjη`Ω̃k`. Mimicking the argument for Z̃3c we have

Var(Z̃4a) .
‖β ◦ θ‖22‖θ‖22
‖θ‖41

(∑
ik`t

[
β2
k(θiθ

2
kθ

2
` θt + θ2

i θ
2
kθ

2
` θt) + βkβtθiθ

2
kθ

2
` θ

2
t + βkβtθ

2
i θ

2
kθ

2
` θ

2
t

+ β2
kθ

2
i θ

2
kθ

2
` θt + βkβtθiθ

2
kθ

2
` θ

2
t

]
+
∑

ik`ti′`′

[
β2
kθiθ

2
kθ

2
` θtθi′θ

2
`′ + βkβtθiθ

2
kθ

2
` θ

2
t θi′θ

2
`′
])

.
‖β ◦ θ‖22‖θ‖22
‖θ‖41

(
‖β ◦ θ‖22‖θ‖22‖θ‖1 + ‖β ◦ θ‖22‖θ‖42‖θ‖1 + ‖β ◦ θ‖22‖θ‖42‖θ‖31+

‖β ◦ θ‖22‖θ‖42‖θ‖21
)
.
‖β ◦ θ‖42‖θ‖62
‖θ‖1

.

For Z̃∗4a we adapt the decomposition used for Z̃∗4c:

Z∗4a =
1

v

∑
i,k,`(dist)

αik`W
2
ikW`i +

1

v

∑
i,k,`(dist)

s/∈{i,`},t6=k,(s,t)6=(k,i)

αik`WisWktW`i =: Z∗4a,1 + Z∗4a,2

Mimicking the argument for Z∗3c,1 and Z∗3c,2, we have

Var(Z∗4a,1) .
‖β ◦ θ‖22‖θ‖22
‖θ‖41

(∑
ik`

β2
kθ

2
i θ

2
kθ

2
` +

∑
ik`k′

βkβk′θ
2
i θ

2
kθ

2
` θ

2
k′
)
.
‖β ◦ θ‖42‖θ‖82
‖θ‖41

,

and

Var(Z∗4a,2) .
‖β ◦ θ‖22‖θ‖22
‖θ‖41

∑
ik`st

[
β2
kθ

2
i θ

2
kθ

2
` θsθt + βkβtθ

2
i θ

2
kθ

2
` θsθ

2
t + βkβsθ

2
i θ

2
kθ

2
` θ

2
sθ

2
t

]
.
‖θ‖42‖θ‖62
‖θ‖21

.

It follows that

Var(Z4a) .
‖β ◦ θ‖42‖θ‖62
‖θ‖1

.

Next we study

Z4b =
∑
i,j,k,`
(dist)

ηi(ηj − η̃j)Ω̃jk(ηk − η̃k)η`W`i =
∑
i,j,k,`
(dist)

αijk`(ηj − η̃j)(ηk − η̃k)W`i

=
1

v

∑
i,j,k,`(dist)
s6=j,t 6=k

αijk`WjsWktW`i
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where αijk` = ηiη`Ω̃jk. Mimicking the study of Z3a, we have the decomposition

Z4b =
1

v

∑
i,j,k,`(dist)

αijk`W
2
jkW`i +

1

v

∑
i,j,k,`(dist)

s6=j,t 6=k,(s,t)6=(k,j)

αijk`WjsWktW`i

≡ Z̃4b + Z∗4b.

Further we have, using (E.1), (E.2), (E.20), and (E.24), we have

Var(Z̃4b) .
1

‖θ‖41

(∑
ijk`

[
[β2
j β

2
k + βjβkβ`βi]θ

3
i θ

3
j θ

3
kθ

3
`

]
+

∑
ijk`j′k′

βjβkβj′βk′θ
3
i θ

2
j θ

2
kθ

3
` θ

2
j′θ

2
k′

)

.
1

‖θ‖41

(
‖β ◦ θ‖42‖θ‖42 + ‖β ◦ θ‖42‖θ‖82

)
.
‖β ◦ θ‖42‖θ‖82
‖θ‖41

.

Similarly,

Var(Z∗4b) .
1

‖θ‖41

( ∑
ijk`st

[
β2
j β

2
kθ

2
i θ

2
j θ

2
kθ

2
` θsθt + β2

kβ`βjθ
2
i θ

3
j θ

3
kθ

3
` θ

2
sθt + βjβ

2
kβ`θ

2
i θ

3
j θ

3
kθ

3
` θ

2
sθt

)

.
‖β ◦ θ‖42‖θ‖42
‖θ‖21

.

It follows that

Var(Z4b) .
‖β ◦ θ‖42‖θ‖42
‖θ‖21

.

We study Z4c using the decomposition

Z4c =
1

v

∑
i,`(dist)

βi`W
3
`i +

2

v

∑
i,`(dist)
s/∈{i,`}

βi`WisW
2
`i +

1

v

∑
i,`(dist)

s/∈{i,`},t/∈{`,i}

βi`WisW`tW`i

≡ Z̃4c + Z∗4c + Z†4c.

from (Jin et al., 2021c, Supplement, pg.68). Only

Z̃4c =
1

v

∑
i,`(dist)

αi`W
3
`i

has nonzero mean, where αi` =
∑
j,k(dist)/∈{i,`} ηjηkΩ̃jk. By (E.20)

|αi`| . ‖β ◦ θ‖22‖θ‖22.

Hence

|EZ̃4c| .
1

‖θ‖21

∑
i`

‖β ◦ θ‖22‖θ‖22θiθ` . ‖β ◦ θ‖22‖θ‖22.

Except for when (i, `) = (`, i), the summands of Z̃4c are uncorrelated. Thus

Var(Z̃4c) .
1

‖θ‖41

∑
i`

‖β ◦ θ‖42‖θ‖42θiθ` .
‖β ◦ θ‖42‖θ‖42
‖θ‖21

.

Applying the casework from (Jin et al., 2021c, Supplement, pg.68),

Var(Z∗4c) .
∑

i,`(dist)
s/∈{i,`}

∑
i′,`′(dist)
s′ /∈{i′,`′}

|αi`αi′`′ |Cov(WisW
2
`i,Wi′s′W

2
`′i′)|

.
1

‖θ‖41

(∑
i`s

‖β ◦ θ‖42‖θ‖42θ2
i θ`θs +

∑
i`s`′

‖β ◦ θ‖42‖θ‖42‖θ‖42θ3
i θ`θsθ`′

)
34



Published as a conference paper at ICLR 2023

.
‖β ◦ θ‖42‖θ‖42
‖θ‖41

(
‖θ‖22‖θ‖21 + ‖θ‖22‖θ‖31

)
.
‖β ◦ θ‖42‖θ‖62
‖θ‖1

.

Next, in (Jin et al., 2021c, Supplement, pg.69) it is shown that

Var(Z†4c) .
1

v2

∑
i,`(dist)

s/∈{i,`},t/∈{`,i}

α2
i` ·Var(WisW`tW`i)

Thus

Var(Z†4c) .
∑
i`s

‖β ◦ θ‖42‖θ‖42θ2
i θ

2
` θsθt .

‖β ◦ θ‖42‖θ‖82
‖θ‖21

.

Combining the results for Z̃4c, Z
∗
4c, Z

†
4c, we have

|EZ4c| . ‖β ◦ θ‖22‖θ‖22, Var(Z4c) .
‖β ◦ θ‖42‖θ‖82
‖θ‖1

.

Combining the results for Z4a, Z4b, and Z4c, we have

|EZ4| . ‖β ◦ θ‖22‖θ‖22, Var(Z4) .
‖β ◦ θ‖42‖θ‖62
‖θ‖1

To study Z5, we use the decomposition

Z5 = 2
∑

i,j,k,`(dist)

ηi(ηj − η̃j)ηj(ηk − η̃k)Ω̃k`Ω̃`i +
∑

i,j,k,`(dist)

ηi(ηj − η̃j)2ηkΩ̃k`Ω̃`i

+
∑

i,j,k,`(dist)

(ηi − η̃i)η2
j (ηk − η̃k)Ω̃k`Ω̃`i

≡ Z5a + Z5b + Z5c. (E.40)

from (Jin et al., 2021c, Supplement, pg. 70). We further decompose Z5a as in (Jin et al., 2021c,
Supplement, pg.70):

Z5a =
2

v

∑
j,k(dist)

αjkW
2
jk +

2

v

∑
j,k(dist)
s6=j,t 6=k,

(s,t) 6=(k,j)

αjkWjsWkt ≡ Z̃5a + Z∗5a.

where αjk =
∑
i,`(dist)/∈{j,k} ηiηjΩ̃k`Ω̃`i. Note that by (E.20) and (E.24),

|αjk| .
∑
i`

(βkθk)(β`θ`)
2(βiθi) . θj(βkθk)‖β ◦ θ‖32‖θ‖2.

Only Z̃5a has nonzero mean. By (E.1) and (E.2),

|EZ5a| = |EZ̃5a| .
1

‖θ‖21

∑
jk

θj(βkθk)‖β ◦ θ‖32‖θ‖2 · θjθk .
‖β ◦ θ‖42‖θ‖42
‖θ‖21

.

Now we study the variance of Z5a. In (Jin et al., 2021c, Supplement, pg.70) it is shown that

Var(Z̃5a) .
1

v2

∑
j,k(dist)

α2
jk Var(W 2

jk)

Var(Z∗5a) .
1

v2

∑
j,k(dist)
s6=j,t 6=k,

(s,t)6=(k,j)

α2
jk Var(WjsWkt).

Thus by (E.2) and (E.24),

Var(Z̃5a) .
‖β ◦ θ‖62‖θ‖42
‖θ‖41

(∑
jk

θ3
jβ

2
kθ

3
k

)
.
‖β ◦ θ‖82‖θ‖62
‖θ‖41
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Var(Z∗5a) .
‖β ◦ θ‖62‖θ‖42
‖θ‖41

(∑
jk

θ2
jβ

2
kθ

2
k · θjθsθkθt

)
.
‖β ◦ θ‖82‖θ‖62
‖θ‖21

.

We conclude that

Var(Z5a) .
‖β ◦ θ‖82‖θ‖62
‖θ‖21

.

Next we study Z5b using the decomposition

Z5b =
1

v

∑
j,s(dist)

αjW
2
js +

1

v

∑
j

s,t(dist)/∈{j}

αjWjsWjt ≡ Z̃5b + Z∗5b.

from (Jin et al., 2021c, Supplement, pg.71), where αj =
∑
i,k,`(dist)/∈{j} ηiηkΩ̃k`Ω̃`i. Note that by

(E.2) and (E.20),

|αj | .
∑
ik`

θiθk(βkθk)(β`θ`)
2(βiθi) . ‖β ◦ θ‖42‖θ‖22.

Only Z̃5b above has nonzero mean, and we have

|EZ5b| = |EZ5b| .
‖β ◦ θ‖42‖θ‖22
‖θ‖21

∑
j,s

θjθs . ‖β ◦ θ‖42‖θ‖22.

Similarly for the variances,

Var(Z̃5b) .
‖β ◦ θ‖82‖θ‖42
‖θ‖41

∑
js

θjθs .
‖β ◦ θ‖82‖θ‖42
‖θ‖21

Var(Z∗5b) .
‖β ◦ θ‖82‖θ‖42
‖θ‖41

∑
jst

θ2
j θsθt .

‖β ◦ θ‖82‖θ‖62
‖θ‖21

,

and it follows that

Var(Z5b) .
‖β ◦ θ‖82‖θ‖62
‖θ‖21

.

Next we study

Z5c =
∑
i,j,k,`
(dist)

(ηj − η̃j)η2
i (ηk − η̃k)Ω̃k`Ω̃`j =

∑
i,j,k,`
(dist)

(η2
i Ω̃k`Ω̃`j)(ηj − η̃j)(ηk − η̃k)

=
1

v

∑
i,j,k,`(dist)
s6=j,t 6=k

(η2
i Ω̃k`Ω̃`j)WjsWkt =

1

v

∑
j,k(dist)
s6=j,t 6=k

αjkWjsWkt

where αjk =
∑

i,`(dist)
i,`/∈{j,k}

η2
i Ω̃k`Ω̃`j . Note that by (E.20) and (E.18) ,

|αjk| .
∑
i`

θ2
i (βkθk)(β`θ`)

2(βjθj) . (βjθj)(βkθk)‖θ‖22‖β ◦ θ‖22. (E.41)

We further decompose

Z5c =
1

v

∑
j,k

(dist)

αjkW
2
jk +

1

v

∑
j,k(dist)
s,t/∈{j,k}

αjkWjsWkt ≡ Z̃5c + Z∗5c.

Only the first term has nonzero mean. It follows that

|EZ5c| = |EZ̃5c| .
‖θ‖22‖β ◦ θ‖22
‖θ‖21

∑
j,k,s,t

(βjθj)(βkθk) · θjθk .
‖β ◦ θ‖42‖θ‖42
‖θ‖21

.
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Note that Z5c and Z5a have the same form, but with a different setting of the coefficient αjk.
Mimicking the variance bounds for Z5a we obtain the bound

Var(Z5c) .
‖β ◦ θ‖82‖θ‖42
‖θ‖21

.

Combining the previous bounds we obtain

|EZ5| . ‖β ◦ θ‖42‖θ‖22, Var(Z5) .
‖β ◦ θ‖82‖θ‖62
‖θ‖21

.

Next we study Z6 = Z6a + Z6b as defined in (Jin et al., 2021c, Supplement, pg.72), where

Z6a =
∑
i,j,k,`
(dist)

(ηiη`Ω̃j`Ω̃ki)(ηj − η̃j)(ηk − η̃k) =
1

v

∑
j,k(dist)
s6=j,t 6=k

α
(6a)
jk WjsWkt

Z6b = 2
∑
i,j,k,`
(dist)

(ηiη`Ω̃jkΩ̃`i)(ηj − η̃j)(ηk − η̃k) =
1

v

∑
j,k(dist)
s 6=j,t 6=k

α
(6b)
jk WjsWkt

and

α
(6a)
jk =

∑
i,`(dist)
i,`/∈{j,k}

ηiη`Ω̃jkΩ̃`i

α
(6b)
jk =

∑
i,`(dist)
i,`/∈{j,k}

ηiη`Ω̃j`Ω̃ki.

Thus Z6a and Z6b take the same form as Z5c, but with a different setting of αjk. Note that by (E.24)
and similar arguments from before,

max(|α(6a)
jk |, |α

(6b)
jk |) . (βjθj)(βkθk)‖θ‖22‖β ◦ θ‖22,

which is the same as the upper bound on |αjk| associated to Z5c given in (E.41). It follows that

|EZ6| .
‖β ◦ θ‖42‖θ‖42
‖θ‖21

, Var(Z6) .
‖β ◦ θ‖82‖θ‖42
‖θ‖21

.

We have proved all claims in Lemma E.9.

E.4.5 PROOF OF LEMMA E.10

The terms T1 and F do not depend on Ω̃, and thus the claimed bounds transfer directly from (Jin et al.,
2021c, Lemma G.9). Thus we focus on T2. We use the decomposition T2 = 2(T2a+T2b+T2c+T2d)
from (Jin et al., 2021c, Supplement, pg.73) where

T2a =
∑

i1,i2,i3,i4(dist)

ηi2ηi3ηi4
[
(ηi1 − η̃i1)(ηi2 − η̃i2)(ηi3 − η̃i3)

]
· Ω̃i4i1 ,

T2b =
∑

i1,i2,i3,i4(dist)

ηi2η
2
i3

[
(ηi1 − η̃i1)(ηi2 − η̃i2)(ηi4 − η̃i4)

]
· Ω̃i4i1 ,

T2c =
∑

i1,i2,i3,i4(dist)

ηi1ηi3ηi4
[
(ηi2 − η̃i2)2(ηi3 − η̃i3)

]
· Ω̃i4i1 ,

T2d =
∑

i1,i2,i3,i4(dist)

ηi1η
2
i3

[
(ηi2 − η̃i2)2(ηi4 − η̃i4)

]
· Ω̃i4i1 .

We study each term separately.
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For T2a, in (Jin et al., 2021c, Supplement, pg.89), we have the decomposition T2a = Xa1 +Xa2 +
Xa3 +Xb where

Xa1 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j3 6=i3

ηi2ηi3ηi4W
2
i1i2Wi3j3Ω̃i1i4 ,

Xa2 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2 6=i2

ηi2ηi3ηi4W
2
i1i3Wi2j2Ω̃i1i4 ,

Xa3 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j1 6=i1

ηi2ηi3ηi4W
2
i2i3Wi1j1Ω̃i1i4 ,

Xb = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j1,j2,j3

jk 6=i`,k,`=1,2,3

ηi2ηi3ηi4Wi1j1Wi2j2Wi3j3Ω̃i1i4 .

There it is shown that ET2a = 0. Further it is argued that

Var(Xa1) = EX2
a1

=
1

v3

∑
i1,i2,i3,i4(dist)
i′1,i
′
2,i
′
3,i
′
4(dist)

∑
j3,j
′
3

j3 6=i3,j′3 6=i
′
3

ηi2ηi3ηi4ηi′2ηi′3ηi′4E[W 2
i1i2Wi3j3W

2
i′1i
′
2
Wi′3j

′
3
]Ω̃i1i4Ω̃i′1i′4

(E.42)
≡ VA + VB + VC ,

where the terms VA, VB , VC correspond to the contributions from cases A,B,C, respectively, de-
scribed in (Jin et al., 2021c, Supplement, pg.89). Concretely, the nonzero terms of (E.42) fall into
three cases:

Case A. {i1, i2} = {i′3, j′3} and {i3, j3} = {i′1, i′2}
Case B. {i3, j3} = {i′3, j′3} and {i1, i2} = {i′1, i′2}
Case C. {i3, j3} = {i′3, j′3} and {i1, i2} 6= {i′1, i′2}.

Here VA, VB , and VC are defined to be the contributions from each case.

Applying (E.2), (E.22), and (E.20),

|ηi2ηi3ηi4ηi′2ηi′3ηi′4Ω̃i1i4Ω̃i′1i′4 | . θi2θi3θi4θi′2θi′3θi′4(βi1θi1)(βi4θi4)(βi′1θi′1)(βi′4θi′4)

. θi2θi3θi4θi′2θi′3θi′4(βi1θi1)(βi4θi4)θi′1(βi′4θi′4). (E.43)

Note that using the last inequality reduces the required casework while still yielding a good enough
bound. Mimicking the casework in Case A of (Jin et al., 2021c, Supplement, pg.90) and applying
(E.24), we have

VA .
1

‖θ‖61

∑
i1,i2,i3
i4,i
′
4,j3

∑
b1,b2

(b1+b2=1)

βi1βi4βi′4θ
2+b1
i1

θ2+b2
i2

θ3
i3θ

2
j3θ

2
i4θ

2
i′4

.
1

‖θ‖61

(
‖β ◦ θ‖32‖θ‖32‖θ‖42‖θ‖33 + ‖β ◦ θ‖32‖θ‖32‖θ‖22‖θ‖63

)
.
‖β ◦ θ‖32‖θ‖92
‖θ‖61

.

Similarly, applying (E.43) along with (E.22), (E.20), and (E.24) yields

VB .
1

‖θ‖61

∑
i1,i2,i3
i4,i
′
4,j3

∑
c1,c2

(c1+c2=1)

βi1βi4βi′4θ
3
i1θ

3
i2θ

2+c1
i3

θ1+c2
j3

θ2
i2θ

2
i′4
.
‖β ◦ θ‖32‖θ‖72
‖θ‖51

.

and

VC .
∑

i1,i2,i3,i4
i′1,i
′
2,i
′
4,j3

∑
c1,c2

(c1+c2=1)

βi1βi4βi′1βi′4θ
2
i1θ

2
i2θ

2+c1
i3

θ1+c2
j3

θ2
i4θ

2
i′1
θ2
i′2
θ2
i′4
.
‖β ◦ θ‖42‖θ‖10

2

‖θ‖51
.
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Thus

Var(Xa1) . ‖β ◦ θ‖42.
The arguments for Xa2 and Xa3 are similar, and the corresponding VA, VB , VC satisfy the same
inequalities above. We simply state the bounds:

EXa2
= EXa3 = 0, Var(Xa2) . ‖β ◦ θ‖42, Var(Xa3) . ‖β ◦ θ‖42.

Next we consider Xb as defined in (Jin et al., 2021c, Supplement, pg.89). We have EXb = 0 and
focus on the variance. In (Jin et al., 2021c, Supplement, pg.91) it is shown that

Var(Xb) = E[X2
b ]

= v−3
∑

i1,i2,i3,i4(dist)
i′1,i
′
2,i
′
3,i
′
4(dist)

∑
j3,j
′
3

j3 6=i3,j′3 6=i
′
3

ηi2ηi3ηi4ηi′2ηi′3ηi′4E[Wi1j1Wi2j2Wi3j3Wi′1j
′
1
Wi′2j

′
2
Wi′3j

′
3
]Ω̃i1i4Ω̃i′1i′4 ,

Note that

E[Wi1j1Wi2j2Wi3j3Wi′1j
′
1
Wi′2j

′
2
Wi′3j

′
3
] 6= 0

if and only if the two sets of random variables {Wi1j1 ,Wi2j2 ,Wi3j3} and {Wi′1j
′
1
,Wi′2j

′
2
,Wi′3j

′
3
} are

identical. Applying (E.22) and (E.20),

|ηi2ηi3ηi4ηi′2ηi′3ηi′4Ω̃i1i4Ω̃i′1i′4 | . θi2θi3θi4θi′2θi′3θi′4(βi1θi1)(βi4θi4)θi′1(βi′4θi′4)

. βi1βi4βi′4θ
1+a1
i1

θa2
j1
θ1+a3
i2

θa4
j2
θ1+a5
i3

θa6
j3
θ2
i4θ

2
i′4

if E[Wi1j1Wi2j2Wi3j3Wi′1j
′
1
Wi′2j

′
2
Wi′3j

′
3
] 6= 0, where ai ∈ {0, 1} and

∑6
i=1 ai = 3. Thus by (E.1),

(E.2), and (E.24),

Var(Xb) . max
a

1

‖θ‖61

∑
i1,i2,i3,i4
i′4,j1,j2,j3

βi1βi4βi′4θ
2+a1
i1

θ1+a2
j1

θ2+a3
i2

θ1+a4
j2

θ2+a5
i3

θ1+a6
j3

θ2
i4θ

2
i′4

.
1

‖θ‖61

∑
i1,i2,i3,i4
i′4,j1,j2,j3

βi1βi4βi′4θ
2
i1θ

1
j1θ

2
i2θ

1
j2θ

2
i3θ

1
j3θ

2
i4θ

2
i′4

.
‖β ◦ θ‖32‖θ‖32‖θ‖42‖θ‖31

‖θ‖61
.
‖β ◦ θ‖32‖θ‖72
‖θ‖31

. ‖β ◦ θ‖32‖θ‖2.

Combining the results for Xa1, Xa2, Xa3 and Xb, we conclude that

ET2a = 0, Var(T2a) . ‖β ◦ θ‖42‖θ‖2.

The argument for T2b is similar to the one for T2a, so we simply state the results:

ET2b = 0, Var(T2b) . ‖β ◦ θ‖42‖θ‖2.

Next we study T2c, providing full details for completeness. Using the definition of T2c in (Jin et al.,
2021c, Supplement, pg.92), we have the following decomposition by careful casework.

Ya = − 1

v3/2

∑
i1,i2,i3,i4(dist)

ηi1ηi3ηi4W
3
i2i3Ω̃i1i4 ,

Yb1 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
(i2,j2)6=(j3,i3)
j2 6=i2,j3 6=i3

ηi1ηi3ηi4W
2
i2j2Wi3j3Ω̃i1i4 ,

Yb2 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
`2 /∈{i3,i2}

ηi1ηi3ηi4W
2
i2i3Wi2`2Ω̃i1i4 ,

Yb3 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2 /∈{i3,i2}

ηi1ηi3ηi4W
2
i2i3Wi2j2Ω̃i1i4 ,
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Yc = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
j2,`2,j3

j2 6=i2,`2 6=i2,j3 6=i3
j2 6=`2,(i2,j2)6=(j3,i3),(i2,`2) 6=(j3,i3)

ηi1ηi3ηi4Wi2j2Wi2`2Wi3j3Ω̃i1i4 .

Note that, by the change of variables `2 → j2, it holds that Yb2 = Yb3.

The only term with nonzero mean is Ya. We have by (E.18), (E.20), (E.22), and (E.24) that

|EYa| .
1

‖θ‖31

∑
i1,i2,i3,i4

θi1θi3θi4(βi1θi1)(βi4θi4) · |EW 3
i2i3 | .

1

‖θ‖31

∑
i1,i2,i3,i4

βi1βi4θ
2
i1θi2θ

2
i3θ

2
i4

.
‖β ◦ θ‖22‖θ‖42
‖θ‖21

.

For the variance, by independence of {Wij}i>j , (E.2), (E.20), and (E.24), we have

Var(Ya) .
1

‖θ‖61

∑
i2,i3

(∑
i1,i4

θi1θi3θi4(βi1θi1)(βi4θi4)
)2
θi2θi3 .

1

‖θ‖61

∑
i2,i3

‖β ◦ θ‖42‖θ‖42θi2θ2
i3

.
‖β ◦ θ‖42‖θ‖62
‖θ‖51

.

For Yb1, Yb2, Yb3 we make note of the identity

W 2
ij = (1− 2Ωij)Wij + Ωij(1− Ωij) ≡ AijWij +Bij . (E.44)

Write

Yb1 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
(i2,j2)6=(j3,i3)
j2 6=i2,j3 6=i3

ηi1ηi3ηi4Ai2j2Wi2j2Wi3j3Ω̃i1i4

− 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
(i2,j2)6=(j3,i3)
j2 6=i2,j3 6=i3

ηi1ηi3ηi4Bi2j2Wi3j3Ω̃i1i4 ≡ Yb1,A + Yb1,B .

By similar arguments from before, and noting that |Ai2,j2 | . 1,

Var(Yb1,A) .
1

‖θ‖61

∑
(i2,j2)6=(j3,i3)
j2 6=i2,j3 6=i3

(∑
i1,i4

ηi1ηi3ηi4(βi1θi1)(βi4θi4)

)2

|EWi2j2Wi3j3 |

.
1

‖θ‖61

∑
i2,j2,i3,j3

(∑
i1,i4

ηi1ηi3ηi4(βi1θi1)(βi4θi4)

)2

· θi2θj2θi3θj3

.
1

‖θ‖61

∑
i2,j2,i3,j3

‖β ◦ θ‖42‖θ‖42θi2θj2θ3
i3θj3 .

‖β ◦ θ‖42‖θ‖62
‖θ‖31

.

Similarly, using |Bij | . Ωij . θiθj ,

Var(Yb1,B) .
1

‖θ‖61

∑
i3,j3(dist)

( ∑
i1,i2,i4,j2

ηi1ηi3ηi4θi2θj2(βi1θi1)(βi4θi4)

)2

· |EWi3,j3 |

.
1

‖θ‖61

∑
i3,j3

‖β ◦ θ‖42‖θ‖42‖θ‖21θ3
i3θj3 .

‖β ◦ θ‖42‖θ‖62
‖θ‖31

.

It follows that

Var(Yb1) .
‖β ◦ θ‖42‖θ‖62
‖θ‖31

To control Var(Yb2), again we invoke the identity (E.44) to write

Yb2 = − 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
`2 /∈{i3,i2}

ηi1ηi3ηi4Ai2i3Wi2i3Wi2`2Ω̃i1i4
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− 1

v3/2

∑
i1,i2,i3,i4(dist)

∑
`2 /∈{i3,i2}

ηi1ηi3ηi4Bi2i3Wi2`2Ω̃i1i4 ≡ Yb2,A + Yb2,B .

Using similar arguments from before, we have

Var(Yb2,A) .
1

‖θ‖61

∑
i2i3`2

(∑
i1i4

θi1θi3θi4(βi1θi1)(βi4θi4)

)2

θ2
i2θi3θ`2

.
1

‖θ‖61

∑
i2i3`2

‖β ◦ θ‖42‖θ‖42θ2
i2θ

3
i3θ`2 .

‖β ◦ θ‖42‖θ‖82
‖θ‖51

.

Furthermore,

Var(Yb2,B) .
1

‖θ‖61

∑
i2,`2

( ∑
i1,i3,i4

θi1θi3θi4(βi1θi1)(βi4θi4)θi2θi3

)2

θi2θ`2

.
1

‖θ‖61

∑
i2,`2

‖β ◦ θ‖42‖θ‖82θ3
i2θ`2 .

‖β ◦ θ‖42‖θ‖10
2

‖θ‖51
.

Since Yb2 = Yb3, we have

Var(Yb2) = Var(Yb3) .
‖β ◦ θ‖42‖θ‖10

2

‖θ‖51
.

Next we study the variance of Y2c. For notational brevity, let

Ri1,i2,i3 =

{
(j2, `2, j3)

∣∣∣∣j2 6= i2, `2 6= i2, j3 6= i3j2 6= `2, (i2, j2) 6= (j3, i3), (i2, `2) 6= (j3, i3)

}
.

We have

Var(Yc)

=
1

v3

∑
i1,i2,i3,i4(dist)
i′1,i
′
2,i
′
3,i
′
4(dist)

∑
(j2,`2,j3)∈Ri1,i2,i3
(j′2,`

′
2,j
′
3)∈Ri′1,i′2,i′3

ηi1ηi3ηi4Ω̃i1i4ηi′1ηi′3ηi′4Ω̃i′1i′4E
[
Wi2j2Wi2`2Wi3j3Wi′2j

′
2
Wi′2`

′
2
Wi′3j

′
3

]
(E.45)

Note that Wi2j2Wi2`2Wi3j3 and Wi′2j
′
2
Wi′2`

′
2
Wi′3j

′
3

above are uncorrelated unless{
{i2, j2}, {i2, `2}, {i3, j3}

}
=

{
{i′2, j′2}, {i′2, `′2}, {i′3, j′3}

}
.

In particular, i′3 ∈ {i2, j2, `2, i3, j3} when the above holds. Hence for some choice of ai ∈ {0, 1}
with

∑5
i=1 ai = 1,

Var(Yc) .
1

v3

∑
i1,i2,i3,i4

i′1,i
′
4,j2,`2,j3

θa1
i2
θa2
j2
θa3

`2
θa4
i3
θa5
j3
· θi1θi3θi4(βi1θi1)(βi4θi4)θi′1θi′4(βi′1θi′1)(βi′4θi′4) · θ2

i2θj2θ`2θi3θj3

.
1

v3

∑
i1,i2,i3,i4

i′1,i
′
4,j2,`2,j3

βi1βi′1βi4βi′4θ
2
i1θ

2+a1
i2

θ2+a4
i3

θ2
i4θ

2
i′1
θ2
i′4
θ1+a2
j2

θ1+a3

`2
θ1+a5
j3

.
1

v3

∑
i1,i2,i3,i4

i′1,i
′
4,j2,`2,j3

βi1βi′1βi4βi′4θ
2
i1θ

2
i2θ

2
i3θ

2
i4θ

2
i′1
θ2
i′4
θ1
j2θ

1
`2θ

1
j3 .

‖β ◦ θ‖42‖θ‖82
‖θ‖31

,

where in the last line we apply (E.2) followed by (E.24). Combining our results above we have

|ET2c| .
‖β ◦ θ‖22‖θ‖42
‖θ‖21

, Var(T2c) .
‖β ◦ θ‖42‖θ‖62
‖θ‖21

.
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The argument for T2d is omitted since it is similar to the one for T2c (note that the two terms have
similar structure). The results are stated below.

|ET2d| .
‖β ◦ θ‖22‖θ‖42
‖θ‖21

, Var(T2d) .
‖β ◦ θ‖42‖θ‖82
‖θ‖31

.

Combining the results for T2a, . . . , T2d yields

|ET2| .
‖β ◦ θ‖22‖θ‖42
‖θ‖21

, Var(T2) .
‖β ◦ θ‖42‖θ‖82
‖θ‖21

,

as desired.

E.4.6 PROOF OF LEMMA E.11

As before, we only need to analyze the alternative hypothesis. In (Jin et al., 2021c, Supplement,pg.103)
it is shown that Q̃∗ −Q∗ is a sum of O(1) terms of the form

Y =
( v
V

)Nr̃ ∑
i,j,k,`(dist)

aijbjkck`d`i, (E.46)

where a, b, c, d ∈ {Ω̃,W, δ,−(η̃−η)(η̃−η)T}, and Nr̃ denotes the number of a, b, c, d that are equal
to −(η̃ − η)(η̃ − η)T.

Similarly, let NW denote the number of a, b, c, d that are equal to W , and NΩ̃ and Nδ are similarly
defined. Write

Y =
( v
V

)m
X, where X =

∑
i,j,k,`(dist)

aijbjkck`d`i. (E.47)

Note that for this proof, we do not need the explicit decomposition: we only will use the fact that
Q̃∗−Q∗ is a sum ofO(1) terms. At times, we refer to these terms of the form Y composing Q̃∗−Q∗
as post-expansion sums.

In Jin et al. (2021c) it is shown that 4 ≥ Nr̃ ≥ 1 for every post-expansion sum (note that the upper
bound of 4 is trivial). It turns out that this is the only constraint on the post-expansion sums; so we
need to analyze every single possible combination of nonnegative integers (NΩ̃, NW , Nδ, Nr̃) where
their sum is 4 and Nr̃ ≥ 1 and then arrange a, b, c, d ∈ {Ω̃,W, δ,−(η̃ − η)(η̃ − η)T} in all possible
ways according to (E.46). This leads to a total of 34 possibilities, all of which are shown in Table 1
reproduced from Jin et al. (2021c).

In (Jin et al., 2021c, Supplement,pg.103) it is shown that

|E[Y −X]| ≤ o(‖θ‖−2
2 )
√

E[X2] + o(1), and

Var(Y ) ≤ 2Var(X) + o(‖θ‖−4
2 )E[X2] + o(1). (E.48)

The proof of (E.48) in Jin et al. (2021c) only requires the heterogeneity assumptions (E.2)–(E.4) and
the following two conditions. First, we must have the tail inequality

P(|V − v| > t) ≤

{
2 exp

(
− C1

‖θ‖21
t2
)
, when xn‖θ‖1 ≤ t ≤ ‖θ‖21,

2 exp
(
−C2t

)
, when t > ‖θ‖21.

(E.49)

Second, it must hold that |Y −X| is dominated by a polynomial in V . See (Jin et al., 2021c, Lemma
G.10 and G.11) for further details. Both conditions are satisfied in our setting, so indeed (E.48)
applies.

Let NW and Nδ denote the number of a, b, c, d that are equal to W and δ, respectively. As in Jin et al.
(2021c), we define

N∗W = NW +Nδ + 2Nr̃ (E.50)

and divide our analysis into parts based on this parameter.
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Table 1: Note: This table and caption reproduced from Table G.4 of Jin et al. (2021c).The 34 types
of the 175 post-expansion sums for (Q̃∗n −Q∗n).

Notation # Nr̃ (Nδ, NΩ̃, NW ) Examples N∗W
R1 4 1 (0, 0, 3)

∑
i,j,k,`(dist) r̃ijWjkWk`W`i 5

R2 8 1 (0, 1, 2)
∑
i,j,k,`(dist) r̃ijΩ̃jkWk`W`i 4

R3 4
∑
i,j,k,`(dist) r̃ijWjkΩ̃k`W`i 4

R4 8 1 (0, 2, 1)
∑
i,j,k,`(dist) r̃ijΩ̃jkΩ̃k`W`i 3

R5 4
∑
i,j,k,`(dist) r̃ijΩ̃jkWk`Ω̃`i 3

R6 4 1 (0, 3, 0)
∑
i,j,k,`(dist) r̃ijΩ̃jkΩ̃k`Ω̃`i 2

R7 8 1 (1, 0, 2)
∑
i,j,k,`(dist) r̃ijδjkWk`W`i 5

R8 4
∑
i,j,k,`(dist) r̃ijWjkδk`W`i 5

R9 8 1 (1, 1, 1)
∑
i,j,k,`(dist) r̃ijδjkΩ̃k`W`i 4

R10 8
∑
i,j,k,`(dist) r̃ijΩ̃jkWk`δ`i 4

R11 8
∑
i,j,k,`(dist) r̃ijWjkδk`Ω̃`i 4

R12 8 1 (1, 2, 0)
∑
i,j,k,`(dist) r̃ijδjkΩ̃k`Ω̃`i 3

R13 4
∑
i,j,k,`(dist) r̃ijΩ̃jkδk`Ω̃`i 3

R14 8 1 (2, 0, 1)
∑
i,j,k,`(dist) r̃ijδjkδk`W`i 5

R15 4
∑
i,j,k,`(dist) r̃ijδjkWk`δ`i 5

R16 8 1 (2, 1, 0)
∑
i,j,k,`(dist) r̃ijδjkδk`Ω̃`i 4

R17 4
∑
i,j,k,`(dist) r̃ijδjkΩ̃k`δ`i 4

R18 4 1 (3, 0, 0)
∑
i,j,k,`(dist) r̃ijδjkδk`δ`i 5

R19 4 2 (0, 0, 2)
∑
i,j,k,`(dist) r̃ij r̃jkWk`W`i 6

R20 2
∑
i,j,k,`(dist) r̃ijWjkr̃k`W`i 6

R21 4 2 (0, 2, 0)
∑
i,j,k,`(dist) r̃ij r̃jkΩ̃k`Ω̃`i 4

R22 2
∑
i,j,k,`(dist) r̃ijΩ̃jkr̃k`Ω̃`i 4

R23 4 2 (2, 0, 0)
∑
i,j,k,`(dist) r̃ij r̃jkδk`δ`i 6

R24 2
∑
i,j,k,`(dist) r̃ijδjkr̃k`δ`i 6

R25 8 2 (0, 1, 1)
∑
i,j,k,`(dist) r̃ij r̃jkΩ̃k`W`i 5

R26 4
∑
i,j,k,`(dist) r̃ijΩ̃jkr̃k`W`i 5

R27 8 2 (1, 1, 0)
∑
i,j,k,`(dist) r̃ij r̃jkδk`Ω̃`i 5

R28 4
∑
i,j,k,`(dist) r̃ijδjkr̃k`Ω̃`i 5

R29 8 2 (1, 0, 1)
∑
i,j,k,`(dist) r̃ij r̃jkδk`W`i 6

R30 4
∑
i,j,k,`(dist) r̃ijδjkr̃k`W`i 6

R31 4 3 (0, 0, 1)
∑
i,j,k,`(dist) r̃ij r̃jkr̃k`W`i 7

R32 4 3 (0, 1, 0)
∑
i,j,k,`(dist) r̃ij r̃jkr̃k`Ω̃`i 6

R33 4 3 (1, 0, 0)
∑
i,j,k,`(dist) r̃ij r̃jkr̃k`δ`i 7

R34 1 4 (0, 0, 0)
∑
i,j,k,`(dist) r̃ij r̃jkr̃k`r̃`i 8

Analysis of terms with N∗W ≤ 4 For convenience, we reproduce Table G.5 from Jin et al. (2021c)
in Table 2. The left column of Table 2 lists all of the terms with N∗W ≤ 4 , where note that factors of
( vV )Nr̃ are removed. In the right column terms are listed that have similar structure to those on the
left. Precisely, a term in the left column has the form

X =
∑

i1,...,im∈R
ci1,...,imGi1,...,im ,

and its adjacent term on the right column has the form

X∗ =
∑

i1,...,im∈R
c∗i1,...,imGi1,...,im ,
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Table 2: For clarity, this table and caption are borrowed from Table G.5 of Jin et al. (2021c).The 14
types of post-expansion sums with N∗W ≤ 4. The right column displays the post-expansion sums
defined before which have similar forms as the post-expansion sums in the left column. For some
terms in the right column, we permute (i, j, k, `) in the original definition for ease of comparison
with the left column. (In all expressions, the subscript “i, j, k, `(dist)” is omitted.)

Expression Expression
R2

∑
(η̃i − ηi)(η̃j − ηj)Ω̃jkWk`W`i Z1b

∑
(η̃i − ηi)ηj(η̃j − ηj)ηkWk`W`i

R3

∑
(η̃i − ηi)(η̃j − ηj)WjkΩ̃k`W`i Z2a

∑
η`(η̃j − ηj)Wjkηk(η̃i − ηi)Wi`

R4

∑
(η̃i − ηi)(η̃j − ηj)Ω̃jkΩ̃k`W`i Z3d

∑
(η̃i − ηi)ηj(η̃j − ηj)ηkΩ̃k`W`i

R5

∑
(η̃i − ηi)(η̃j − ηj)Ω̃jkWk`Ω̃`i Z4b

∑
Ω̃ij(η̃j − ηj)ηkWk`η`(η̃i − ηi)

R6

∑
(η̃i − ηi)(η̃j − ηj)Ω̃jkΩ̃k`Ω̃`i Z5a

∑
ηi(η̃j − ηj)Ω̃jkΩ̃k`η`(η̃i − ηi)

R9

∑
(η̃i − ηi)(η̃j − ηj)2ηkΩ̃k`W`i T1d

∑
η`(η̃j − ηj)2η2

k(η̃i − ηi)Wi`∑
(η̃i − ηi)(η̃j − ηj)ηj(η̃k − ηk)Ω̃k`W`i T1a

∑
η`(η̃j − ηj)ηj(η̃k − ηk)ηk(η̃i − ηi)Wi`

R10

∑
(η̃i − ηi)2(η̃j − ηj)Ω̃jkWk`η` T1c

∑
(η̃j − ηj)ηkWk`η`(η̃i − ηi)2ηj∑

(η̃i − ηi)(η̃j − ηj)Ω̃jkWk`(η̃` − η`)ηi T1a

∑
(η̃j − ηj)ηkWk`(η̃` − η`)ηi(η̃i − ηi)ηj

R11

∑
(η̃i − ηi)(η̃j − ηj)Wjkηk(η̃` − η`)Ω̃`i T1a

∑
(η̃i − ηi)ηkWkj(η̃j − ηj)η`(η̃` − η`)ηi∑

(η̃i − ηi)(η̃j − ηj)Wjk(η̃k − ηk)η`Ω̃`i T1b

∑
ηi(η̃k − ηk)Wkj(η̃j − ηj)η2

` (η̃i − ηi)
R12

∑
(η̃i − ηi)(η̃j − ηj)2ηkΩ̃k`Ω̃`i T2c

∑
ηi(η̃j − ηj)2ηkΩ̃k`η`(η̃i − ηi)∑

(η̃i − ηi)(η̃j − ηj)ηj(η̃k − ηk)Ω̃k`Ω̃`i T2a

∑
ηi(η̃j − ηj)ηj(η̃k − ηk)Ω̃k`η`(η̃i − ηi)

R13

∑
(η̃i − ηi)(η̃j − ηj)Ω̃jk(η̃k − ηk)η`Ω̃`i T2b

∑
ηi(η̃j − ηj)Ω̃jk(η̃k − ηk)η2

` (η̃i − ηi)
R16

∑
(η̃i − ηi)(η̃j − ηj)2ηk(η̃k − ηk)η`Ω̃`i Fb

∑
ηi(η̃j − ηj)2ηk(η̃k − ηk)η2

` (η̃i − ηi)∑
(η̃i − ηi)(η̃j − ηj)2η2

k(η̃` − η`)Ω̃`i Fb
∑
ηi(η̃j − ηj)2η2

k(η̃` − η`)η`(η̃i − ηi)∑
(η̃i − ηi)(η̃j − ηj)ηj(η̃k − ηk)2η`Ω̃`i Fb

∑
ηi(η̃j − ηj)ηj(η̃k − ηk)2η2

` (η̃i − ηi)∑
(η̃i − ηi)(η̃j − ηj)ηj(η̃k − ηk)ηk(η̃` − η`)Ω̃`i Fa

∑
ηi(η̃j − ηj)ηj(η̃k − ηk)ηk(η̃` − η`)η`(η̃i − ηi)

R17

∑
(η̃i − ηi)(η̃j − ηj)ηj(η̃k − ηk)Ω̃k`(η̃` − η`)ηi Fa

∑
ηi(η̃j − ηj)ηj(η̃k − ηk)ηk(η̃` − η`)η`(η̃i − ηi)∑

(η̃i − ηi)(η̃j − ηj)2ηkΩ̃k`(η̃` − η`)ηi Fb
∑
ηi(η̃j − ηj)2η2

k(η̃` − η`)η`(η̃i − ηi)∑
(η̃i − ηi)2(η̃j − ηj)2ηkΩ̃k`η` Fc

∑
η`(η̃i − ηi)2η2

k(η̃j − ηj)2η`
R21

∑
(η̃i − ηi)(η̃j − ηj)2(η̃k − ηk)Ω̃k`Ω̃`i Fb

∑
ηi(η̃j − ηj)2ηk(η̃k − ηk)η2

` (η̃i − ηi)
R22

∑
(η̃i − ηi)(η̃j − ηj)Ω̃jk(η̃k − ηk)(η̃` − η`)Ω̃`i Fa

∑
ηi(η̃j − ηj)ηj(η̃k − ηk)ηk(η̃` − η`)η`(η̃i − ηi)

analogous to T and T ∗ from Lemma E.13. By inspection, we see that for each term in the left column,
the canonical upper bounds ci1,...,im and c∗i1,...,im on the coefficients ci1,...,im and c∗i1,...,im satisfy

ci1,...,im . c
∗
i1,...,im

.

Recall that these canonical upper bounds were defined in Section E.4.1. Thus the conclusion of
Lemma E.13 applies, and we have for each term X in the left column of Table 2,

|EX| . EX∗, Var(X) . Var(X∗).

As discussed in Section E.4.1, the upper bounds on the means and variances in Lemmas E.7–E.10
are in fact upper bounds on EX∗ and Var(X∗). By (E.48) and Lemmas E.7–E.10, for every post-
expansion sum Y with N∗W ≤ 4 we have

|EY | ≤ |EX|+ o(‖θ‖−2
2 )
√

E[X2] = |EX|+ o(‖θ‖−2
2 )
√

E[X]2 + Var(X)

. λ̃2λ1 + o(‖θ‖−2
2 ) ·

√
λ̃4λ2

1 + λ4
1 + λ̃6 + λ̃2λ3

1

. λ̃2λ1 + λ2
1 + λ̃3 + |λ̃|λ3/2

1 = o(λ̃4)

by the assumption that |λ̃|/
√
λ1 →∞. Similarly,

Var(Y ) . Var(X) + o(‖θ‖−4
2 )E[X2] = Var(X) + o(‖θ‖−4

2 )(E[X]2 + Var(X))

. λ4
1 + λ̃6 + λ̃2λ3

1 + o(‖θ‖−4
2 ) ·

(
λ̃4λ2

1 + λ4
1 + λ̃6 + λ̃2λ3

1

)
. o(λ̃8).

Analysis of terms with N∗W > 4 Recall that

η =
1√
v

(EA)1n, η̃ =
1√
v
A1n, v = 1′n(EA)1n
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.

Define

Gi = η̃i − ηi. (E.51)

Among the post-expansion sums in Table (1) satisfying N∗W = 5, only R7, R8, and R25–R28 depend
on Ω̃. Each of these terms falls into one of the types

J ′5 =
∑

i,j,k,`(dist)

Ω̃jk(GiGjGkG`W`i),

J ′6 =
∑

i,j,k,`(dist)

Ω̃k`(GiG
2
jGkW`i)

J9 =
∑

i,j,k,`(dist)

ηkΩ̃`i(GiG
2
jGkG`)

J10 =
∑

i,j,k,`(dist)

η`Ω̃`i(GiG
2
jG

2
k).

See (Jin et al., 2021c, Supplement, Section G.4.10.2) for more details.

To handle J ′5 and J ′6, we compare them to

J5 =
∑

i,j,k,`(dist)

ηjηk(GiGjGkG`W`i)

J6 =
∑

i,j,k,`(dist)

ηkη`(GiG
2
jGkW`i),

both of which are considered in (Jin et al., 2021c, Supplement, Section G.4.10.2). Note that neither
J5 nor J5 depends on Ω̃. Setting T = J ′5 and T ∗ = J5 in Lemma E.13 and noting that |Ω̃jk| . θjθk
by (E.24), we see that the hypotheses of Lemma E.13 are satisfied. In (Jin et al., 2021c, Supplement,
Section G.4.10.2), it is shown that

E[J2
5 ] ≤ E[J5]

2
+ Var(J5) = o(‖θ‖82).

Applying Lemma E.13, we conclude that

E[J
′2
5 ] = o(‖θ‖82).

Similarly, it is shown in (Jin et al., 2021c, Supplement, Section G.4.10.2) that

E[J2
6 ] ≤ E[J6]

2
+ Var(J6) = o(‖θ‖82).

Setting T = J ′6 and T ∗ = J6, the hypotheses of Lemma E.13 are satisfied because |Ω̃k`| . θkθ`. We
conclude that

E[J
′2
6 ] = o(‖θ‖82).

The terms J9 and J10 can be analyzed explicitly using the strategy described in Section E.4.1. We
omit the full details and instead give a simplified proof in the case where ‖θ‖2 � [log(n)]5/2. The
event

E = ∩ni=1Ei, where Ei =
{√

v|Gi| ≤ C0

√
θi‖θ‖1 log(n)

}
. (E.52)

is introduced in (Jin et al., 2021c, Supplement,pg.110). By applying Bernstein’s inequality and the
union bound, it is shown that E holds with probability at least 1− n−C0/2.01. Applying the crude
bound |Gi| ≤ n and triangle inequality, we see that |J9| . n9 with high probability, and thus for C0

sufficiently large,

E[|J9|2 · 1Ec ] = o(1).

Under the event E, we have by (E.20),

|J9| ≤
∑
i,j,k,`

|ηkΩ̃`i||GiG2
jGkG`|
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.
∑
i,j,k,`

(θiθkθ`)

√
θiθ2

j θkθ`‖θ‖51[log(n)]5

√
v5

.
[log(n)]5/2√
‖θ‖51

(∑
i

θ
3/2
i

)(∑
j

θj

)(∑
k

θ
3/2
k

)(∑
`

θ
3/2
`

)
.

[log(n)]5/2√
‖θ‖31

(∑
i

θ
3/2
i

)3

.
[log(n)]5/2√
‖θ‖31

(∑
i

θ2
i

)3/2(∑
i

θi

)3/2

. [log(n)]5/2‖θ‖3.
It follows that

E[J2
9 ] = Var(J9) + E[J9]2 = o(‖θ‖82).

We give a similar, simplified argument for J10 assuming that ‖θ‖2 � [log(n)]5/2. Under the event
E, we have

|J10| ≤
∑
i,j,k,`

|η`Ω̃`i||GiG2
jG

2
k|

.
∑
i,j,k,`

(θiθ
2
` )

√
θiθ2

j θ
2
k‖θ‖51[log(n)]5

√
v5

.
[log(n)]5/2√
‖θ‖51

(∑
i

θ
3/2
i

)(∑
j

θj

)(∑
k

θk

)(∑
`

θ2
`

)
.

[log(n)]5/2√
‖θ‖51

(
‖θ‖
√
‖θ‖1

)
‖θ‖21‖θ‖2

. [log(n)]5/2‖θ‖3;

Hence

E[J2
10] = Var(J10) + E[J10]2 = o(‖θ‖82).

Next we consider the terms with N∗W = 6. The only term that depends on Ω̃ is R32, which has the
form

K ′5 =
∑

i,j,k,`(dist)

Ω̃ikGiG
2
jGkG

2
` .

The variance of K ′5 can be analyzed explicitly using the strategy described in Section E.4.1. To save
space, we give a simplified argument when ‖θ‖2 � [log(n)]3/2. Again let E denote the event (E.52).
Under this event we have

|K ′5| .
∑
i,j,k,`

(θiθk)

√
θiθ2

j θkθ
2
`‖θ‖31[log(n)]3

v3

.
[log(n)]3

‖θ‖31

(∑
i

θ
3/2
i

)(∑
j

θj

)(∑
k

θ
3/2
k

)(∑
`

θ`

)
.

[log(n)]3

‖θ‖31

(
‖θ‖
√
‖θ‖1

)2‖θ‖21
. [log(n)]3‖θ‖2,

Above we apply (E.20) and (E.24) as well as Cauchy–Schwarz. It follows that

E[K
′2
5 ] = Var(K ′5) + E[K ′5]2 = o(‖θ‖82).
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Finally, all terms withN∗W ≥ 7 have no dependence on Ω̃, and thus the bounds carry over immediately
(see (Jin et al., 2021c, Supplement, Section G.4.10.4) for details). This completes the proof of the
lemma.

E.4.7 PROOF OF LEMMA E.12

Define
ε
(1)
ij = η∗i η

∗
j − ηiηj , ε

(2)
ij = (1− v

V
)ηiηj , ε

(3)
ij = −(1− v

V
)δij .

Note that ε(1)
ij is a nonstochastic term. As shown in (Jin et al., 2021c, Supplement, pg. 119), we have

|ε(1)
ij | .

‖θ‖∞
‖θ‖1

· θiθj ,

which implies that

|ε(1)
ij | .

1

‖θ‖22
· θiθj (E.53)

by (E.2).

As discussed in (Jin et al., 2021c, Supplement, Section G.3), Q−Q∗ is a finite sum of terms of the
form ∑

i,j,k,`(dist)

aijbjkck`d`i, where a, b, c, d ∈ {Ω̃,W, δ, r̃, ε(1), ε(2), ε(3)}. (E.54)

Let Y denote an arbitrary term of the form above, and given X ∈ {Ω̃,W, δ, r̃, ε(1), ε(2), ε(3)}, let NX
denote the total number of a, b, c, d that are equal to X . It holds that

Y =
( v
V

)Nr̃
(−1)N

(3)
ε

(
1− v

V

)N(2)
ε +N(3)

ε

X, X ≡
∑

i,j,k,`(dist)

aijbjkck`d`i.

where 
a, b, c, d ∈ {Ω̃,W, δ, (V/v)r̃, ε(1), ηηT},
number of ηiηj in the product is N (2)

ε ,

number of δij in the product is Nδ +N
(3)
ε ,

number of any other term in the product is same as before.

(E.55)

Let xn denote a sequence of real numbers such that
√

log(‖θ‖1) � xn � ‖θ‖1. Mimicking the
argument in (Jin et al., 2021c, Supplement,pg.121), it holds that

E[Y 2] .
( x2

n

‖θ‖21

)N(2)
ε +N(3)

ε

· E[X2] + o(1),

By (E.4), there exists a sequence log(‖θ‖1)� xn � ‖θ‖1/‖θ‖22. Hence,

E[Y 2] .
( 1

‖θ‖42

)N(2)
ε +N(3)

ε

· E[X2] + o(1), (E.56)

Thus we focus on controlling E[X2].

Consider a new random variable X∗ defined to be

X∗ ≡
∑

i,j,k,`(dist)

a∗ijb
∗
jkc
∗
k`d
∗
`i

where

a∗ =


1
‖θ‖22
· θθT if a = ε(1)

θθT if a ∈ {Ω̃, ηηT}
a otherwise
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b∗ =


1
‖θ‖22
· θθT if b = ε(1)

θθT if b ∈ {Ω̃, ηηT}
b otherwise

c∗ =


1
‖θ‖22
· θθT if c = ε(1)

θθT if c ∈ {Ω̃, ηηT}
c otherwise

d∗ =


1
‖θ‖22
· θθT if d = ε(1)

θθT if ∈ {Ω̃, ηηT}
d otherwise .

Also define
X̃ =

∑
ijk`(dist)

ãij b̃jk c̃k`d̃`i

where

ã =

{
θθT if a ∈ {ε(1), Ω̃, ηηT}
a otherwise

b̃ =

{
θθT if b ∈ {ε(1), Ω̃, ηηT}
b otherwise

c̃ =

{
θθT if c ∈ {ε(1), Ω̃, ηηT}
c otherwise

d̃ =

{
θθT if d ∈ {ε(1), Ω̃, ηηT}
d otherwise .

Note that X∗ =
(

1
‖θ‖22

)N(1)
ε X̃ and ã, b̃, c̃, d̃ ∈ {θθT,W, δ, (V/v)r̃}. Later we show that

E[X2] . E[X∗2] (E.57)

First we bound E[X̃2] in the case when NW +Nδ +Nr̃ = 0. Note that for all such terms in Q−Q∗,
we have N (1)

ε +N
(2)
ε +N

(3)
ε +NΩ̃ = 4 and NΩ̃ < 4. In particular, X̃ and X∗ are nonstochastic. If

NΩ̃ = 3, then by (E.22) and (E.24),

|X̃| =
∣∣ ∑
ijk`(dist)

Ω̃ijΩ̃jkΩ̃k`θiθ`
∣∣ . 1

‖θ‖22

∑
ijk`

βiθ
2
i β

2
j θ

2
jβ

2
kθ

2
kβ`θ

2
` . ‖β ◦ θ‖62‖θ‖22

If NΩ̃ = 2, there are two cases. First,

|X̃| =
∣∣ ∑
ijk`(dist)

Ω̃ijΩ̃jkθkθ`θ`θi
∣∣ .∑

ijk`

βiθiβ
2
j θ

2
jβkθ

2
kθ

2
` θi . ‖β ◦ θ‖42‖θ‖42,

and second

|X̃| =
∣∣ ∑
ijk`(dist)

Ω̃ijθjθkΩ̃k`θ`θi
∣∣ .∑

ijk`

βiθ
2
i βjθ

2
jβkθ

2
kβ`θ

2
` . ‖β ◦ θ‖42‖θ‖42

Finally if NΩ̃ = 1,

|X̃| =
∣∣ ∑
ijk`(dist)

Ω̃ijθjθ
2
kθ

2
` θi
∣∣ .∑

ijk`

β̃iθ
2
i βjθ

2
j θ

2
kθ

2
` . ‖β ◦ θ‖22‖θ‖62.

Note that when NW +Nδ +Nr̃ = 0
|X| . |X∗|

by (E.22), (E.20), and (E.53). By the bounds above, we conclude that

|Y | .
( 1

‖θ‖22

)N(1)
ε +N(2)

ε +N(3)
ε |X̃| . max

1≤k≤3
‖β ◦ θ‖2k2 ‖θ‖

2(4−k)
2 . |λ̃|3. (E.58)
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Next we bound E[X̃2] in the case when NW + Nδ + Nr̃ > 0. By Lemma E.2 and the definition
of f ∈ R2 there, we have Ω̃ij = αiαjθiθj where α = Πf . Observe that in Lemmas E.7–E.11, we
bound the mean and variance of all terms of the form

Z ≡
∑

i,j,k,`(dist)

aijbjkck`d`i, where a, b, c, d ∈ {Ω̃,W, δ, (V/v)r̃}.

As a result, the proofs of Lemmas E.7–E.11 produce a function F such that

E[Z2] ≤ F (θ, β;NΩ̃, NW , Nδ, Nr̃),

where recall that |αi| ≤ βi.
Note that in what follows, we use ′ to denote a new variable rather than the transpose. As a direct
corollary to the proofs of Lemmas E.7–E.11, if we define a new matrix Ω̃′ = α′iα

′
jθiθj where α′ is a

vector with a coordinate-wise bound of the form |α′i| ≤ β′i, then

Z ′ ≡
∑

i,j,k,`(dist)

aijbjkck`d`i, where a, b, c, d ∈ {Ω̃′,W, δ, (V/v)r̃}

satisfies

E[Z
′2] ≤ F (θ, β′;N ′

Ω̃′
, N ′W , N

′
δ, N

′
r̃),

where, for example, N ′δ counts the number of appearances of δ in Z ′. This can be verified by
tracing each calculation in Lemmas E.7–E.11 line by line, replacing all occurences of Ω̃ with Ω̃′, and
replacing every usage of the bound |αi| ≤ βi with |α′i| ≤ β′i instead. In other words, our proofs make
no use of the specific value of α = Πf .

In particular, if α = 1, then Ω̃′ = θθT. In this case we may set β = 1. Observe that X̃ has the form
of Z ′ with this choice of Ω̃′. Hence,

E[X̃2] ≤ F (θ,1; ÑΩ̃′ , ÑW , Ñδ, Ñr̃). (E.59)

By careful inspection of the bounds in Lemmas E.7–E.11, we see that

F (θ,1;NΩ̃′ , NW , Nδ, Nr̃) . ‖θ‖
12
2 . (E.60)

In (Jin et al., 2021c, Supplement, Section G.3) it is shown that all terms in the decomposition of
Q − Q∗ satisfy N (1)

ε + N
(2)
ε + N

(3)
ε > 0. Using this fact along with (E.56), (E.57), (E.59) and

(E.60),

E[Y 2] .
( 1

‖θ‖42

)N(2)
ε +N(3)

ε

·
( 1

‖θ‖22

)2N(1)
ε · E[X̃2] + o(1) . ‖θ‖82. (E.61)

Observe that (E.58) and (E.61) recover the bounds in Lemma E.12 under the alternative hypothesis,
and the bounds under the null hypothesis transfer directly from (Jin et al., 2021c, Lemma G.12). Thus
it only remains to justify (E.57) when NW +Nδ +Nr̃ > 0. Let us write

X =
∑

i1,...,im

ci1,...,imGi1,...,im

X∗ =
∑

i1,...,im

c∗i1,...,imGi1,...,im

in the form described in Section E.4.1, where now

• ci1,...,im =
∏

(s,s′)∈A Γ
(s,s′)
is,is′

is a nonstochastic term where A ⊂ [m]× [m] and

Γ(s,s′) ∈ {Ω̃, η∗1T, η1T,11T, ε(1), ηηT}

• c∗i1,...,im =
∏

(s,s′)∈A Γ
(s,s′)
is,is′

is a nonstochastic term where A ⊂ [m]× [m] and

Γ(s,s′) ∈ {η∗1T, η1T,11T, θθT/‖θ‖22, θθT}
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• Gi1,...,im =
∏

(s,s′)∈BWis,is′ where B ⊂ [m]× [m].

If Γ(s,s′) ∈ {θθT, θθT/‖θ‖22}, we simply let Γ(s,s′) = Γ(s,s′) and define

c∗i1,...,im =
∏

(s,s′)∈A

Γ
(s,s′)
is,is′

as in Section E.4.1. We also define the canonical upper bound EX∗ on |EX∗| and the canonical
upper bound Var(X∗) on Var(X∗) similarly to Section E.4.1. By the discussion above and (E.59),

E[X∗] ≡
( 1

‖θ‖22

)N(1)
ε

√
F (θ,1; ÑΩ̃′ , ÑW , Ñδ, Ñr̃),

and

Var(X∗) ≡
( 1

‖θ‖22

)2N(1)
ε F (θ,1; ÑΩ̃′ , ÑW , Ñδ, Ñr̃).

Next observe that

|ci1,...,im | . |c∗i1,...,im | . |c
∗
i1,...,im

|.

By a mild extension of Lemma E.13 it follows that

|EX| . EX∗

Var(X) . Var(X∗),

which verifies (E.57) and completes the proof.

E.5 CALCULATIONS IN THE SBM SETTING

We compute the order of λ1 and λ̃1 = λ2 in the SBM setting (which are the two nonzero eigenvalues
of Ω). By basic algebra, λ1, λ2 are also the two nonzero eigenvalues of the following matrix[

N 0
0 n−N

]1/2

×
[
a b
b c

]
×
[
N 0
0 n−N

]1/2

=

[
aN

√
N(n−N)b√

N(n−N)b (n−N)c

]
,

where b is given by (H.1). By direct calculations and pluging the definitions of b,

λ1 =
aN + (n−N)c+

√
(aN − (n−N)c)2 + 4N(n−N)b2

2

=
aN + (n−N)c+ |(n−N)c− aN | n

n−2N

2
.

Recall that

b =
nc−N(a+ c)

n− 2N
.

It is required that b ≥ 0. Therefore,

nc− (a+ c)N ≥ 0, and so (n−N)c ≥ aN. (E.62)

By direct calculations, it follows that

λ1 =
(n−N)2c− aN2

n− 2N
=

(n−N)c((n−N)− aN
(n−N)cN)

n− 2N
∼ (n−N)c(n−N)

n− 2N
∼ nc

where in the last two �, we have used (n−N)c ≥ aN and N = o(n). Similarly,

λ2 =
aN + (n−N)c−

√
(aN − (n−N)c)2 + 4N(n−N)b2

2
=

(a− c)N(n−N)

n− 2N
∼ N(a−c).
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F PROOF OF THEOREM 2.3 (POWERLESSNESS OF χ2 TEST)

We compare the SgnQ test with the χ2 test. Recall we assume θi = 1n. The χ2 test statistic is defined
to be

Xn =
1

α̂(1− α̂)(n− 1)

n∑
i=1

(
(A1n)i − α̂n

)2
, where α̂ =

1

n(n− 1)

∑
i 6=j

Aij .

We also define an idealized χ2 test statistic by

X̃n =
1

α(1− α)(n− 1)

n∑
i=1

(
(A1n)i − αn

)2
, where α =

1

n(n− 1)

∑
i 6=j

Ωij .

The χ2 test is defined to be

χ2
n = 1

[
|Xn − n|√

2n
> zγ/2

]
,

where zγ is such that P[|N(0, 1)| ≥ zγ ] = γ. Similarly, the idealized χ2 test is defined by

χ̃2
n = 1

[
|X̃n − n|√

2n
> zγ/2

]
,

In certain degree-homogeneous settings, the χ2 test is known to have full power Arias-Castro &
Verzelen (2014); Cammarata & Ke (2022).

We prove the following, which directly implies Theorem 2.3.

Theorem F.1. Suppose that (2.7) holds and that |λ̃|/
√
λ1 → ∞, and recall that under these

conditions, the power of the SgnQ test goes to 1. Next suppose that the following regularity conditions
hold under the null and alternative:

(i) θ = 1n

(ii) α→ 0

(iii) α2n→∞

(iv)
∑
ij(Ωij − α)2 = o(αn3/2).

Then the power of both the χ2-test and idealized χ2-test goes to γ (which is the prescribed level of
the test).

Note that the previous theorem implies Theorem 2.3. By Theorem 2.2, SgnQ has full power even
without the extra regularity conditions (i)–(iv). On the other hand, for any fixed alternative DCBM
satisfying (i)–(iv), Theorem F.1 implies that χ2 has power κ.

Proof of Theorem F.1. Theorem 2.2 confirms that SgnQ has full power provided that (2.7) holds and
that |λ̃|/

√
λ1 →∞. It remains to justify the powerlessness of the χ2 test.

Consider an SBM in the alternative such that Ω1 = (αn)1 and |λ̃|/
√
λ1 � N(a−c)/

√
nc→∞. To

do this we select an integer N > 0 to be the size of the smaller community and set b = cn−(a+c)N
n−2N .

The remaining regularity conditions are satisfied if c→ 0 and cn� N(a− c)2 � cn3/2. We show
that both Xn and X̃n are asymptotically normal under the specified alternative, which is enough to
imply Theorem F.1.

In Cammarata & Ke (2022) it is shown that

T̂n ≡ [(n− 1)α̂(1− α̂)](Xn − n) =
∑

i,j,k (dist.)

(Aik − α̂)(Ajk − α̂). (F.1)

We introduce an idealized version Tn of T̂n, which is

Tn =
∑

i,j,k (dist.)

(Aik − α)(Ajk − α),
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Following Cammarata & Ke (2022), we have

Xn − n√
2n

=

(
n− 2

n− 1

)1/2

UnVnZn. (F.2)

where

Un =
αn(1− αn)

α̂n(1− α̂n)
, Vn =

T̂n
Tn

, Zn =

Tn
(n−1)αn(1−αn)√

2n(n−2)
(n−1)

.

Since the terms of α̂ are bounded, the law of large numbers implies that Un
P→ 1. Furthermore, since

αn→∞ by assumption that α2n→∞, a straightforward application of the Berry-Esseen theorem
implies that √

n(n− 1)

2

α̂n − αn√
αn(1− αn)

⇒ N (µ, 1).

With the previous fact, mimicking the argument in (Cammarata & Ke, 2022, pg.32), it also follows
that

Vn
P→ 1,

provided we can show that Zn ⇒ N(0, 1). We omit the details since the argument is very similar.

Thus it suffices to study Zn. We first analyze Tn, which we decompose as

Tn =
∑

i,j,k (dist.)

(Aik − Ωik)(Ajk − Ωjk) + 2
∑

ijk(dist)

(Ωik − α)(Ajk − Ωjk)

+
∑

ijk(dist)

(Ωik − α)(Ωjk − α) ≡ Tn1 + Tn2 + Tn3.

Observe that Tn3 is non-stochastic. The second and third term are negligible compared to Tn1. Define
Ω = Ω− α11′. By direct calculations,

ETn2 = 0,

and

Var(Tn2) = 8
∑

j<k(dist)

( ∑
i/∈{j,k}

Ωik
)2

Ωjk(1− Ωjk) = 8
∑

j<k(dist)

(
Ωjk + Ωkk

)2
Ωjk(1− Ωjk) . αn2.

Next,

|Tn3| =
∣∣∑
ijk

ΩikΩjk −
∑

ijk(not dist.)

ΩikΩjk
∣∣ =

∣∣ ∑
ijk(not dist.)

ΩikΩjk
∣∣

.
∣∣∑
ij

ΩiiΩji
∣∣+
∣∣∑
ik

Ω
2

ik

∣∣+
∣∣∑

i

Ω
2

ii

∣∣ = 0 + o(αn3/2) + n = o(αn3/2),

where we apply the third regularity condition.

Now we focus on Tn1. By direct calculations

ETn1 = 0,

and

VarTn1 = 2
∑

i,j,k(dist)

Ωik(1− Ωik)Ωjk(1− Ωjk)

= 2
∑
i,j,k

Ωik(1− Ωik)Ωjk(1− Ωjk)− 2
∑

i,j,k(not dist.)

Ωik(1− Ωik)Ωjk(1− Ωjk)

= 21′Ω21− 2
∑

i,j,k(not dist.)

Ωik(1− Ωik)Ωjk(1− Ωjk)
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Note that

21′Ω21 ∼ 2n(n− 1)(n− 2)α2

since α→ 0. Moreover, with some simple casework we can show∑
i,j,k(not dist.)

Ωik(1− Ωik)Ωjk(1− Ωjk) . αn2 = o(α2n3),

where we use that αn→∞ (because α2n→∞). Hence

VarTn1 ∼ 2n(n− 1)(n− 2)α2(1− α)2 ∼ 2n(n− 1)(n− 2)α2(1− α)2.

To study Tn1 we apply the martingale central limit theorem using a similar argument to Cammarata
& Ke (2022)). Define Wij = Aij − Ωij and

Tn,m =
∑

(i,j,k)∈Im

WikWjk, and Tn,0 = 0,

Zn,m =

√
n− 1

2n(n− 2)

Tn,m
(n− 1)αn(1− αn)

, and Zn,0 = 0.

where
Im = {(i, j, k) ∈ [m]3 s.t. i, j, k are distinct},

and m ≤ n. Define a filtration {Fn,m} where Fn,m = σ{Wij , (i, j) ∈ [m]2} for all m ∈ [n], and
let Fn,0 be the trivial σ-field. It is straightforward to verify that Tn,m and Zn,m are martingales with
respect to this filtration. We further define a martingale difference sequence

Xn,m = Zn,m − Zn,m−1

for all m ∈ [n].

If we can show that the following conditions hold

(a)
n∑

m=1

E[X2
n,m|Fn,m−1]

P−→ 1, (F.3)

(b) ∀ε > 0,

n∑
m=1

E[X2
n,m1{|Xn,m > ε|}|Fn,m−1]

P−→ 0, (F.4)

then the Martingale Central Limit Theorem implies that Zn ⇒ N (0, 1).

Our argument follows closely Cammarata & Ke (2022). First consider (F.3). It suffices to show that

E

[
n∑

m=1

E[X2
n,m|Fn,m−1]

]
n→∞−−−−→ 1, (F.5)

and

Var

(
n∑

m=1

E[X2
n,m|Fn,m−1]

)
n→∞−−−−→ 0. (F.6)

For notational brevity, define

Cn := (n− 1)αn(1− αn)

√
2n(n− 2)

n− 1
.

Mimicking the argument in (Cammarata & Ke, 2022, pgs.33-34) shows the following. Note that all
sums below are indexed up to m− 1.

E[C2
nX

2
n,m|Fn,m−1] = 4

∑
k 6=j; i 6=l

WjkWilE [WmkWmi] + 4
∑

k 6=j; i 6=l

WjkE [WimWkmWlm]

+
∑

i 6=j; k 6=l

E [WimWjmWkmWlm] . (F.7)
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Continuing, we have

E[C2
nX

2
n,m|Fn,m−1] = 4

∑
i

∑
j 6=i,l 6=i

WijWilΩmi(1− Ωmi) + 2
∑

i,j(dist)

Ωim(1− Ωim)Ωjm(1− Ωjm)

= 4
∑

ij`(dist)

WijWilΩmi(1− Ωmi) + 4
∑

i,j(dist)

W 2
ijΩmi(1− Ωmi)

+ 2
∑

i,j(dist)

Ωim(1− Ωim)Ωjm(1− Ωjm). (F.8)

Computing expectations,

E[E[C2
nX

2
n,m|Fn,m−1]]

= 4
∑

i,j(dist)

Ωij(1− Ωij)Ωmi(1− Ωmi) + 2
∑

i,j(dist)

Ωim(1− Ωim)Ωjm(1− Ωjm)

Summing over m and a simple combinatorial argument yields

C2
nE
[ n∑
m=1

E[X2
n,m|Fn,m−1]

]
= 2

∑
i,j,k(dist)

Ωik(1− Ωik)Ωjk(1− Ωjk) ∼ C2
n.

Using the identity
W 2
ij = (1− 2Ωij)Wij + Ωij(1− Ωij),

we have

E[C2
nX

2
n,m|Fn,m−1] = 4

∑
ij`(dist)

WijWilΩmi(1− Ωmi) + 4
∑

i,j(dist)

W 2
ijΩmi(1− Ωmi)

= 24
∑
i<j<`

WijWilΩmi(1− Ωmi) + 8
∑
i<j

Wij(1− 2Ωij)Ωmi(1− Ωmi)

+ 4
∑
i<j

Ωij(1− Ωij)Ωmi(1− Ωmi).

Thus
n∑

m=1

E[C2
nX

2
n,m|Fn,m−1] = 24

∑
i<j<`

( ∑
m>max(i,j,`)

Ωmi(1− Ωmi)
)
WijWi`

+ 8
∑
i<j

( ∑
m>max(i,j,`)

Ωmi(1− Ωmi)
)
(1− 2Ωij)Wij .

All terms above are uncorrelated. Hence,

Var

(
n∑

m=1

E[C2
nX

2
n,m|Fn,m−1]

)
= 242

∑
i<j<`

( ∑
m>max(i,j,`)

Ωmi(1− Ωmi)
)2

Ωij(1− Ωij)Ωi`(1− Ωi`)

+ 64
∑
i<j

( ∑
m>max(i,j,`)

Ωmi(1− Ωmi)
)2

(1− 2Ωij)
2Ωij(1− Ωij)

. n2 · C2
n,

whence,

Var

(
n∑

m=1

E[X2
n,m|Fn,m−1]

)
.
n2

C2
n

� n2

α2n3
→ 0

since α2n→∞. Thus we have shown (F.5) and (F.6), which together prove (F.3).

Next we prove (F.4), again following the argument in Cammarata & Ke (2022). In (Cammarata & Ke,
2022, pg.36) it is shown that it suffices to prove

n∑
m=1

E[X4
n,m]

n→∞−−−−→ 0. (F.9)
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Further in (Cammarata & Ke, 2022, pg.37), it is shown that

E[C4
nX

4
n,m] =16

[∑
i<j

E[W 4
jm]E[(Wij +Wim)4]

+ 3
∑

i<j,u<v
i6=u,j 6=v

E[W 2
jm]E[(Wij +Wim)2]E[W 2

vm]E[(Wuv +Wum)2]

+ 3
∑
i<j,v
j 6=v

E[W 2
jm]E[W 2

vm]E[(Wij +Wim)2(Wiv +Wim)2]

+ 3
∑
i,u<j
i 6=u

E[(Wij +Wim)2]E[(Wuj +Wum)2]E[W 4
jm]

]
.

Going through term by term, we have for n sufficiently large∑
i<j

E[W 4
jm]E[(Wij +Wim)4] .

∑
i,j

Ωjm
(
Ωij + Ωim

)
. α2n2

Next∑
i<j,u<v
i 6=u,j 6=v

E[W 2
jm]E[(Wij +Wim)2]E[W 2

vm]E[(Wij +Wim)2] .
∑
ijuv

Ωjm(Ωij + Ωjm)Ωvm(Ωuv + Ωum)

=
∑
ijuv

ΩjmΩijΩvmΩuv +
∑
ijuv

ΩjmΩijΩvmΩum +
∑
ijuv

Ω2
jmΩvmΩuv

+
∑
ijuv

Ω2
jmΩvmΩum

. α4n4 + α3n3

With a similar argument, we also have, for n sufficiently large,∑
i<j,v
j 6=v

E[W 2
jm]E[W 2

vm]E[(Wij +Wim)2(Wiv +Wim)2] . α2n2 + α3n3

∑
i,u<j
i 6=u

E[(Wij +Wim)2]E[(Wuj +Wum)2]E[W 4
jm]

]
. α3n3 + α2n2.

Thus
n∑

m=1

E[X4
n,m] .

α4n5

C4
n

∼ α4n5

α4n6
→ 0,

which verifies (F.9). Since (F.9) implies (F.4), this completes the proof.

G PROOF OF THEOREM 2.4 (STATISTICAL LOWER BOUND)

Let f0(A) be the density under the null hypothesis. Let µ(Π) be the density of Π, and let f1(A|Π)
be the conditional density of A given Π. The L1 distance between two hypotheses is

`∗ ≡ 1

2
EA∼f0

∣∣EΠ∼µL(A,Π)− 1
∣∣, L(A,Π) = f1(A|Π)/f0(A).

Define
M =

{
Π : Π is an eligible membership matrix and

∑
i πi(1) ≤ 2nε

}
. (G.1)

Write LM(A,Π) = L(A,Π) · 1{Π ∈M} and define LM
c

(A,Π) similarly. By direct calculations,
we have

`∗ =
1

2
EA∼f0

∣∣EΠ∼µL
M(A,Π)− 1 + EΠ∼µL

Mc

(A,Π)
∣∣
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≤ 1

2
EA∼f0

∣∣EΠ∼µL
M(A,Π)− 1

∣∣+
1

2
EA∼f0

EΠ∼µL
Mc

(A,Π)

≡ 1

2
`0 +

1

2
`1. (G.2)

Note that EA∼f0
EΠ∼µL

Mc

(A,Π) =
∫

Π∈Mc f1(A|Π)µ(Π)dΠdA =
∫

Π∈Mc µ(Π)dΠ = µ(Mc).
We bound the probability of µ ∈ Mc. Note that πi(1) are independent Bernoulli variables with
mean ε, where ε � n−1N . It follows by Bernstein inequality that if t = 100

√
N logN , the we have

conservatively,

P
(∣∣∣∑

i

πi(1)−N
∣∣∣ > t

)
≤ 2 exp

(
− t2/2

nε+ t/3

)
≤ 2 exp

(
−1002N(logN)/2

200N

)
. N−c = o(1)

(G.3)

for some c > 0. It follows that
`1 = µ(Mc) = o(1). (G.4)

By Cauchy-Schwarz inequality,

`20 ≤ EA∼f0

∣∣EΠ∼µL
M(A,Π)− 1

∣∣2
= EA∼f0

(
EΠ∼µL

M(A,Π))2 − 2EA∼f0
EΠ∼µL

M(A,Π) + 1

= EA∼f0

(
EΠ∼µL

M(A,Π))2 − 2
[
1− EA∼f0

EΠ∼µL
Mc

(A,Π)
]

+ 1

≤ EA∼f0

(
EΠ∼µL

M(A,Π))2 − 1 + o(1),

where the third line is from EA∼f0EΠ∼µL(A,Π) = 1 and the last line is from (G.4). We plug it into
(G.2) to get

`∗ ≤
√
`2 − 1 + o(1), where `2 ≡ EA∼f0

(
EΠ∼µL

M(A,Π))2. (G.5)

It suffices to prove that `2 ≤ 1 + o(1).

Below, we study `2. Let Π̃ be an independent copy of Π. Define

S(A,Π, Π̃) = L(A,Π) · L(Π̃, A).

It is easy to see that

`2 = EA∼f0,Π,Π̃∼µ
[
S(A,Π, Π̃) · 1{Π ∈M, Π̃ ∈M}

]
. (G.6)

Denote by pij and qij(Π) the values of Ωij under the null and the alternative, respectively. Write
δij(Π) = (qij(Π)− pij)/pij . By definition,

S(A,Π, Π̃) =
∏
i<j

[
qij(Π)qij(Π̃)

p2
ij

]Aij [
(1− qij(Π))(1− qij(Π̃))

(1− pij)2

]1−Aij

.

Write for short qij(Π) = qij , qij(Π̃) = q̃ij , δij(Π) = δij and δij(Π̃) = δ̃ij . By straightforward
calculations, we have the following claims:

EA∼f0
[S(A,Π, Π̃)] =

∏
i<j

(
1 +

pijδij δ̃ij
1− pij

)
, (G.7)

and

lnS(A,Π, Π̃) =
∑
i<j

Aij ln

[
(1 + δij)(1 + δ̃ij)

(1− pij
1−pij δij)(1−

pij
1−pij δ̃ij)

]

+ ln

[(
1− pij

1− pij
δij

)(
1− pij

1− pij
δ̃ij

)]
. (G.8)

The expression (G.8) may be useful for the case of Nc→ 0. In the current case of Nc→∞, we use
(G.7). It follows from (G.6) that

`2 = EΠ,Π̃∼µ

[∏
i<j

(
1 +

pijδij δ̃ij
1− pij

)
· 1{Π ∈M, Π̃ ∈M}

]
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= EΠ,Π̃∼µ

[
exp

(∑
i<j

ln
(

1 +
pijδij δ̃ij
1− pij

))
· 1{Π ∈M, Π̃ ∈M}

]

≤ EΠ,Π̃∼µ

[
exp(X) · 1{Π ∈M, Π̃ ∈M}

]
, with X ≡

∑
i<j

pijδij δ̃ij
1− pij

. (G.9)

where the last line is from the universal inequality of ln(1 + t) ≤ t.

We further work out the explicit expressions of pij , δij and δ̃ij . Let h = (ε, 1− ε)′, and recall that
α0 = aε+ b(1− ε). The condition of b in (H.1) guarantees that

Ph = α012, α0 = aε+ b(1− ε).

By direct calculations,

α0 =
c(1− ε)2 − aε2

1− 2ε
. (G.10)

It follows that

P = α0121
′
2 +M, where M =

a− c
1− 2ε

ξξ′, ξ = (1− ε,−ε)′. (G.11)

Write zi = πi − h. Since Ph = α012 and z′i12 = 0, we have

Ωij = θjθj(h+ zi)
′P (h+ zi)

= θiθj(h
′Ph+ z′iPzj)

= θiθj(α0 + z′iPzj)

= θiθj(α0 + z′iMzj)

= θiθj

[
α0 +

a− c
1− 2ε

(ξ′zi)(ξ
′zj)
]
.

Let ti be the indicator that node i belongs to the first community and write ui = ti − N
n . Then,

πi = (ti, 1− ti) and zi = ui(1,−1)′. It follows that ξ′zi = ui. Therefore,

Ωij = θiθj

[
α0 +

a− c
1− 2ε

uiuj

]
, where ui

iid∼ Bernoulli(ε)− ε. (G.12)

Consequently,

pij = α0θiθj , δij(Π) =
a− c

(1− 2ε)α0
uiuj .

We plug it into (G.9) to obtain

X =
∑
i<j

θiθj
1− α0θiθj

(a− c)2

(1− 2ε)2α0
uiuj ũiũj . (G.13)

Below, we use (G.13) to bound `2. Since α0θ
2
max = O(cθ2

max) = o(1), by Taylor expansion of
(1− α0θiθj)

−1, we have

X =
(a− c)2

(1− 2ε)2α0

∑
i<j

∞∑
s=1

αs−1
0 θsi θ

s
juiuj ũiũj .

Let bi = θiθ
−1
max < 1. We re-write X as

X = γ

∞∑
s=1

wsXs,

where

γ =
θ2

max(a− c)2

(1− α0θ2
max)(1− 2ε)2α0

, ws = (1− α0θ
2
max)αs−1

0 θ2s−2
max , and Xs =

∑
i<j

bsi b
s
juiuj ũiũj .

(G.14)
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Let Ě be the conditional expectation by conditioning on the event of {Π ∈M, Π̃ ∈M}. It follows
from (G.9) that

`2 = P(Π ∈M, Π̃ ∈M) · Ě[exp(X)]

= P(Π ∈M, Π̃ ∈M) · Ě
[
exp
(
γ

∞∑
s=1

wsXs

)]
≤ P(Π ∈M, Π̃ ∈M) ·

∞∑
s=1

wsĚ[exp(γXs)]

=

∞∑
s=1

ws E
[
exp(γXs) · 1{Π ∈M, Π̃ ∈M}

]
. (G.15)

The third line follows using Jensen’s inequality and that
∑
s≥1 ws = 1.

It suffices to bound the term in (G.15) for each s ≥ 1. Note that

Xs ≤ Y 2
s , Ys =

∑
i

bsiuiũi. (G.16)

We recall that ui = ti − ε, where ti = πi(1) ∈ {0, 1}. The event {Π ∈ M, Π̃ ∈ M} translates to
max{

∑
i ti,

∑
i t̃i} ≤ 2nε. Note that

uiũi =


(1− ε)2, when ti + t̃i = 2,

−ε(1− ε), when ti + t̃i = 1,

ε2, where ti + t̃i = 0.

It follows that |uiũi| ≤ (ti + t̃i)/2 + ε2. Note that ε = O(N/n). Therefore, on this event,

|Ys| ≤
∑
i

[(ti + t̃i)/2 + ε2] ≤ 2nε+ nε2 ≤ 3N.

We immediately have

E
[
exp(γXs) · 1{Π ∈M, Π̃ ∈M}

]
≤ E

[
exp(γY 2

s ) · 1{|Ys| ≤ 3N}

]
. (G.17)

The following lemma is useful.
Lemma G.1. Let Z be a random variable satisfying that

P(|Z| > t) ≤ 2 exp
(
− t2/2

σ2 + bt

)
, for all t > 0.

Then, for any γ > 0 and B > 0 such that γ(σ2 + bB) < 1/2, we have

E
[
exp(γZ2)1{|Z| ≤ B}

]
≤ 1 +

4γ(σ2 + bB)

1− 2γ(σ2 + bB)
.

Note that Ys =
∑
i b
s
iuiũi is a sum of independent, mean-zero variables, where |bsiuiũi| ≤ 2 and∑

i Var(bsiuiũi) ≤
∑
i b

2s
i 2ε2 ≤ 2nε2. It follows from Bernstein’s inequality that

P(|Ys| > t) ≤ exp

(
− t2/2

2nε2 + 2t

)
, for all t > 0.

To apply Lemma G.1, we set

b = 2, σ2 = 2nε2 ≤ 2n−1N2, Z = Ys, B = 3N,

and γ as in (G.14). The choice of B is in light of (G.17). Furthermore, by (G.10), we have α0 � c.
Also we have θ2

maxα0 → 0. Hence,

γ =
θ2

max(a− c)2

(1− α0θ2
max)(1− 2ε)2α0

≤ C ·
(θ2

max(a− c)2

c

)
.
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Thus by the hypothesis θ2
maxN(a−c)2

c → 0, it holds that γ(σ2 + bB) < 1/2 for n sufficiently large.
Applying Lemma G.1, we obtain

E
[
exp(γXs) · 1{Π ∈M, Π̃ ∈M}

]
≤ 1 + C(γ(σ2 + bB))

≤ 1 + C ·
(θ2

maxN(a− c)2

c

)
We further plug it into (G.15) to get

`2 ≤
∞∑
s=1

ws

[
1 + C ·

(θ2
maxN(a− c)2

c

)]
≤ 1 +

(θ2
maxN(a− c)2

c

)
,

where we use that
∑
ws = 1.

It follows immediately that

`2 ≤ 1 + o(1), if θmax

√
N(a− c)√

c
→ 0.

This proves the claim.

G.1 PROOF OF LEMMA G.1

Let X denote a nonnegative random variable, and define F (x) = PX [X ≥ x]. For any positive
number β > 0, we have

E[exp(γX)1{X < β}] =

∫ β

0

eγx dPX(x)

= −eγxF̄ (x)

∣∣∣∣β
0

+

∫ β

0

γeγxF̄ (x)dx

= 1− eγβF̄ (β) +

∫ β

0

γeγxF̄ (x)dx

≤ 1 +

∫ β

0

γeγxF̄ (x)dx.

We apply it to X = Z2 and β = B2 to get

E
[
exp(γZ2)1{|Z| ≤ B}

]
≤ 1 +

∫ B2

0

γ exp(γx)P(|Z| >
√
x)dx

≤ 1 + 2γ

∫ B2

0

exp(γx) exp

{
− x

2(σ2 + b
√
x)

}
dx

≤ 1 + 2γ

∫ B2

0

exp(γx) exp

{
− x

2(σ2 + bB)

}
dx

≤ 1 + 2γ

∫ ∞
0

exp

{
−1− 2γ(σ2 + bB)

2(σ2 + bB)
x

}
dx

≤ 1 +
4γ(σ2 + bB)

1− 2γ(σ2 + bB)
.

This proves the claim.

H PROOF OF THEOREM 2.5 (TIGHTNESS OF THE STATISTICAL LOWER BOUND)

Let ρ ∈ Rn. We consider the global testing problem in the DCBM model where

A) P =

(
1 b
b 1

)
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B) b = b̃/
√
ac,

C) θi = ρi
√
a for i ∈ S,

D) θi = ρi
√
c for i /∈ S, and

E) aN0 + b̃(n−N0) = b̃N0 + c(n−N0),

Recall that h = (N0/n, 1−N0/n)T, and N0 is the size of the smaller community in the alternative.
Observe that the null model K = 1 is parameterized by setting a = c = b̃ = 1.

Recall that ε = N/n. We define

α0 ≡
aN0 + b̃(n−N0)

n
.

Note that by Assumption (E),

b̃ =
nc− (a+ c)N0

n− 2N0
(H.1)

aε = O(c), and (H.2)

c ∼ b̃ ∼ α0. (H.3)

Our assumptions in this section are the following:

a) There exists an absolute constant Cρ > 0 such that ρmax ≤ Cρ ρmin

b) ρ2
maxα0n√

logn
→∞

c) An integer N is known such that N0 = N [1 + o(1)].

Note that since we tolerate a small error in the clique size by Assumption (c), our setting indeed
matches that of the statistical lower bound, by (G.3).

Define the signed scan statistic

φsc = max
D⊂[n]:|D|=N

1′D
(
A− η̂η̂T

)
1D. (H.4)

For notational brevity, define n(2) =
(
n
2

)
. Let

γ̂ =
1

n(2)

∑
i,j

Aij .

The estimator γ̂ provides a constant factor approximation of the edge density of the least-favorable
null model. See Lemma H.1 for further details.

Next let

h(u) = (1 + u) log(1 + u)− u, (H.5)

and note that this function is strictly increasing on R≥0. Define a random threshold τ̂ to be

τ̂ = C∗γ̂N2h−1

(
C∗N log(neN )

γ̂N2

)
(H.6)

Let C∗ > 0 denote a sufficiently large constant, to be determined, that depends only on Cρ from
Assumption (a). Finally define the scan test to be

ϕsc = 1
[
|φsc| > τ̂

]
Note that, if we assume a ≥ c, as in the main text, then b < 1. In this case, we can simply take

ϕsc = 1
[
φsc > τ̂

]
,

and the same guarantees hold. On the other hand, if b > 1, then the scan test skews negative, as our
proof shows.
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Theorem H.1. If

h

(
‖θS‖21|1− b2|
ρ2

maxα0N2
0

)
�

log ne
N0

ρ2
maxα0N0

, (H.7)

then the type 1 and 2 error of ϕsc tend to 0 as n→∞.

We interpret the previous result in the following concrete settings.

Corollary H.1. If
ρ2

maxα0N0

log ne
N0

→ 0,

then ϕsc has type 1 and 2 errors tending to 0 as n→∞, provided that

ρ2
maxN0(a− c)

log ne
N0

� 1.

If
ρ2

maxα0N0

log ne
N0

→∞,

then ϕsc has type 1 and 2 errors tending to 0 as n→∞, provided that

ρ2
maxN0(a− c)√
ρ2

maxN0α0 log ne
N0

� 1.

Proof. Note that

‖θS‖21|1− b2| = ρ2
maxN

2
0 (a− b̃2/

√
c) ∼ ρ2

maxN
2
0 (a− c).

In the first case,

h

(
‖θS‖21|1− b2|
ρ2

maxα0N2
0

)
� h

(
log ne

N0

ρ2
maxα0N0

)
&

log ne
N0

ρ2
maxα0N0

.

We use the fact that h(u) & u for u ≥ 1.

In the second case,

h

(
‖θS‖21|1− b2|
ρ2

maxα0N2
0

)
� h

(N0 ·
√
ρ2

maxN0α0 log ne
N0

ρ2
maxα0N2

0

)
= h

(√
log ne

N0

ρ2
maxα0N0

)
&

log ne
N0

ρ2
maxα0N0

.

The upper bounds in the second part of Corollary H.1 is the best possible up to logarithmic factors.
For example, suppose that θmax . θmin in Theorem 2.4. Then the upper bound for the second case
of Corollary H.1 matches the lower bound of Theorem 2.4 up to logarithmic factors.

To prove Theorem 2.5, first we establish concentration of γ̂.

Lemma H.1. Recall

γ̂ =
1

n(2)

∑
i,j(dist)

Aij .

There exists an absolute constant C > 0 such that for all δ > 0, it holds that

|γ̂ − Eγ̂| ≤
C
√
ρ2

maxα0 log(1/δ)

n

with probability at least 1− δ.

61



Published as a conference paper at ICLR 2023

Proof. As a preliminary, we claim that

(Ω1)i � ρ2
maxα0n. (H.8)

To see this, note that if i ∈ S, then by (E)

(Ω1)i =
∑
j

Ωij = θi(‖θS‖1 + b‖θSc‖1)

� ρmax

√
a ·
(√
aNρmax +

b̃√
ac
·
√
cρmax

)
= ρ2

maxα0n.

The claim for i /∈ S follows by a similar argument applying (E). It follows that

v0 = 1TΩ1 � ρ2
maxα0n

2

The expectation is

Eγ̂ =
1

n(2)

∑
i,j(dist)

Ωij ,

and the variance is

Var(γ̂) =
1

(n(2))2

∑
i,j(dist)

Ωij(1− Ωij).

By Bernstein’s inequality,

P
[
n(2)

∣∣γ̂ − Eγ̂
∣∣ > t

]
≤ 2 exp

(
− ct2∑

i,j(dist) Ωij + t

)
. (H.9)

By Assumptions (a) and (b), ∑
i,j(dist)

Ωij � ρ2
maxα0n

2 � n.

Setting
t = τ ≡ C

√
ρ2

maxα0n2 log(1/δ)

for a large enough absolute constant C > 0, (H.9) implies that

|γ̂ − Eγ̂| ≤ τ

n2
�
√
ρ2

maxα0 log(1/δ)

n

with probability at least 1− δ.

Next we control the error arising from the plug-in effect of approximating η∗ by η̂.
Lemma H.2. Given D ⊂ [n], define

LD ≡ 1T
D(η∗η∗T − η̂η̂T)1D.

Then under the null and alternative hypothesis,

max
|D|=N

|LD| .
√
N3

0 ρ
2
maxα0 log(

ne

N0
)

with probability at least 1−
(
n
N

)−1 − 2v−c10 , for an absolute constant c1 > 0.

Proof. In this proof, c > 0 is an absolute constant that may vary from line to line.

Given D ⊂ [n], let

LD ≡ 1T
D(η∗η∗T − η̂η̂T)1D = 1T

Dη
∗(η∗ − η̂)T1D + 1T

D(η∗ − η̂)η̂T1D (H.10)
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Our first goal is to control ∣∣1T
D(η̂ − η∗)

∣∣.
Define Ω = Ω− diag(Ω). Note that

η̂ − η∗ =
A1√
V
− Ω1
√
v0

=
( A1√

V
− A1
√
v0

)
+
( A1
√
v0
− Ω1
√
v0

)
+
( Ω1
√
v0
− Ω1
√
v0

)
(H.11)

We study each term of (H.11). First note that

(Ω1)i = (Ω1)i − Ωii = ρ2
maxα0n+O(1),

and thus

v0 =
∑
i

(Ω1)i ∼
∑
i

(Ω1)i = v, and

|v0 − v| . 1 (H.12)

Next note that

Var
(
1T
D

(
A1− Ω1

))
.

∑
i∈[n],j∈D

i 6=j

Ωij . |D|ρ2
maxα0n.

By Bernstein’s inequality,

P
[∣∣1T

D

(
A1− Ω1

)∣∣ ≥ t] ≤ 2 exp

(
− ct2

|D|ρ2
maxα0n+ t

)
(H.13)

for all t > 0. Setting
t = τ ≡

√
4/c ·

√
|D|ρ2

maxα0n log(1/δ),

we have

1
√
v0

∣∣1T
D

(
A1− Ω1

)∣∣ . √|D|ρ2
maxα0n log(1/δ)√
ρ2

maxα0n2
=
√

(|D|/n) · log(1/δ) (H.14)

with probability at least 1− δ.

Next, it is shown in (Jin et al., 2021c, Supplement, pg.100) that for
√

log ‖θ‖1 � xn � ‖θ‖1,

P
[
|V − v| > xn‖θ‖1

]
= P

[
|
√
V −

√
v| > xn‖θ‖1√

V +
√
v

]
≤ 2 exp(−cx2

n).

Hence

P
[
|
√
V −

√
v| > xn‖θ‖1√

v

]
≤ 2 exp(−cx2

n),

Note that by (H.2) and (H.3),

‖θ‖1√
v
� N0ρmax

√
a+ (n−N0)ρmax

√
c

ρmax
√
α0n

� 1.

By (H.12), we have

P
[
|
√
V −

√
v0| >

xn‖θ‖1√
v

]
≤ 2 exp(−cx2

n). (H.15)

Hence with probability at least 1− 2 exp(−cx2
n),

V & v0.

It follows that

P
[∣∣ 1√

V
− 1
√
v0

∣∣ ≥ xn‖θ‖1
v0
√
v

]
= P

[
|
√
V −√v0|√
V · v0

≥ xn‖θ‖1
v0
√
v

]
≤ 2 exp(−cx2

n).
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Hence with probability at least 1− δ − 2 exp(−cx2
n),∣∣∣∣1T

D(
A1√
V
− A1
√
v0

)

∣∣∣∣ ≤ xn ·
(
|D|ρ2

maxα0n+
√
|D|ρ2

maxα0n log(1/δ)
)

v0

�
xn ·

(
|D|ρ2

maxα0n+
√
|D|ρ2

maxα0n log(1/δ)
)

ρ2
maxα0n2

. (H.16)

For the last term of (H.11),

1T
D

( Ω1
√
v0
− Ω1
√
v0

)
=

∑
i∈D Ωii√
v0

� ρ2
maxa|D ∩ S|+ ρ2

maxc|D ∩ Sc|√
ρ2

maxα0n2

. ρmaxaε/
√
α0 . ρmax

√
c . 1. (H.17)

Next we control 1T
Dη̂. By (H.13) and (H.15),

|1T
Dη̂| =

|1T
DA1|√
V
.
|D|ρ2

maxα0n+
√
|D|ρ2

maxα0n log(1/δ)
√
v0 − cxn

(H.18)

with probability at least 1− δ − 2 exp(−cx2
n). It also holds that

|1T
Dη
∗| = |1

T
DΩ1|
√
v0

=
|D|ρ2

maxα0n

ρmax
√
α0n

= |D|ρmax
√
α0. (H.19)

Next we set xn =
√

log ‖θ‖1 �
√

log v0. Then from (H.16) and (H.18),∣∣∣∣1T
D(

A1√
V
− A1
√
v0

)

∣∣∣∣ � √log v0 ·
(
|D|ρ2

maxα0n+
√
|D|ρ2

maxα0n log(1/δ)
)

ρ2
maxα0n2

�
√

log v0 ·
(
(|D|/n) +

√
(|D|/n) log(1/δ)

ρmax
√
α0n

)
, (H.20)

and

|1T
Dη̂| .

|D|ρ2
maxα0n+

√
|D|ρ2

maxα0n log(1/δ)
√
v0

�
|D|ρ2

maxα0n+
√
|D|ρ2

maxα0n log(1/δ)

ρmax
√
α0n

� |D|ρmax
√
α0 +

√
(|D|/n) · log(1/δ) (H.21)

with probability at least 1− δ − 2v−c10 .

By (H.14),(H.17), (H.19), (H.20), and (H.21)

|LD| ≤
∣∣1T
Dη
∗(η∗ − η̂)T1D

∣∣+
∣∣1T
D(η∗ − η̂)η̂T1D

∣∣
.
(
|D|ρmax

√
α0 +

√
(|D|/n) · log(1/δ)

)
·
(√

log v0(|D|/n) +
√

(|D|/n) log(1/δ) + 1
)
.

with probability at least 1− δ − 2v−c10 .

It follows that, setting δ = 1/
(
n
N

)2
above and applying the union bound,

max
|D|=N

|LD| .
(
Nρmax

√
α0 +

√
Nε · log(

ne

N
)
)
·
(
ε
√

log v0 +

√
Nε · log(

ne

N
) + 1

)
with probability at least 1−

(
n
N

)−1 − 2v−c10 → 1. Note that

n log ne
N

log v0
�

n log ne
N

log(ρ2
maxα0n2)

& 1⇒
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N2

n
log

ne

N
&
N2

n2
log(ρ2

maxα0n
2)⇒√

Nε · log(
ne

N
) & ε

√
log v0.

Further, since (N/n) log ne
N � 1 and ρ2

maxα0n→∞ by Assumption (b),

N log
ne

N
. ρ2

maxα0n
2 ⇒

N

n

√
log

ne

N
.
√
Nρ2

maxα0 ⇒

Nε log
ne

N
.

√
N3ρ2

maxα0 log
ne

N
.

Hence

max
|D|=N

|LD| .
√
N3ρ2

maxα0 log(
ne

N
) +Nε log(

ne

N
) .

√
N3ρ2

maxα0 log(
ne

N
)

with probability at least 1−
(
n
N

)−1 − 2v−c10 . Recalling that N = N0[1 + o(1)] yields the statement
of the lemma.

Next we study an ideal version of φsc.
Lemma H.3. Define the ideal scan statistic

φ̃sc = max
|D|=N

1T
D(A− η∗η∗T)1D,

and corresponding test

ϕ̃sc = 1

[
φ̃sc > τ̃

]
,

where

τ̃ ≡ C̃γ̂N2h−1

(
C̃N log(neN )

γ̂N2

)
,

and C̃ > 0 is a sufficiently large absolute constant that depends only on Cρ from Assumption (a).
Then under the null hypothesis,

P
[
|φ̃sc| > τ̃

]
≤ n−c0 + exp

(
−N log

ne

N

)
and under the alternative hypothesis,

P
[
|φ̃sc| ≤ τ̃

]
≤ n−c0 +

(N
ne

)10

for n sufficiently large, where c0 is an absolute constant.

Proof. In this proof, c > 0 is an absolute constant that may vary form line to line.

Define the ideal scan statistic

φ̃sc = max
|D|=N

1T
D(A− η∗η∗T)1D.

Also define
ZD ≡

∑
i,j∈D(dist)

(Aij − Ωij)

First consider the type 1 error. Under the null hypothesis, we have η∗ = θ = ρ and α0 = 1. Observe
that

σ2
D ≡ Var(ZD) = Var

( ∑
i,j∈D(dist)

(Aij − θiθj)
)
. ‖θD‖21 � ρ2

maxN
2 ∼ ρ2

maxN
2
0
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By the Bennett inequality, (Vershynin, 2018, Theorem 2.9.2),

P
[ ∑
i,j∈D

(Aij − θiθj) > t
]
≤ exp

(
− σ2

D h

(
t

σ2
D

))
, (H.22)

where h(u) = (1 + u) log(1 + u)− u.

Next, by Lemma H.1,

|γ̂ − Eγ̂| .
√

log n

n

with probability n−c0 . Also recall that

E γ̂ =
1

n(2)

∑
i,j(dist)

Ωij � ρ2
maxα0 = ρ2

max �
√

log n

n

by Assumptions (a) and (b). It follows that there exist absolute constants c0, cγ , Cγ > 0 such that

cγρ
2
max < γ̂ < Cγρ

2
max (H.23)

with probability n−c0 . Let E denote this event. Under E , we have that for C̃ sufficiently large,

C̃γ̂N2h−1

(
C̃N log(neN )

γ̂N2

)
≥ σ2

Dh
−1

(
2N log ne

N

σ2
D

)
It follows from this, the union bound, and the Bennett inequality,

P
[
|φ̃sc| > C̃γ̂N2h−1

(
C̃N log(neN )

γ̂N2

)]
≤ P[Ec] + P

[
|φ̃sc| > C̃γ̂N2h−1

(
C̃N log(neN )

γ̂N2

)
, E
]

≤ n−c0 +
∑
|D|=N

P
[
|ZD| > C̃γ̂N2h−1

(
C̃N log(neN )

γ̂N2

)]

≤ n−c0 +
∑
|D|=N

P
[
|ZD| > σ2

Dh
−1

(
2N log ne

N

σ2
D

)]
≤ n−c0 +

(ne
N

)N
exp

(
− 2N log

ne

N

)
.

This shows that the type 1 error for the ideal scan statistic is o(1).

Next consider the type 2 error. We have by Lemma (E.2),

1T
S(A− η∗η∗T)1S =

∑
i,j∈S(dist)

(Aij − Ωij) + 1T
SΩ̃1S = ZS + ‖θS‖21(1− b2) · ‖θS

c‖21
v0

.

Note that by (H.12)

‖θS‖21(1− b2) · ‖θS
c‖21
v0

∼ ‖θS‖21(1− b2).

Next,

Var(ZS) =
∑

i,j∈S(dist)

Ωij(1− Ωij) . ‖θS‖21 � ρ2
maxNa ∼ ρ2

maxN0a

By Bernstein’s inequality,

|ZS | .
√
‖θS‖21 log(1/δ) ∨ log(1/δ) ≤ ‖θS‖1 log(1/δ)

with probability at least 1− δ. Setting δ = ( Nne )10, we have

|ZS | . ‖θS‖1 log
(ne
N

)
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with probability at least 1− ( Nne )10.

Next we show that

‖θS‖1|1− b2| & log
ne

N
(H.24)

using (H.7), which we rewrite as

‖θS‖21|1− b2| � γN2
0h
−1

(
log ne

N0

γN0

)
∼ γN2h−1

(
log ne

N

γN

)
(H.25)

where γ = ρ2
maxα0. Recall that α0 = 1 under the null, and α0 ∼ c under the alternative. Let

u =
log ne

N

γN
.

Consider two cases: (i) u ≤ 0.01, and (ii) u ≥ 0.01. For u′ ≤ h−1(0.01), we have h(u′) � (u′)2,
and therefore h−1(u) � u2 for u ≤ 0.01. In this case (H.25) implies

‖θS‖21|1− b2| � γN2

√
log ne

N

γN
=

√
γN3 log

ne

N
.

In addition,
‖θS‖1 = N

√
aρmax,

so that

‖θS‖1(1− b2)�

√
γN log ne

N

aρ2
max

& log
ne

N

since u ≤ 0.01 and aρ2
max . 1. Thus in case (i), (H.24) is satisfied for n sufficiently large.

Now consider case (ii) where u ≥ 0.01. Note that h(u) ≤ (u+ 1) log(u+ 1), and thus

1

2
(u+ 1) ≤ u ≤ h−1((u+ 1) log(u+ 1)).

Let ϕ ≡ (u+ 1) log(u+ 1) ≥ u and observe that

u+ 1 =
ϕ

log(u+ 1)
≥ ϕ

logϕ
.

Hence

h−1((u+ 1) log(u+ 1)) ≥ 1

2
· (u+ 1) log(u+ 1)

log
[
(u+ 1) log(u+ 1)

] .
Applying (H.25),

‖θS‖21|1− b2| � γN2 ·
(

log ne
N

γN + 1) log(
log ne

N

γN + 1)

log
[
(

log ne
N

γN + 1) log(
log ne

N

γN + 1)
] & N log

ne

N
.

Hence

‖θS‖1|1− b2| �
log ne

N√
aρmax

& log
ne

N
.

Thus in case (ii), (H.24) is also satisfied.

Next we have,

P
[
|φ̃sc| ≤ C̃γ̂N2h−1

(
C̃N log(neN )

γ̂N2

)]
≤ n−c0 + P

[
|φ̃sc| ≤ C̃γ̂N2h−1

(
C̃N log(neN )

γ̂N2

)
, E
]
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≤ n−c0 + P
[ ∣∣∣∣‖θS‖21(1− b2) + ZS

∣∣∣∣ ≤ CγN2h−1

(
CN log(neN )

γN2

)]
≤ n−c0 + P

[
|ZS | ≥

∣∣‖θS‖21(1− b2)
∣∣− CγN2h−1

(
CN log(neN )

γN2

)]
,

where C > 0 is a sufficiently large absolute constant. In the second line and third lines we use
the event E from (H.23), and in the last line we use the triangle inequality. By (H.7), we have
conservatively that∣∣ ‖θS‖21(1− b2)

∣∣− CγN2h−1

(
CN log(neN )

γN2

)
≥ 1

2

∣∣‖θS‖21(1− b2)
∣∣� ‖θS‖1 log

ne

N

for n sufficiently large. Thus for n sufficiently large,

P
[
|φ̃sc| ≤ C̃γ̂N2h−1

(
C̃N log(neN )

γ̂N2

)]
≤ n−c0 + P

[
|ZS | ≥

1

2

∣∣ ‖θS‖21(1− b2)
∣∣ ]

≤ n−c0 +
(N
ne

)10
.

Therefore the type 2 error for the ideal scan statistic is also o(1).

Lemma H.4. Let φsc denote the scan statistic defined in (H.4), and let τ̂ denote the random threshold
defined in (H.6). Then under the null hypothesis,

P
[
|φsc| > τ̂

]
≤
(
n

N

)−1

+ v−c10 + n−c0 + exp
(
−N log

ne

N

)
,

and under the alternative hypothesis,for n sufficiently large we have

P
[
|φsc| < τ̂

]
≤
(
n

N

)−1

+ v−c10 + n−c0 +
(N
ne

)10
.

Proof. We show that the plug-in effect is negligible compared to the threshold and signal-strength.

By Lemma H.2,

max
|D|=N

|LD| .
√
N3

0 γ log(
ne

N0
)

with high probability. Since h(u) ≤ u2 for u ≥ 0, it follows that

h

(√N3
0 γ log( neN0

)

γN2
0

)
≤
N3

0 γ log( neN0
)

γ2N4
0

=
log ne

N0

γN0
⇒√

N3
0 γ log(

ne

N0
) ≤ γN2

0h
−1

(
log ne

N0

γN0

)
⇒√

N3γ log(
ne

N
) ≤ [1 + o(1)]γN2h−1

(
log ne

N

γN

)
.

Under the null, we have by Lemma H.3 that

P
[
|φsc| ≥ τ̂

]
≤ P

[
|φ̃sc| ≥ τ̂ − max

|D|=N
|LD|

]
≤
(
n

N

)−1

+ v−c10 + P
[
|φ̃sc| ≥ C∗γ̂N2h−1

(
C∗N log(neN )

γ̂N2

)
− γN2h−1

(
log ne

N

γN

)]
≤
(
n

N

)−1

+ v−c10 + n−c0 + exp
(
−N log

ne

N

)
for C∗ > 0 a sufficiently large absolute constant. It suffices to take C∗ ≥ 2C̃.
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Under the alternative hypothesis, we have by Lemma H.3 that

P
[
|φsc| ≤ τ̂

]
≤ P

[
|φ̃sc| ≤ τ̂ + max

|D|=N
|LD|

]
≤
(
n

N

)−1

+ v−c10 + P
[
|φ̃sc| ≤ C∗γ̂N2h−1

(
C∗N log(neN )

γ̂N2

)
+ γN2h−1

(
log ne

N

γN

)]
≤
(
n

N

)−1

+ v−c10 + P
[
|φ̃sc| ≤ 2C∗γ̂N2h−1

(
C∗N log(neN )

γ̂N2

)]
≤
(
n

N

)−1

+ v−c10 + n−c0 +
(N
ne

)10

for n sufficiently large.

Observe that Theorem 2.5 follows directly from Lemma H.4.

I PROOF OF THEOREM 2.6 (COMPUTATIONAL LOWER BOUND)

In this section, we provide the proof of Theorem 2.6. For convenience, we denote b = nc−(a+c)N
n−2N , d =

c(n−N)2−aN2

n(n−2N) . UnderH0, all upper triangular entriesA are i.i.d. Bernoulli distributed with probability
d. Then an orthonormal basis of the adjacency matrix of graph D is

fΓ(A) =
∏

i<j:(i,j)∈Γ

Aij − d√
d(1− d)

.

Here, Γ ⊆ {(i, j) : 1 ≤ i < j ≤ n} takes all subsets of all upper triagonal entries of A. Denote |Γ| as
the cardinality of Γ and B(D) = {Γ ⊆ {unordered pairs (i, j) : i 6= j, i, j ∈ [n]},Γ 6= ∅, |Γ| ≤ D}
as all subsets of off-diagonal entries ofA of cardinality at mostD. By Proposition I.1 and the property
of the orthonormal basis function of A,

sup
f is polynomial; degree(f)≤D
EH0

f(A)=0;VarH0
(A)=1

EH1
f(A) = ‖LR≤D − 1‖

=

 ∑
Γ∈B(D)

(
EH0fΓ(A)(LR≤D(A)− 1)

)2
1/2

(∗)
=

 ∑
Γ∈B(D)

(EH0fΓ(A)LR(A))
2


1/2

=

 ∑
Γ∈B(D)

EH1 (fΓ(A))
2


1/2

=


∑

Γ∈B(D)

EH1

∏
(i,j)∈Γ

Aij − d√
d(1− d)

2


1/2

.

Here, (∗) is due to EH0
fΓLR

≤D = EH0
fΓLR by the property of projection and EH0

fΓ(A) = 0 for
any Γ ∈ B(D). Therefore, to establish the desired computational lower bound, we only need to prove

∑
Γ∈B(D)

EH1

∏
(i,j)∈Γ

Aij − d√
d(1− d)

2

= o(1)

under the described asymptotic regime. For convenience, we denote

p1 =
a− d√
d(1− d)

, p2 =
b− d√
d(1− d)

, p3 =
c− d√
d(1− d)

.

We can calculate that

a− d =
(n−N)2(a− c)
n(n− 2N)

, b− d = − (n−N)N(a− c)
n(n− 2N)

, c− d =
N2(a− c)
n(2− 2N)

.
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and

c− d = − N

n−N
(b− d) =

(
N

n−N

)2

(a− d) . (I.1)

Since b = c(n−N)−aN
n−2N ≥ 0 and N ≤ n/3, we know a ≤ c(n−N)/N and

c ≥ d =
c(n−N)2 − aN2

n(n− 2N)
≥ c(n−N)2 −N(n−N)c

n(n− 2N)
≥ (n−N)/n · c ≥ 2/3 · c.

Under the asymptotic regime of this theorem, we have d = c(n−N)2−aN2

n(n−2N) and

p1 =
(n−N)2(a− c)

n(n− 2N)
√
d(1− d)

� a− c√
c
, (I.2)

i.e., there exists constant δ > 1 such that δ−1c ≤ p1 ≤ δc. By (I.1), we have p3 = −N/(n−N)p2 =
N2/(n−N)2p1. For any fixed Γ ⊆ {(i, j) : 1 ≤ i < j ≤ n},

EH1

∏
(i,j)∈Γ

Aij − d√
d(1− d)

= EΠ

E

 ∏
(i,j)∈Γ

Aij − d√
d(1− d)

∣∣∣∣∣ A has two communities assigned by Π




=EΠp
|Γ∩K⊗K|
1 · p|Γ∩K⊗K

c|
2 · p|Γ∩K

c⊗Kc|
3 = EΠ

∏
(i,j)∈Γ

{
p1 · (−N/(n−N))

πi+πj−2
}

=p
|Γ|
1 ·

(
−N
n−N

)∑
(i,j)∈Γ(πi+πj−2)

= p
|Γ|
1 ·

(
−N
n−N

)∑
(i,j)∈Γ(πi+πj−2)

=p
|Γ|
1 ·

n∏
i=1

(
−N
n−N

)(πi−1)·|{j′:(i,j′)∈Γ}|
(a)
= p

|Γ|
1 ·

n∏
i=1

{(
N

n

)
+
n−N
n

(
−N
n−N

)|{j′:(i,j′)∈Γ}|
}
.

Here, (a) is because P(πi = 1) = N/n; P(πi = 2) = (n − N)/n. Thus, the following fact
holds: if there exists a node i that appears exactly one time in Γ, i.e., |{j′ : (i, j′) ∈ Γ}| = 1,
EH1

∏
(i,j)∈Γ

Aij−d√
d(1−d)

= 0. On the other hand, for all Γ that each node appear zero times or at least

two times, we have

EH1

∏
(i,j)∈Γ

Aij − d√
d(1− d)

≤ p|Γ|1 ·

{
N

n
+
n−N
n

(
−N
n−N

)2
}|{i:i appears at least 2 times in Γ}|

≤p|Γ|1 ·
(

2N

n

)|{i:i appears at least 2 times in Γ}|

.

Finally, we denote

B0(D) = {Γ ∈ B(D) : each node in [n] appears zero time or at least 2 times} ,

m(Γ) = |{i : i appears in some pair of Γ}|.
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For any Γ ∈ B0(D), we must have m(Γ) ≤ |Γ| ≤ m(Γ)(m(Γ)− 1)/2. Then,

∑
Γ∈B(D)

EH1

∏
(i,j)∈Γ

Aij − d√
d(1− d)

2

=
∑

Γ∈B0(D)

EH1

∏
(i,j)∈Γ

Aij − d√
d(1− d)

2

=
∑

Γ∈B0(D)

p
2|Γ|
1 ·

(
2N

n

)2|{i:i appears at least 2 times in Γ}|

≤
∑

Γ∈B0(D)

p
2|Γ|
1 ·

(
2N

n

)2m(Γ)

=

D∑
m=2

D∧m(m−1)/2∑
g=m

∑
Γ∈B0(D)
m(Γ)=m
|Γ|=g

p2g
1

(
2N

n

)2m (a)

≤
D∑
m=2

D∧m(m−1)
2∑

g=m

(
n

m

)
mgpg1

(
2N

n

)m

≤
D∑
m=2

D∧m(m−1)
2∑

g=m

mgp2g
1 (2N)2m

m! · nm
≤

D∑
m=2

Dmax
{

(mp2
1)m, (mp2

1)D∧m(m−1)/2
}
· (2N)2m

nm

=D

D∑
m=2

(
max{mp2

1, (mp
2
1)M} · (2N)2

n

)m
(b)
= o(1)

Here, M = maxm≥1
D∧m(m−1)/2

m ≤
√
D/2− 1; (a) is because the number of Γ ∈ B0(D) with

m(Γ) = m and |Γ| = g is at most
(
n
m

)
·mg; (b) is due to the asymptotic assumption and (I.2), which

leads to
N√
n

(
p1 ∨ pM1

)
≤ n−ε.

We have thus finished the proof of this theorem. �

Proposition I.1 (Proposition 1.15 of Kunisky et al. (2019)). Given data A, consider the simple
hypothesis testing problem: H0 versus H1. Let the likelihood ratio function be LR(A) =

pH1
(A)

pH0
(A) .

Define ‖f‖ =
√
EH0f

2(A) and f≤D as the projection of any function f to the subspace of polyno-
mials of degree at most D, i.e., f≤D = argming is polynomial

degree(g)≤D
‖f − g‖. Then for any positive integer D,

we have
‖LR≤D(A)− 1‖ = max

f :degree(f)≤D
EH0

f2(A)=1

EH0
f(A)=0

EH1
f(A);

LR≤D(A)− 1

‖LR≤D(A)− 1‖
= argmaxf :degree(f)≤D

EH0
f2(A)=1

EH0
f(A)=0

EH1
f(A).

J PROOF OF THEOREM 2.7 (POWER OF EST)

The EST statistic is defined to be

φ
(v)
EST ≡ sup

|S|≤v

∑
i,j∈S

Aij ,

and the EST is defined to be
ϕEST = 1

[
φ

(r)
EST ≥ e

]
,

where v, e are relatively prime and satisfy
ω

1− β
<
v

e
< δ.

Such v and e exist because
ω

1− β
< δ,
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by assumption. Furthermore, we have
v < e

since ω, δ ∈ (0, 1).

To prove the statement, we require some preliminaries. LetG(n, p) denote an Erdős-Rényi graph with
parameter p. A graph H with v vertices and e edges is said to be balanced if for all (not necessarily
induced) subgraphs H ′ ⊂ H with v′ vertices and e′ edges, it holds that

e/v > e′/v′.

Next, the power of EST hinges on two well-known facts from probabilistic combinatorics. The first
concerns the appearance of an arbitrary graph H in G(n, p).
Theorem J.1 (Adapted from Theorem 4.4.2. of Alon & Spencer (2016)). Let H denote a graph
with v vertices and e edges. Then if p � n−v/e, the random graph G(n, p) does not have H as a
subgraph, with high probability as n→∞.

On the other hand, if H is balanced and p � n−v/e, the random graph G(n, p) contains H as a
subgraph, with high probability as n→∞.
Theorem J.2 (Ruciński & Vince (1986); Catlin et al. (1988)). There exists a balanced graph with v
vertices and e edges if and only if 1 ≤ v − 1 ≤ e ≤

(
v
2

)
.

Now we continue the proof. Recall that v and e are integers chosen such that ω
1−β < v/e < δ.

Type 1 error: Observe that

b =
cn− (a+ c)N

n− 2N
= c · n−N

n− 2N
− a · N

n− 2N
,

and thus

α = aε+ b(1− ε) = aε+ (1− ε)
(
c · n−N
n− 2N

− a · N

n− 2N

)
= a

(
N

n
− (1− ε) N

n− 2N

)
+ (1− ε) · n−N

n− 2N
· c = −a · N2

n(n− 2N)
+ (1− ε) · n−N

n− 2N
· c ∼ c.,

where above we use that aε ≤ c.
Thus under the alternative, A is distributed as Erdős-Rényi with parameter

α ∼ c = n−δ � n−v/e,

by our choice of v and e. By the first part of Theorem J.1, no subset of size v of A contains more
than e edges, with high probability as n→∞.

To be more precise, there are a finite number of graphs H1, . . . ,HL with v vertices and at least e
edges, where L is a constant depending only on v. For each graph Hi, Theorem J.1 contains Hi as a
subgraph with probability tending 0 as n→∞. The type 1 error of EST thus vanishes by the union
bound.

Type 2 error: Let H denote a balanced graph on v vertices and e edges, whose existence is guaranteed
by Theorem J.2. Consider the induced subgraph on C1, the smaller community, which is an Erdős-
Rényi random graph on N vertices with parameter a = n−ω . By our choice of v and e, we have

a = n−ω = N−
ω

1−β � N−v/e.

By Theorem J.1, C1 contains a copy of H with high probability. Since H has e edges, we conclude
that φ(v)

EST ≥ e, and thus the null is rejected with high probability as n→∞.
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