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We have collected and cleaned two network data sets: Coauthor-
ship and Citation networks for statisticians. The data sets are based
on all research papers published in four of the top journals in statis-
tics from 2003 to the first half of 2012. We analyze the data sets from
many different perspectives, focusing on (a) productivity, patterns
and trends, (b) centrality, and (c) community structures.

For (a), we find that over the 10-year period, both the average
number of papers per author and the fraction of self citations have
been decreasing, but the proportion of distant citations has been in-
creasing. These findings are consistent with the belief that the statis-
tics community has become increasingly more collaborative, compet-
itive, and globalized.

For (b), we have identified the most prolific/collaborative/highly
cited authors. We have also identified a handful of “hot” papers,
suggesting “Variable Selection” as one of the “hot” areas.

For (c), we have identified about 15 meaningful communities or
research groups, including large-size ones such as “Spatial Statistic-
s”, “Large-Scale Multiple Testing”, “Variable Selection” as well as
small-size ones such as “Dimensional Reduction”, “Bayes”, “Quan-
tile Regression”, and “Theoretical Machine Learning”.

Our findings shed light on research habits, trends, and topological
patterns of statisticians. The data sets provide a fertile ground for
future research on social networks.

1. Introduction. It is frequently of interest to identify “hot” areas and
key authors in a scientific community, and to understand the research habits,
trends, and topological patterns of the researchers. A better understanding
of such features is useful in many perspectives: it may help administrators
or funding agencies to prioritize research areas, and researchers to start a
new topic or a new collaboration, and so on and so forth.

Coauthorship and Citation networks provide a convenient and yet appro-
priate approach to addressing many of these questions. On one hand, with
the boom of online resources (e.g., MathSciNet) and search engines (e.g.,
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Google Scholar), it is relatively convenient to collect the Coauthorship and
Citation network data of a specific scientific community. On the other hand,
these network data provide a wide variety of information (e.g., productivi-
ty, trends, and community structures) that can be extracted to understand
many aspects of the scientific community.

Recent studies on such networks include but are not limited to the follow-
ing: Grossman (2002) studied the Coauthorship network of mathematicians;
Newman (2001a, 2004) and Martin et al. (2013) studied the Coauthorship
networks of biologists, physicists and computer scientists; Ioannidis (2008)
used the Coauthorship network to help assess the scientific impacts.

Unfortunately, as far as we know, Coauthorship and Citation networks
for statisticians have not yet been studied. We recognize that people who
are most interested in networks for statisticians are statisticians ourselves,
and it is the statisticians’ task to study our own networks. We also recognize
that, as statisticians, we have the advantage of knowing something about
many aspects of our own community; such “partial ground truth” can be
very helpful in analyzing the networks and in interpreting the results.

With substantial time and efforts, we have collected two network data
sets: Coauthorship network and Citation network for statisticians. The data
sets are based on all published papers from 2003 to the first half of 2012 in
four of the top statistical journals: Annals of Statistics (AoS), Biometrika,
Journal of American Statistical Association (JASA) and Journal of Royal
Statistical Society (Series B) (JRSS-B).

The data sets provide a fertile ground for research on social networks. For
example, we can use the data sets to check and build network models, to
develop new methods and theory, and to further understand the research
habits, patterns, and community structures of statisticians. The data sets
also serve as a starting point for a more ambitious project [Ji, Jin and Ke
(2015)], where we collect a network data set that is similar in nature but is
much larger: it covers about 30 journals and spans a time period of 40 years.

1.1. Our findings. We have the following findings.

• (a). Productivity, patterns and trends. We identify noticeable produc-
tivity characteristics and publication patterns/trends for statisticians.
• (b). Centrality. We identify “hot” areas, authors who are most collab-

orative, and authors who are most highly cited.
• (c). Community detection. With possibly more sophisticated methods

and analysis, we identify meaningful communities for statisticians.

We now discuss the three items separately.
(a). Productivity, patterns and trends. We have found the following.
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• Between 2003 and 2012, the number of papers per author has been
decreasing (Figure 1). The proportion of self-citations has been de-
creasing while the proportion of distant citations has been increasing
(Figure 4). Possible explanations are: the statistics community has
become increasingly more collaborative, competitive, and globalized.
• The distribution of either the degrees of the author-paper bipartite

network or the Coauthorship network has a power-law tail (Figures
2-3), a phenomenon frequently found in social networks [Barabasi and
Albert (1999); Newman (2001b)].

(b). Centrality. We have identified Peter Hall, Jianqing Fan, and Ray-
mond Carroll as the most prolific authors, Peter Hall, Raymond Carroll and
Joseph Ibrahim as the most collaborative authors, Jianqing Fan, Hui Zou,
and Peter Hall as the most cited authors. See Table 2.

We have also identified 14 “hot” papers. See Table 3. Among these 14 pa-
pers, 10 are on variable selection, suggesting “Variable Selection” as a “hot”
area. Other “hot” areas may include “Covariance Estimation”, “Empirical
Bayes”, and “Large-scale Multiple Testing”.

(c). Community detection. Intuitively, communities in a network are
groups of nodes that have more edges within than across (note that “com-
munity” and “component” are very different concepts); see Jin (2015) for
example. The goal of community detection is to identify such groups (i.e.,
clustering).

We consider the Citation network and two versions of Coauthorship net-
works. In each of these networks, a node is an author.

• (c1). Coauthorship network (A). In this network, there is an (undi-
rected) edge between two authors if and only if they have coauthored
2 or more papers in the range of our data sets.
• (c2). Coauthorship network (B). This is similar to Coauthorship net-

work (A), but “2 or more papers” is replaced by “1 or more papers”.
• (c3). Citation network. There is a (directed) edge from author i to j

if author i has cited 1 or more papers by author j.

The first version of Coauthorship network is easier to analyze than the sec-
ond version, and presents many meaningful research groups that are hard
to find. We now discuss the three networks separately.

(c1). Coauthorship network (A). The network is rather fragmented. The
giant component can be interpreted as the “High Dimensional Data Analysis
(Coauthorship (A))” (HDDA-Coau-A) community, which has 236 nodes and
may contain sub-structures; see Section 4.2. The next two largest compo-
nents (Figure 8) can be interpreted as communities of “Theoretical Machine
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Learning” (18 nodes) and “Dimension Reduction” (14 nodes), respective-
ly. The next 5 components (Table 6) can be interpreted as communities of
“Johns Hopkins”, “Duke”, “Stanford”, “Quantile Regression”, and “Exper-
imental Design”, respectively.

(c2). Coauthorship network (B). We have identified three meaningful com-
munities as follows: “Bayes”, “Biostatistics (Coauthorship (B))” (Biostat-
Coau-B), “High Dimensional Data Analysis (Coauthorship (B))” (HDDA-
Coau-B), presented in Figures 9, 10, and 11, respectively.

Table 1
The 14 communities introduced in Section 1.1. In Coauthorship Network (A), each

community is a component of the network. In Coauthorship Network (B) and Citation
Network, the communities are identified by SCORE and D-SCORE, respectively.

Network Communities #nodes Visualization

Coauthor(A)

High-Dimensional Data Analysis (HDDA-Coau-A) 236 Figures 6, 7
Theoretical Machine Learning 18 Figure 8
Dimension Reduction 14 Figure 8
Johns Hopkins 13

Table 6
Duke 10
Stanford 9
Quantile Regression 9
Experimental Design 8

Coauthor(B)
Bayes 64 Figure 9
Biostatistics 388 Figure 10
High-Dimensional Data Analysis (HDDA-Coau-B) 1181 Figure 11

Citation
Large-Scale Multiple Testing 359 Figure 13
Variable Selection 1280 Figure 14
Spatial & Semi-parametric/Non-parametric Statistics 1015 Figure 15

(c3). Citation network. We have identified three communities: “Large-
Scale Multiple Testing”, “Variable Selection” and “Spatial and semi-parametric/
nonparametric Statistics”, presented in Figures 13-15 respectively.

We present in Table 1 a road map for the 14 communities we just men-
tioned (some of these communities have sub-communities; see Sections 4-5).
The communities or groups identified in each of the three networks are con-
nected, intertwined, but are also very different. See Sections 5.2.1-5.2.2.

1.2. Data collection and cleaning. We have faced substantial challenges
in data collection and cleaning, and it has taken us more than 6 months to
obtain high-quality data sets and prepare them in a ready-to-use format.

It may be hard to understand why collecting such data is challenging:
the data seem to be everywhere, very accessible and free. This is true to
some extent. However, when it comes to high-volume high-quality data, the
resources become surprisingly limited. For example, Google Scholar aggres-
sively blocks any one who tries to download the data more than just a little;
when you try to download little by little, you will see some portion of the da-
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ta are made messy and incomplete intentionally. For other online resources,
we face similar problems.

Other challenges we have faced are missing paper identifiers, ambiguous
author names, etc.; we explain how we have overcome these in the Appendix.

1.3. Experimental design and scientific relevance. We have limited our
attention to four journals (AoS, Biometrika, JASA, JRSS-B), which are
regarded by many statisticians as the leading methodological journals (with
a caveat for JASA applications). We recognize that we may have different
results if we include in our data set either journals which are the main venues
for statisticians from a different country or region, or journals which are the
main venues for statisticians with a different focus (e.g., Bioinformatics).

Also, in our study, we are primarily interested in the time period when
high dimensional data analysis emerged as a new statistical area. We may
have different results if we extend the study to a much longer time period.

On the other hand, it seems that the data sets we have here serve well for
our targeted scientific problems: they provide many meaningful results in
many aspects of our targeted community within the targeted time period.
They also prepare us well for a more ambitious project [Ji, Jin and Ke
(2015)] where we collect new data sets by downloading papers from about
30 journals in the last 40 years.

1.4. Disclaimers. Our primary goal in the paper is to present the data
sets we collect, and to report our findings in such data sets. It is not our
intention to rank one author/paper over the others. We wish to clarify that
“highly cited” is not exactly the same as “important” or “influential”. It is
not our intention to rank one area over the other either. A “hot” area is not
exactly the same as an “important” area or an area that needs the most of
our time and efforts. It is not exactly an area that is exhausted either.

Also, it is not our intention to label an author/paper/topic with a cer-
tain community/group/area. A community or a research group may contain
many authors, and can be hard to interpret. For presentation, we need to as-
sign names to such communities/groups/areas, but the names do not always
accurately reflect all the authors/papers in them.

Finally, social networks are about “real people” (and this time, “us”). To
obtain interpretable results, we have to use real names, but we have not
used any data that is not publicly available. The interest of the paper is on
the statistics community as a whole, not on any individual statistician.

1.5. Contents. Section 2 studies the productivity, patterns and trends
for statisticians. Section 3 discusses the network centrality. Sections 4-5 dis-
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cuss community detection for the Coauthorship network and Citation net-
work, respectively. Section 6 contains some discussion, and Section 7 is the
Appendix, where we address the challenges in data collection and cleaning.

2. Productivity, patterns and trends.

2.1. Productivity. There are 3248 papers and 3607 authors in the data
set (an average of .90 paper per author). To investigate how the productivity
evolves over the years, we present in Figure 1 the total number of paper-
s published in each year (left panel) and the yearly average productivity
(per author)1. Over the 10-year period, the number of papers published in
each year has been increasing, but the yearly average producibility has been
decreasing (drop about 18% in ten years). Possible explanations include:

• More collaborative. Collaboration between authors has been increasing.
• More competitive. Statistics has become a more competitive area, and

there are more people who enter the area than who leave the area.

It could also be the case that the productivity does not change much, but
statisticians are publishing in a wider range of journals, and more younger
ones have started making substantial contributions to the field.
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Fig 1. Left: total number of papers published each year from 2002 to 2012 (for the year
2012, we have only data for the first half). Right: yearly average productivity per author.

For any K-author paper, we may count each coauthor’s contribution to
this particular paper either as “divided” or as “non-divided”, where we count
every coauthor as has published 1 paper and 1/K paper, respectively.

For “non-divided” contribution, we have Figure 2 (left), where the x-axis
is the number of papers, and the y-axis is the proportion of authors who
have written more than a certain number of papers. Figure 2 suggests that
the distribution of the number of papers has a power law tail. For “divided”

1For each year, this is the ratio of the total number of papers in that year over the
total number of authors who published at least once in that year.
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Fig 2. Left: The proportion of authors who have written more than a certain number of
papers (for a better view, both axes are evenly spaced on the logarithmic scale). Right: The
Lorenz curve for the number of papers each author with divided contributions.

contribution, we have the Lorenz curve for the number of papers by each
author in Figure 2 (right), which suggests the distribution does not have a
power law tail but is still very skewed. For example, the figure shows that
the top 10% most prolific authors contribute 41% of the papers. Our findings
are similar to that in Martin et al. (2013) for the physics community.

2.2. Coauthor patterns and trends. In the coauthorship network, the de-
grees (i.e., number of coauthors) range from 0 to 65, where Peter Hall (65),
Raymond Carroll (55), Joseph Ibrahim (41), Jianqing Fan (38) have the
highest degrees. Also, 154 authors have degree 0, and 913 authors have de-
gree 1. The degree distribution (Figure 3, left) suggests a power law tail.

To investigate how the number of coauthors changes over time, we present
in Figure 3 (right) the average number of coauthors in each year, where the
average number of coauthors is steadily increasing. Again, this suggests that
the statistics community has become increasingly more collaborative.

.001

.01

.1

1

1 4 16 64 2004 2006 2008 2010 2012

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Fig 3. Left: The proportion of authors with more than a given number of coauthors (for
a better view, both axes are evenly spaced on the logarithmic scale). Right: The average
number of coauthors for all authors who has published in these journals that year.
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2.3. Citation patterns and trends. For the 3248 papers (3607 authors) in
our data sets, the average citation per paper is 1.76.2 Among these papers,
(a) 1693 (52%) are not cited by any other paper in the data set, (b) 1450
(45%) do not cite any other paper in the data set, and (c) 778 (24%) neither
cite nor are cited by any other papers in the data set.

The distribution of the in-degree (the number of citations received by
each paper) is highly skewed. For example, the top 10% highly cited papers
receive about 60% of all citation counts. The Gini coefficient is .77 [Gini
(1936)] suggesting that the in-degree is highly dispersed. The Lorenz curve
(Figure 4, left) confirms that the distribution of the in-degrees is highly
skewed.
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Fig 4. Left: The Lorenz curve for the number of citation received by each paper. Right: The
proportions of self-citations (red circles), coauthor citations (green triangles) and distant
citations (blue rectangles) for each two-year block.

It seems that authors tend to return a favor, especially if it is from a
coauthor: the proportion of (either earlier or later) reciprocation among
coauthor citations is 79%, while that among distant citations is 25%.

The overall proportions for self-citations, coauthor citations, and distan-
t citations3 are 27%, 9%, and 64%, respectively. Moreover, Figure 4 (right
panel) suggests that over the 10-year period, the proportions of self-citations,
coauthor citations, and distant citations have been slowly decreasing, rough-
ly the same, and slowly increasing, respectively. The last item is a bit unex-
pected, but may due to that over the years, the publications have become
increasingly more accessible. That the blue and red curves cross with each
other on the left is probably due to the “boundary effect”.4

2This is significantly lower than the Impact Factor (IF) of these journals; based on
ISI 2010, the IFs for AoS, JRSS-B, JASA, and Biometrika are 3.84, 3.73, 3.22, and 1.94,
respectively. This is due to that we count only citations between papers in our data set.

3Citations from some one who is not oneself or a coauthor.
4Here is an example for boundary effect. For papers published in 2003, most papers
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3. Centrality. It is frequently of interest to identify the most “impor-
tant” authors or papers, and one possible approach is to use centrality. There
are many different measures of centrality. In this section, we use the degree
centrality, the closeness centrality, and the betweenness centrality. The close-
ness centrality is defined as the reciprocal of the total distance to all others
[Sabidussi (1966)]. The betweenness centrality measures the extent to which
a node is located “between” other pairs of nodes [Freeman, Borgatti and
White (1991)].

The degree centrality is conceptually simple, but the definitions vary from
case to case. For the author-paper bipartite network, the centrality of an
author is the number of papers he/she publishes. For Coauthorship network,
the centrality of an author is the number of his/her coauthors. For Citation
network of papers, the centrality is the in-degree (i.e., the number of papers
which cite this paper). For Citation network of authors, the centrality of an
author is the number of citers (i.e., authors who cite his or her papers).

Table 2 presents the key authors identified by different measures of cen-
trality. The results suggest that different measures of centrality are largely
consistent with each other, which identify Raymond Carroll, Jianqing Fan,
and Peter Hall (alphabetically) as the “top 3” authors.

Table 2
Top 3 authors identified by the degree centrality (Columns 1-3; corresponding networks
are the author-paper bipartite network, Coauthorship network, and Citation network for

authors), the closeness centrality and the betweenness centrality.

# of papers # of coauthors # of citers Closeness Betweenness

Peter Hall Peter Hall Jianqing Fan Raymond Carroll Raymond Carroll
Jianqing Fan Raymond Carroll Hui Zou Peter Hall Peter Hall
Raymond Carroll Joseph Ibrahim Peter Hall Jianqing Fan Jianqing Fan

Table 3 presents the “hot” papers identified by 3 different measures of
centrality. For all these measures, the “hottest” papers seem to be in the
area of variable selection. In particular, the top 3 most cited paper are Zou
(2006) (75 citations; adaptive lasso), Meinshausen and Bühlmann (2006) (64
citations; graphical lasso), and Candès and Tao (2007) (49 citations; Dantzig
Selector). The three papers are all in a specific sub-area of high dimensional
variable selection, where the theme is to extend the penalization methods
(e.g., the lasso by Chen, Donoho and Saunders (1998) and Tibshirani (1996))
in various directions5.

These results suggest “Variable Selection” as one of the “hot” areas. Other

they cite are probably published earlier than 2002 (so beyond the range of our data set).
5These fit well with the impression of many statisticians: in the past 10-20 years, there

is a noticeable wave of research interest on the penalization approach to variable selection.
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Table 3
Fourteen “hot” papers (alphabetically) identified by degree centrality (for citation

networks of papers), closeness centrality, and betweenness centrality. Numbers in Column
2-4 are the ranks (only shown when the rank is smaller than 5).

Paper (Area) Citations Closeness Betweenness

Bickel and Levina (2008a) (Covariance Estimation) 4

Candès and Tao (2007) (Variable Selection) 3

Fan and Li (2004) (Variable Selection) 2

Fan and Lv (2008) (Variable Selection) 1

Fan and Peng (2004) (Variable Selection) 4 1

Huang et al. (2006) (Covariance Estimation) 3

Huang, Horowitz and Ma (2008) (Variable Selection) 5

Hunter and Li (2005) (Variable Selection) 4

Johnstone and Silverman (2005) (Empirical Bayes) 5

Meinshausen and Bühlmann (2006) (Variable Selection) 2

Storey (2003) (Multiple Testing) 3

Zou (2006) (Variable Selection) 1

Zou and Hastie (2005) (Variable Selection) 5

Zou and Li (2008) (Variable Selection) 2

“hot” areas may include “Covariance Estimation”, “Empirical Bayes”, and
“Large-Scale Multiple Testing”; see Table 3 for details.

For the 30 most cited papers, see http://faculty.franklin.uga.edu/

psji/sites/faculty.franklin.uga.edu.psji/files/top-cited-30.xlsx.
These papers account for 16% of the total number of citation counts. The
list further shows that the most highly cited papers are on the penalization
approach to variable selection (e.g., adaptive lasso, group lasso).

On the other hand, note that some important and innovative works in the
area of variable selection have significantly fewer citations. These include but
are not limited to the phenomenal paper by Efron et al. (2004) on least angle
regression, which has received a lot of attention from a broader scientific
community6. A similar claim can be drawn on other areas or topics.

The fact that statisticians have been very much focused on a very specific
research topic and a very specific approach is an interesting phenomenon
that deserves more explanation by itself.

4. Community detection for Coauthorship networks. In this sec-
tion, we study community detection for Coauthorship networks (A) and (B).

4.1. Community detection methods (undirected networks). Community
detection is a problem of major interest in network analysis [Goldenberg
et al. (2009)]. Consider an undirected and connected network N = (V,E)

6The paper has 4900 citations on Google Scholar, but is only cited 11 times by papers in
our data set (in comparison, the adaptive lasso paper Zou (2006) has received 75 citations).

http://faculty.franklin.uga.edu/psji/sites/faculty.franklin.uga.edu.psji/files/top-cited-30.xlsx
http://faculty.franklin.uga.edu/psji/sites/faculty.franklin.uga.edu.psji/files/top-cited-30.xlsx
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with n nodes. We think V as the union of a few (disjoint) subsets which we
call the “communities”:

V = V (1) ∪ V (2) . . . ∪ V (K), 7

where “∪” stands for the conventional union in set theory (same below).
Intuitively, we think communities as subsets of nodes where there are more
edges “within” than “across” [e.g., Bickel and Levina (2008b)]. The goal of
community detection is clustering: for each i ∈ V , decide to which of the K
communities it belongs.

There are many community detection methods for undirected networks. In
this paper, we consider the Spectral Clustering approach (NSC) by Newman
(2006), the Profile Likelihood approach (BCPL) by Bickel and Chen (2009)
and Zhao, Levina and Zhu (2012), the Pseudo Likelihood approach (APL)
by Amini et al. (2013), and the SCORE by Jin (2015).

NSC is a spectral method, based on the key observation is that Newman
and Girvan’s modularity matrix can be approximated by the leading eigen-
vectors of the matrix. Following Newman (2006), we cluster by using the
signs of the first leading eigenvectors when K = 2, and use the recursive
bisection approach when K ≥ 3.

BCPL is a penalization method proposed by Bickel and Chen (2009) which
uses greedy search to maximize the profile likelihood. For large networks,
BCPL may be computationally inefficient. In light of this, Amini et al. (2013)
modified BCPL and proposed APL as a new Profile Likelihood approach.
APL ignores some dependence structures in the modeling so the resultant
profile likelihood has a simpler form and is easier to compute.

SCORE, or Spectral Clustering On Ratios of Eigenvectors, is a spectral
method motivated by the recent Degree Corrected Block Model [DCBM,
Karrer and Newman (2011)]. SCORE recognizes that, the degree hetero-
geneity parameters in DCBM are nearly ancillary, and can be conveniently
removed by taking entry-wise ratios between the eigenvectors of the adjacen-
cy matrix; see Jin (2015). SCORE is a flexible idea and is highly adaptable.
In Section 5, we extend SCORE to Directed-SCORE (D-SCORE) as an ap-
proach to community detection for directed networks, and use it to analyze
the Citation network.

Remark. For different methods, the vectors of predicted labels can be
very different. For a pair of the predicted label vectors, we measure the
similarity by the Adjusted Rand Index (ARI) [Hubert and Arabie (1985)]
and the Variation of Information (VI) [Meila (2003)]; a large ARI or a small
VI suggests that two predicted label vectors are similar to each other.

7For simplicity, we assume the communities are non-overlapping in this paper.
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4.2. Coauthorship network (A). In this network, by definition, there is
an edge between two nodes (i.e., authors) if and only if they have coauthored
2 or more papers (in the range of our data sets). The network is very much
fragmented: the total of 3607 nodes split into 2985 different components,
where 2805 (94%) of them are singletons, 105 (3.5%) of them are pairs, and
the average component size is 1.2.

The giant component (236 nodes) is seen to be the “High Dimension-
al Data Analysis (Coauthorship (A))” community (HDDA-Coau-A), in-
cluding (sorted descendingly by the degree) Peter Hall, Raymond Carroll,
Jianqing Fan, Joseph Ibrahim, Tony Cai, David Dunson, Hua Liang, Jing
Qin, Donglin Zeng, Hans-Georg Müller, Hongtu Zhu, Enno Mammen, Jian
Huang, Runze Li, etc. It seems that the giant component has sub-structures.
In Figure 5 (left), we plot the scree-plot of the adjacency matrix associated
with this group. The elbow point of the scree-plot maybe at the 3rd, 5th, or
8th largest eigenvalue, suggesting that there may be 2, 4, or 7 communities.
In light of this, for each K with 2 ≤ K ≤ 7, we run SCORE, NSC, BCPL
and APL and record the corresponding vectors of predicted labels. We find
that for K ≥ 3, the results by different methods are largely inconsistent with
each other: the maximum of ARI and the minimum VI (see the remark in
Section 4.1) across different pairs of methods are 0.15 and 1.19, respectively.
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Fig 5. Scree plots. From left to right: the giant component of Coauthorship network(A),
Coauthorship network(B), Citation network (asymmetric; plotted are singular values).

We now focus on the case of K = 2. In Table 4, we present the ARI and VI
for each pair of the methods. The table suggests that: the 4 methods split into
two groups where SCORE and APL are in one of the groups with an ARI of
0.72 between them, and NSC and BCPL are in the other group with an ARI
of 0.21. The results for methods in each group are moderately consistent to
each other, but those for methods in different groups are rather inconsistent.
That BCPL and APL have rather different results is unexpected, as APL is
a variant of BCPL. Possible explanation is that both methods use random
starting points; they do not necessary converge even for a long time, and so
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may produce different results from run to run. See Table 5, which compares
the sizes of the communities identified by the 4 methods.

In Figures 6-7, we further compare the community detection results by
each of the 4 methods (K = 2). In each panel, nodes are marked with either
blue circles or red squares, representing two different communities. It seems
that all four methods agree that there are two communities as follows.

• “North Carolina” community. This includes a group of researchers
from Duke Univ., Univ. of North Carolina, North Carolina State Univ.
• “Carroll-Hall” community. This includes a group of researchers in non-

parametric and semi-parametric statistics, functional estimation, and
high dimensional data analysis.

Comparing the results by different methods, one of the major discrepancies
lies in the “Fan” group: SCORE and APL cluster the “Fan” group (with
Jianqing Fan being the hub) into the “Carroll-Hall” community, and N-
SC and BCPL cluster it into the“North Carolina” community. A possible
explanation is that, the “Fan” group has strong ties to both communities.
Another explanation is that there are ≥ 3 communities. However, the results
by all 4 methods are rather inconsistent if we assume K ≥ 3; see discussions
before. How to obtain a more convincing explanation is an interesting but
challenging problem. We omit further discussions for reasons of space.

Table 4
The Adjusted Random Index (ARI) and Variation of Information (VI) for the vectors of

predicted community labels by four different methods for the giant component of
Coauthorship (A), assuming K = 2. A large ARI/small VI suggests that the two

predicted label vectors are similar to each other.

SCORE NSC BCPL APL
SCORE 1.00/.00 -.04/.95 .09/1.05 .72/.33
NSC 1.00/.00 .21/1.06 -.06/.91
BCPL 1.00/.00 .09/.87
APL 1.00/.00

Other noteworthy discrepancies are as follows:

• SCORE includes the “Dunson” branch in the “North Carolina” group,
but APL clusters them into the “Carroll-Hall” group to which they are
not directly connected. In this regard, it seems that results by SCORE
are more meaningful.
• NSC and BCPL differ on several small branches, including the “Dun-

son” branch and two small branches connecting to Jianqing Fan. In
comparison, the results by NSC seem more meaningful.
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Table 5
Comparison of community sizes by different methods assuming K = 2 for the giant

component of Coauthorship network (A).

North Carolina Carroll-Hall

SCORE 45 191

NSC 155 81

APL 31 205

SCORE ∩ NSC 45 81

SCORE ∩ APL 31 191

NSC ∩ APL 31 81

SCORE ∩ NSC ∩ APL 31 81

Moving away from the giant component, the next two largest components
are the “Theoretical Machine Learning” group (18 nodes) and the “Dimen-
sion Reduction” group (14 nodes); see Figure 8. The first one is a research
group who work on Machine Learning topics using sophisticated statistical
theory, including Peter Bühlmann, Alexandre Tsybakov, Jon Wellner, and
Bin Yu. The second one is a research group on Dimension Reduction, includ-
ing Francesca Chiaromonet, Dennis Cook, Bing Li and their collaborators.

A conversation with Professor Qunhua Li (Statistics Department at Penn
State) helps to illuminate why these groups are meaningful and how they
evolve over time. In the first community, Marloes H. Maathuis obtained her
Ph.D from University of Washington (jointly supervised by Jon Wellner and
Piet Groeneboom) in 2006 and then went on to work in ETH, Switzerland,
and she is possibly the “bridge” connecting the Seattle group and the ETH
group (Peter Bühlmann, Markus Kalische, Sara van de Geer). Nocolai Mein-
shausen could be one of the “bridging nodes” between ETH and Berkeley:
he was a Ph.D student of Peter Bühlmann and then a postdoc at Berkeley.
In the second group, Ms. Chiaromonet obtained her Ph.D from University
of Minnesota, where Dennis Cook served as the supervisor. She then went
on to work in the Statistics Department at Pennsylvania State University,
and started to collaborate with Bing Li on Dimension Reduction.

The next 5 largest components in Coauthorship network (A) are the
“Johns Hopkins” group (13 nodes; including faculty at Johns Hopkins U-
niversity and their collaborators; similar below), “Duke” group (10 nodes;
including Mike West, Jonathan Stroud, Carlos Caravlaho, etc.), “Stanford”
group (9 nodes including David Siegmund, John Storey, Ryan Tibshirani,
and Nancy Zhang, etc.), “Quantile Regression” group (9 nodes; including
Xuming He and his collaborators), and “Experimental Design” group (8
nodes). These groups are presented in Table 6.
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Fig 6. Community detection results by SCORE (top) and APL (bottom) for the giant
component of Coauthorship network (A), assuming K = 2. Nodes in blue circles and red
squares represent two different communities.

4.3. Coauthorship network (B). In this network, there is an edge between
nodes i and j if and only if they have coauthored 1 or more papers. Compared
to Coauthorship network (A), this definition is more conventional, but it also
makes the network harder to analyze.

Coauthorship network (B) has a total of 3607 nodes, where the giant
component has 2263 nodes (63% of all nodes). For analysis in this section,
we focus on the giant component. Also, for simplicity, we call the giant
component the Coauthorship network (B) whenever there is no confusion.
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Fig 7. Community detection results by NSC (top) and BCPL (bottom) for the giant
component of Coauthorship network (A), assuming K = 2. Nodes in blue circles and red
squares represent two different communities.

Figure 5 (middle) presents the scree plot for the adjacency matrix of
Coauthorship network (B), suggesting 3 or more communities. Assuming
K = 3, we apply SCORE, NSC, BCPL, and APL, and below are the findings.

First, somewhat surprisingly, the results of BCPL are inconsistent with
those by all other methods. For example, the maximum ARI between BCPL
and each of the other three methods is .00, and the smallest VI between
BCPL and each of the other three methods is 1.29, showing a substantial
disagreement. See Table 7, where we compare all 4 methods pair-wise and
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Fig 8. The second largest (left) and third largest (right) components of Coauthorship net-
work (A). They can be possibly interpreted as the “Theoretical Machine Learning” and
“Dimension Reduction” communities, respectively.

Table 6
Top: the 4-th, 5-th, and 6-th largest components of Coauthorship network (A) which can
be interpreted as the groups of “Johns Hopkins”, “Duke”, and “Stanford”). Bottom: the
7-th and 8-th largest components of Coauthorship network (A) which can be interpreted

as the groups of “Quantile Regression” and “Experimental Design”.

Barry Rowlingson
Brian S Caffo
Chong-Zhi Di
Ciprian M Crainiceanu
David Ruppert
Dobrin Marchev
Galin L Jones
James P Hobert
John P Buonaccorsi
John Staudenmayer
Naresh M Punjabi
Peter J Diggle
Sheng Luo

Carlos M Carvalho
Gary L Rosner
Gerard Letac
Helene Massam
James G Scott
Jonathan R Stroud
Maria De Iorio
Mike West
Nicholas G Polson
Peter Müller

Armin Schwartzman
Benjamin Yakir
David Siegmund
F Gosselin
John D Storey
Jonathan E Taylor
Keith J Worsley
Nancy Ruonan Zhang
Ryan J Tibshirani

Hengjian Cui
Huixia Judy Wang
Jianhua Hu
Jianhui Zhou
Valen E Johnson
Wing K Fung
Xuming He
Yijun Zuo
Zhongyi Zhu

Andrey Pepelyshev
Frank Bretz
Holger Dette
Natalie Neumeyer
Stanislav Volgushev
Stefanie Biedermann
Tim Holland-Letz
Viatcheslav B Melas

tabulate the corresponding ARI and VI (see Remark 2).
Second, the results by SCORE, NSC, and APL are reasonably consistent

with each other: the ARI between the vector of predicted labels by SCORE
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Table 7
The Ajusted Rand Index (ARI) and Variation of Information (VI) for the vectors of
predicted community labels by four different methods in Coauthorship network (B),

assuming K = 3. A large ARI/small VI suggests that the two predicted label vectors are
similar to each other.

SCORE NSC BCPL APL

SCORE 1.00/.00 .55/.51 .00/1.65 .19/.59
NSC 1.00/.00 .00/1.46 .41/.36
BCPL 1.00/.00 .00/1.21
APL 1.00/.00

and that by NSC is 0.55 and the ARI between the vector of predicted labels
by NSC and that by APL is 0.41; see Table 7 for details. In particular, the
three methods seem to agree on that there are three communities which can
be interpreted as follows (arranged ascendingly in size).

• “Bayes” community. This community includes a small group of re-
searchers (group sizes are different for different methods, ranging from
20 to 69) including James Berger and his collaborators.
• “Biostatistics (Coauthorship (B))” (Biostat-Coau-B) community. The

sizes of three versions of this community (corresponding to three meth-
ods) are quite different and range from 50 to 388. While it is probably
not exactly accurate to call this community “Biostatistics”, the com-
munity consists of a number of statisticians and biostatisticians in the
Research Triangle Park of North Carolina. It also includes many s-
tatisticians and biostatisticians from Harvard University, University
of Michigan at Ann Arbor, University of Wisconsin at Madison.
• “High Dimensional Data Analysis (Coauthorship (B))” (HDDA-Coau-

B) community. The sizes of this community identified by three different
methods range from 1811 to 2193. The community includes researchers
from a wide variety of research areas in or related to high dimensional
data analysis (e.g., Bioinformatics, Machine Learning).

Figures 9-11 present these 3 communities (by SCORE) respectively.
In Table 8, we compare the sizes of the three communities identified by

each of the three methods. There are two points worth noting.
First, while SCORE and NSC are quite similar to each other, there is

a major difference: NSC clusters about 200 authors, mostly biostatisticians
from Harvard University, University of Michigan at Ann Arbor, and Uni-
versity of Wisconsin at Madison, into the HDDA-Coau-B community, but
SCORE clusters them into the Biostat-Coau-B community. It seems that
the results by SCORE are more meaningful.

Second, APL behaves very differently from either SCORE or NSC. Its
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Table 8
Comparison of sizes of the three communities identified by each of the three methods in
Coauthorship network (B), assuming K = 3. BCPL is not included for comparisons for

its results are inconsistent with those by the other three methods.

Bayes Biostat-Coau-B HDDA-Coau-B

SCORE 64 388 1811

NSC 68 163 2032

APL 20 50 2193

SCORE ∩ NSC 55 162 1807

SCORE ∩ APL 20 50 1811

NSC ∩ APL 20 50 2032

SCORE ∩ NSC ∩ APL 20 50 1807

estimate of the “Bayes” community is (almost) a subset of its counterpart
by either SCORE or NSC, and is much smaller in size (sizes are 20, 64, and 69
for those by APL, SCORE, and NSC, respectively). A similar claim applies
to the Biostat-Coau-B community identified by each of the methods (sizes
are 50, 388, and 169 for those by APL, SCORE, and NSC, respectively).
This suggests that APL may have underestimated these two communities
but overestimated the HDDA-Coau-B community.8

It is also interesting to compare these results with those we obtain in Sec-
tion 4.2 for Coauthorship network (A). Below are three noteworthy points.

First, recall that in Figure 8 and Table 6, we have identified a total of
7 different components of Coauthorship network (A). Among these compo-
nents, the Duke component (middle panel on top row in Table 6) splits into
three parts, each belongs to the three of the communities of Coauthorship
network (B) identified by SCORE. The other 6 components fall into the
HDDA-Coau-B community identified by SCORE almost completely.

Second, for the giant component of Coauthorship (A), there is a close
draw on whether we should cluster the Carroll-Hall’s group and Fan’s group
into two communities: SCORE and APL think that two groups belong to one
community, but NSC and BCPL do not agree with this. In Coauthorship
(B), both groups are in the HDDA-Coau-B community. Also, in previous
studies on this giant component, BCPL and APL separate the nodes in
Dunson’s branch from the North Carolina group, and cluster them into the
Carroll-Hall group. In the current study, however, the whole North Carolina

8In Column 1 of Table 8, the authors in “SCORE ∩ NSC \ APL” are mostly Bayesian
statisticians, including Steven MacEachern, Alan Gelfand, Bruno Sanso, Gary Rosner,
Nicholas Polson, Herbert Lee, Edward George, etc. In Column 2 of Table 8, the authors
in the subset of “SCORE ∩ NSC \ APL” are mostly biostatisticians including Trivellore
Raghunathan, Jun Liu, L J Wei, Louise Ryan, Ram Tiwari, Joseph Lucas, Nathaniel
Schenker, etc.
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group (including Dunson’s branch) are in the Biostat-Coau-B community.
Third, in Coauthorship (A), Gelfand’s group is included in this 236-node

giant component, where James Berger is not a member. In Coauthorship
network (B), Gelfand’s group now becomes a subset of “Bayes” community
where James Berger is a hub node.
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Fig 9. The “Bayes” community in Coauthorship network (B) identified by SCORE (64
nodes). Only names for 14 nodes with a degree of 9 or larger are shown.

5. Community detection for Citation network. The Citation net-
work is a directed network. As a result, the study in this section is very
different from that in Section 4, and provides additional insight.

5.1. Community detection methods (directed networks). In the Citation
network, each node is an author and there is a directed edge from node i
to node j if and only if node i has cited node j at least once. To analyze
the Citation network, one usually focuses on the weakly connected giant
component.9 From now on, when we say the Citation network, we mean the
weakly connected giant component of the original Citation network.

For community detection of directed networks, we consider two methods:
LNSC and Directed-SCORE (D-SCORE). See the remark in Section 5.2.3
for discussions on other methods.

9I.e., the giant component of the weakly connected citation network, where there is
an (undirected) edge between nodes i and j if one has cited the other at least once [
Bang-Jensen and Gutin (2009)].
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Fig 10. The “Biostatistics” community (Biostat-Coau-B) in Coauthorship network (B)
identified by SCORE (388 nodes). Only names for 17 nodes with a degree of 13 or larger
are shown. A “branch” in the figure is usually a research group in an institution or a state.

LNSC stands for the Spectral Clustering approach proposed in Leicht and
Newman (2008): the authors extended the spectral modularity methods by
Newman (2006) for undirected networks to directed networks, using the so-
called generalized modularity [Arenas et al. (2007)]. However, it is pointed
out in Kim, Son and Jeong (2010) that LNSC can not properly distinguish
the directions of the edges and can not detect communities representing
directionality patterns among the nodes. See details therein.

D-SCORE is an adaption of SCORE [Jin (2015)] (see Section 4.1) to
directed networks. Let A be the adjacency matrix, and let û1, û2, . . . , ûK
and v̂1, v̂2, . . . , v̂K be the first K left singular vectors and the first K right
singular vectors of A, respectively. Also, let N1 be the support of û1 and N2

be the support of v̂1. Define two n× (K − 1) matrices R̂(l) and R̂(r) by

(5.1) R̂(l)(i, k) =

{
sgn(ûk+1(i)/û1(i)) ·min{| ûk+1(i)

û1(i)
|, log(n)}, i ∈ N1,

0, i /∈ N1,
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Fig 11. The “High Dimensional Data Analysis” community (HDDA-Coau-B) in Coau-
thorship network (B) identified by SCORE (1181 nodes). Only names for 22 nodes with
degree of 18 or larger are shown.

(5.2) R̂(r)(i, k) =

{
sgn(v̂k+1(i)/v̂1(i)) ·min{| v̂k+1(i)

v̂1(i)
|, log(n)}, i ∈ N2,

0, i /∈ N2.

Note that all nodes split into four disjoint subsets:

N = (N1 ∩N2) ∪ (N1 \ N2) ∪ (N2 \ N1) ∪ (N \ (N1 ∪N2)).

D-SCORE clusters nodes in each subset separately.

1. (N1∩N2). Restricting the rows of R̂(l) and R̂(r) to the set N1∩N2 and
obtaining two matrices R̃(l) and R̃(r), we cluster all nodes in N1 ∩N2

by applying the k-means to the matrix [R̃(l), R̃(r)] assuming there are
≤ K communities.
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2. (N1\N2). Note that according to the communities we identified above,
the rows of R̃(l) partition into ≤ K groups. For each group, we call the
mean of the row vectors the community center. For a node i in N1\N2,
if the i-th row of R̂(l) is closest to the center of the k-th community
for some 1 ≤ k ≤ K, then we assign it to this community.

3. (N2 \ N1). We cluster in a similar fashion to that in the last step, but
we use (R̃(r), R̂(r)) instead of (R̃(l), R̂(l)).

4. (N \ (N1 ∪N2)). In Step 1-3, all nodes in N1 ∪N2 partition into ≤ K
communities. For each node in N \ (N1 ∪ N2), we assign it to the
community to which it has the largest number of weak-edges.

We don’t need a sophisticated clustering method for nodes in N \ (N1∪N2)
as we assume this set is small. See Section 5.2 for an example.

Figure 12 illustrates how D-SCORE works using the statistical citation
network data set with K = 3. Two panels show similar clustering patterns,
suggesting that there are three communities; see Section 5.2 for details.
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Fig 12. Left: each point represents a row of R̂(l) (the matrix has only two columns since
K = 3) associated with the statistical Citation network (x-axis: first column, y-axis: sec-
ond column). Only rows with indices in N1 are shown. Blue pluses, green bars, and red
dots represent 3 different communities identified by SCORE, which can be interpreted as
“Large-Scale Multiple testing”, “Spatial and Semi-parametric/Nonparametric Statistics”
and “Variable Selection”, Right: similar but with (R̂(l),N1) replaced by (R̂(r),N2).

5.2. Community detection of the Citation network by D-SCORE. The
original citation network data set has 3607 nodes (i.e., authors). The associ-
ated weakly connected network has 927 components. The giant component
has 2654 nodes, and all other components have no more than 5 nodes.

We restrict our attention to the weakly connected giant component N =
(V,E). Let N1 and N2 be as in defined in Section 5.1. We have |N1| = 2126,
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|N2| = 1790, |N1 ∩ N2| = 1276, and |N \ (N1 ∪ N2))| = 14. Let A be the
adjacency matrix of N . Figure 5 (right) presents the scree plot of A. The
plot suggests that there are K = 3 communities in N .
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Fig 13. The “Large-Scale Multiple Testing” community identified by D-SCORE (K = 3)
in the Citation network (359 nodes). Only 26 nodes with 24 or more citers are shown.

We now present the results by D-SCORE. The results of LNSC are very
different and are only discussed briefly in Section 5.2.3). Assuming K = 3,
D-SCORE identifies three communities as follows.

• “Large-Scale Multiple Testing” community (359 nodes). This consist-
s of researchers in multiple testing and control of False Discovery
Rate. It includes a Bayes group (James Berger, Peter Müller), three
Berkeley-Stanford groups (Bradley Efron, David Siegmund, John S-
torey; David Donoho, Iain Johnstone, Mark Low,10 John Rice; Erich
Lehmann, Joseph Romano), a Carnegie Mellon group (e.g., Christo-
pher Genovese, Jiashun Jin, Isabella Verdinelli, Larry Wasserman), a

10He and Abba Krieger below are at University of Pennsylvania
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Causal Inference group (Donald Rubin, Paul Rosenbaum), and a Tel
Aviv group (Felix Abramovich, Yoav Benjamini, Abba Krieger, Daniel
Yekutieli).
• “Variable Selection” community (1280 nodes). This includes (sorted

descendingly by the number of citers) Jianqing Fan, Hui Zou, Pe-
ter Hall, Nicolai Meinshausen, Peter Bühlmann, Ming Yuan, Yi Lin,
Runze Li, Peter Bickel, Trevor Hastie, Hans-Georg Müller, Emmanuel
Candès, Cun-Hui Zhang, Heng Peng, Jian Huang, Tony Cai, Terence
Tao, Jianhua Huang, Alexandre Tsybakov, Jonathan Taylor, Xihong
Lin, Jane-Ling Wang, Dan Yu Lin, Fang Yao, Jinchi Lv.
• “Spatial and Semi-parametric/Nonparametric Statistics” (for short,

“Spatial Statistics”) community (1015 nodes). See discussions below.

The first two communities are presented in Figures 13 and 14, respective-
ly. The last community is harder to interpret and seems to contain sub-
structures. For further investigation, we first restrict the network to this com-
munity (i.e., ignoring all edges to/from outside) and obtain a sub-network.
We then apply D-SCORE with K = 3 to the giant component (908 nodes) of
this sub-network, and obtain three meaningful sub-communities as follows.

• Non-parametric spatial/Bayes statistics (212 nodes), including David
Blei, Alan Gelfand, Yi Li, Steven MacEachern, Omiros Papaspiliopou-
los, Trivellore Raghunathan, Gareth Roberts.
• Parametric spatial statistics (304 nodes), including Marc Genton, Tilman-

n Gneiting, Douglas Nychka, Anthony O’Hagan, Adrian Raftery, Nan-
cy Reid, Michael Stein.
• Semi-parametric/Non-parametric statistics (392 nodes), including Ray-

mond Carroll, Nilanjan Chatterjee, Ciprian Crainiceanu, Joseph I-
brahim, Jeffrey Morris, David Ruppert, Naisyin Wang, Hongtu Zhu.

These sub-communities are presented in Figure 15.

5.2.1. Comparison with Coauthorship network (A). In Section 4.2, we
present 8 different components of Coauthorship network (A). In Table 9, we
reinvestigate all these components in order to understand their relationship
with the 3 communities identified by D-SCORE in the Citation network.

Among these 8 components, the first one is the giant component, con-
sisting of 236 nodes. All except 3 of these nodes fall in the 3 communities
identified by D-SCORE in the Citation network, with 60 nodes in “Spatial S-
tatistics and Semi-parametric/Non-parametric statistics”, including (sorted
descendingly by the number of citers; same below) Raymond Carroll, Joseph
Ibrahim, Naisyin Wang, Alan Gelfand, Jeffrey Morris, Marc Genton, Sudipto
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Fig 14. The “Variable Selection” community identified by D-SCORE (K = 3) in the
Citation network (1280 nodes). Only 40 nodes with 54 or more citers are shown here.

Table 9
Sizes of the intersections of the communities identified by D-SCORE (K = 3) in the

Citation network (rows) and the 8 largest components of Coauthorship network (A) as
presented in Section (columns). “Other”: nodes outside the weakly connected giant

component; *: 9 out of 12 are in the “Semi-parametric/Non-parametric” sub-community
of the “Spatial Statistics” community.

Mach. Dim. Johns Quant. Exp.
giant Learn. Reduc. Hopkins Duke Stanford Reg. Design

Spatial 60 1 12* 1 3

Var. Selection 166 15 14 1 7 2 8 2

Multiple Tests 7 2 2 7 1 3

Other 3

236 18 14 13 10 9 9 8

Banerjee, Hongtu Zhu, Jeng-Min Chiou, Ju-Hyun Park, Ulrich Stadtmuller,
Ming-Hui Chen, Yi Li, 166 nodes in “Variable Selection” including Jianqing
Fan, Hui Zou, Peter Hall, Ming Yuan, Yi Lin, Runze Li, Trevor Hastie, Hans-
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Fig 15. The “Spatial and Semi-parametric/Non-parametric Statistics” community has sub-
communities: Non-parametric Spatial/Bayes (upper), Parametric Spatial (middle), Semi-
parametric/Non-parametric (lower). In each, only about 20 high-degree nodes are shown.
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Georg Müller, Emmanuel Candès, Cun-Hui Zhang, Heng Peng, Jian Huang,
Tony Cai, Jianhua Huang, Xihong Lin, and 7 nodes in “Large-Scale Multiple
Testing” including David Donoho, Jiashun Jin, Mark Low, Wenguang Sun,
Ery Arias-Castro, Michael Akritas, Jessie Jeng.

This is consistent with our previous claim that this 236-node giant com-
ponent contains a “Carroll-Hall” group and a “North Carolina” community:
The “Carroll-Hall” group has strong ties to the area of variable selection,
and the “North Carolina” group has strong ties to Biostatistics. Raymond
Carroll has close ties to both of the two groups: it is not surprising that S-
CORE assigns him to the “Carroll-Hall” group (Coauthorship network (A))
but D-SCORE assigns him to the “Spatial” community (Citation network).

For the remaining 7 components of Coauthorship network (A), “Theo-
retical Machine Learning”, “Dimension Reduction”, “Duke”, “Quantile Re-
gression” are (almost) subsets of “Variable Selection”, “Stanford” (includ-
ing John Storey, Johathan Taylor, Ryan Tibshirani) is (almost) a subset of
“Large-Scale Multiple Testing”, and “Johns Hopkins” is (almost) a subset
of “Spatial Statistics”. The “Experimental Design” group has no stronger
relation to one area than to the others, so the nodes spread almost evenly
to these three communities.

5.2.2. Comparison with Coauthorship network (B). We compare the com-
munity detection results by D-SCORE for the Citation network with those
by SCORE for Coauthorship network (B) in Section 4.3. For the former, we
have been focused on the weakly connected giant component of the Citation
network (2654 nodes). For the latter, we have been focused on the giant com-
ponent of the Coauthorship network (B) (2263 nodes). The comparison of
two sets of results is tabulated in Table 10 (for each of the 16 cells, the com-
plete name list can be found at http://faculty.franklin.uga.edu/psji/
sites/faculty.franklin.uga.edu.psji/files/Table10_Expanded.zip).

Viewing the table vertically, we observe that Citation network provides
additional insight into the Coauthorship network (B), and reveals structures
we have not found previously. Below are the details.

First, the “Bayes” community in Coauthorship network (B) contains two
main parts. The first part consists of 55% of the nodes, and most of them are
seen to be the researchers who have close ties to James Berger, including
(sorted descendingly by the number of citers; same below) Alan Gelfand,
Fernando Quintana, Steven MacEachern, Gary Rosner, Rui Paulo, etc. The
second part consists of 25% of the nodes, and is assigned to the “Variable Se-
lection” community in the Citation network by D-SCORE, including Carlos
Carvalho, Feng Liang, Maria De Iorio, German Molina, Merlise Clyde, etc.

http://faculty.franklin.uga.edu/psji/sites/faculty.franklin.uga.edu.psji/files/Table10_Expanded.zip
http://faculty.franklin.uga.edu/psji/sites/faculty.franklin.uga.edu.psji/files/Table10_Expanded.zip
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Table 10
Sizes of the intersections of the communities identified by D-SCORE (K = 3) in the
Citation network (rows; “other” stands for nodes outside the weakly connected giant
component) and the communities identified by SCORE in Coauthorship network (B)

(columns; “other” stands for nodes outside the giant component). *: 14 and 17 are in the
“Non-parametric Spatial/Bayes” and “Semi-parametric/Non-parametric”

sub-communities of the “Spatial and Semi-parametric/Non-parametric Statistics”
community, respectively.

Bayes Biostat-Coau-B HDDA-Coau-B other

Spatial 35* 156 462 362 1015

Var. Selection 16 153 837 274 1280

Multiple Tests 6 17 221 115 359

other 7 62 291 593 953

64 388 1811 1344 3067

The results are reasonable for many nodes in the second part (e.g., Carlos
Carvalho, Feng Liang, Merlise Clyde) have an interest in model selection.

Second, the “Biostatistics (Coauthorship (B))” community in Coauthor-
ship network (B) also has two main parts. The first part has 156 nodes (40%
of the total, including high-degree nodes such as Joseph Ibrahim, Sudipto
Banerjee, Hongtu Zhu, Ju-Hyun Park, Ming-Hui Chen, etc. The second part
consists of 153 nodes (40% of the total). The high-degree nodes include Yi
Lin, Dan Yu Lin, Ji Zhu, Helen Zhang, L J Wei, Wei Biao Wu, Donglin Zeng,
Zhiliang Ying, David Dunson, Steve Marron, etc. The results are quite rea-
sonable: many nodes in the second part (e.g., Dan Yu Lin, David Dunson,
Helen Zhang, Steve Marron, Ji Zhu, Yi Lin) either have works in or have
strong ties to the area of variable selection.

Last, the “High Dimensional Data Analysis” community in Coauthorship
network (B) has three parts. The first part has 459 nodes (25%), including
high-degree nodes such as Raymond Carroll, Gareth Roberts, Naisyin Wang,
Adrian Raftery, Omiros Papaspiliopoulos, etc. The second part has 840 n-
odes (46%), including high-degree nodes such as Jianqing Fan, Hui Zou,
Peter Hall, Nicolai Meinshausen, Peter Bühlmann, etc. The third part has
221 nodes (26%), including high-degree nodes such as Iain Johnstone, Lar-
ry Wasserman, Bradley Efron, John Storey, Christopher Genovese, David
Donoho, Yoav Benjamini, David Siegmund, etc.

Respectively, the three parts are labeled as subsets of the “Spatial and
Semi-parametric/Non-parametric Statistics”, “Variable Selection”, and “Large-
Scale Multiple Testing” communities in the Citation network. This seems
convincing: (a) most of the nodes in the first part have a strong interest in
spatial statistics or biostatistics (e.g., Ciprian Crainiceanu, Naisyin Wang,
Raymond Carroll), (b) most of the nodes in the second part are leaders
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in variable selection, and (c) most nodes in the third part are leaders in
Large-Scale Multiple Testing and in the topic of control of FDR.

Viewing the table horizontally gives similar claims but also reveals some
additional insight. For example, “Large-Scale Multiple Testing” contains
three main parts. One part consists of 221 nodes and is a subset of the
“High Dimensional Data Analysis” community in Coauthorship network
(B). The second consists of 115 nodes and falls outside the giant component
of Coauthorship network (B). A significant fraction of nodes in this part are
from Germany and have close ties to Helmut Finner, a leading researcher
in Multiple Testing. Another significant part (17 nodes) are researchers in
Bioinformatics (e.g., Terry Speed) who do not publish many papers in these
four journals for the time period.

5.2.3. Comparison of D-SCORE and LNSC. We have also applied LNSC
to the Citation network, with K = 3. The communities are very different
from those identified by D-SCORE, and may be interpreted as follows.

• “Semi-parametric and non-parametric” (434 nodes). We find this com-
munity hard to interpret, but it could be the community of researchers
on semi-parametric and non-parametric models, functional estimation,
etc.. The hub nodes include (sorted descendingly by the number of
citers; same below) Peter Hall, Raymond Carroll, Hans-Georg Müller,
Xihong Lin, Fang Yao, Naisyin Wang, Marina Vannucci, etc.
• “High Dimensional Data Analysis” (HDDA-Cita-LNSC) (615 nodes).

The second one can be interpreted as the “High Dimensional Data
Analysis” community, where the high-degree nodes include (sorted de-
scendingly by the number of citers) Jianqing Fan, Hui Zou, Nicolai
Meinshausen, Peter Bühlmann, Ming Yuan, Yi Lin, Iain Johnstone,
Runze Li, Peter Bickel, Trevor Hastie, Larry Wasserman, Emmanuel
Candès, Cun-Hui Zhang, Heng Peng, Bradley Efron, etc.
• “Biostatistics” (Biostat-Cita-LNSC) (1605 nodes). The community is

hard to interpret and includes researchers from several different ar-
eas. For example, it includes researchers in biostatistics (e.g., Joseph
Ibrahim, L J Wei), in nonparametric (Bayes) methods (e.g., Peter
Müller, David Dunson, and Nils Hjort, Fernando Quintana, Omiros
Papaspiliopoulos), and in spatial statistics and uncertainty quantifica-
tion (e.g., Mac Genton, Tilmann Gneiting, Michael Stein, Hao Zhang).

These results are rather inconsistent to those obtained by D-SCORE: the
ARI and VI between two the vectors of predicted community labels by LNSC
and SCORE are 0.07 and 1.68, respectively. Moreover, it seems that
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• LNSC merges part of the nodes in the “Variable Selection” (1280 n-
odes) and “Large-Scale Multiple Testing” (359 nodes) communities i-
dentified by D-SCORE into a new HDDA-Cita-LNSC community, but
with a much smaller size (614 nodes).
• The Biostat-Cita-LNSC community (1605 nodes) is much larger than

the “Spatial” community identified by D-SCORE (1015 nodes), and
hard to interpret.

Our observations here somehow agree with Kim, Son and Jeong (2010) on
that LNSC can not properly distinguish the directions of the edges and
can not detect communities representing directionality patterns among the
nodes.

Remark. There are some other approaches to community detection for
directed networks. One possibility is classical hierarchical approach, but the
challenge there is how to cut the clustering tree and how to interpret the
results [Newman (2004)]. The other possibility is the EM approach by New-
man and Leicht (2007). However, as pointed out by Ramasco and Mungan
(2008) that this approach fails to detect obvious community structures if
there are some nodes with zero out-degree or zero in-degree (this is the case
for our data set as many junior researchers have no citations within the
range of our data set). For reasons of space, we omit further discussions.

6. Discussions. We have collected, cleaned, and analyzed a data set for
the network of statisticians. We have investigated the productivity, patterns
and trends, centrality, and community structures for the statisticians with
many different tools, ranging from Exploratory Data Analysis [EDA; Tukey
(1977)] tools to rather sophisticated methods. Some of these tools are rela-
tively recent (e.g., SCORE, NSC, BCPL, APL, LNSC), and some are even
new (e.g., D-SCORE for directed networks). We have presented an array of
interesting results. For example, we have identified the “hot” authors and
papers, and about 15 meaningful communities such as “Spatial Statistics”,
“Dimension Reduction”, “Large-Scale Multiple Testing”, “Bayes”, “Quan-
tile Regression”, “Theoretical Machine Learning”, and “Variable Selection”.

The paper has several limitations that need further explorations. First of
all, constrained by time and resources, the two data sets we collect are limit-
ed to the papers published in four “core” statistical journals: AoS, Biometri-
ka, JASA, and JRSS-B in the 10 year period from 2003 to 2012. We recog-
nize that many statisticians not only publish in so-called “core” statistical
journals but also publish in a wide variety of journals of other scientific
disciplines, including but not limited to Nature, Science, PNAS, IEEE jour-
nals, journals in computer science, cosmology and astronomy, economics and
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finance, probability, and social sciences. We also recognize that many statis-
ticians (even very good ones, such as David Donoho, Steven Fienberg) do
not publish often in these journals in this specific time period. For these
reasons, some of the results presented in this paper may be biased and they
need to be interpreted with caution.

Still, the two data sets and the results we presented here serve well for
our purpose of understanding many aspects of the networks of statisticians
working on methodology and theory; see Section 1.3. They also serve as a
good starting point for a more ambitious project [Ji, Jin and Ke (2015)]
where we are collecting and cleaning a more “complete” data set for statis-
tical publications.

Second, for reasons of space, we have primarily focused on data analysis
in this paper, and the discussions on models, theory, and methods have been
kept as brief as we can. On the other hand, the data sets provide a fertile
ground for modeling and development of methods and theory, and there are
an array of interesting problems worthy of exploration in the near future.
For example, what could be a better model for the data sets, what could be
a better measure for centrality, and what could be a better method for com-
munity detection. In particular, we propose D-SCORE as a new community
detection method for directed network, but we only present the algorithm
in this paper without careful analysis. Also, sometimes, the community de-
tection results by different methods (e.g., SCORE, D-SCORE, NSC, BCPL,
APL, LNSC) are inconsistent with each other. When this happens, it is hard
to have a conclusive interpretation. It is therefore of interest to compare the
weaknesses and strengths of these methods theoretically.

Third, there are many other interesting problems we have not addressed
here: the issue of mixed membership, link prediction, relationship between
citations and professional recognitions (e.g., receiving an important award,
elected to National Academy of Science), relationship and differences be-
tween “important work”, “influential work”, and “popular work”. It is of
interest to explore these in the future.

Last but not the least, coauthorship and citation networks only provide
limited information for studying the research habits, trends, topological pat-
terns, etc. of the statistical community. There are more informative ap-
proaches (say, using other information of the paper: abstract, author affilia-
tions, key words, or even the whole paper) to studying such characteristics.
Such study is beyond the scope of the paper, so we leave it to the future.

7. Appendix: Data collection and cleaning. We describe how the
data were collected and preprocessed, and how we have overcome the chal-
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lenges we have faced.
We focus on all papers published in AoS, JASA, JRSS-B, and Biometrika

from 2003 to the first half of 2012. For each paper in this range, we have
extracted the Digital Object Identifier (DOI), title, information for the au-
thors, abstract, keywords, journal name, volume, issue, and page numbers,
and the DOIs of the papers in the same range that have cited this paper.
The raw data set consists of about 3500 papers and 4000 authors.

Among these papers, we are only interested in those for original research,
so we have removed items such as the book reviews, erratum, comments
or rejoinders, etc. Usually, these items contain signal words such as “Book
Review”, “Corrections” etc. in the title. Removing such items leaves us with
a total of 3248 papers (about 3950 authors) in the range of interest.

Our data collection process has three main steps. In the first step, we
identify all papers in the range of interest. In the second step, we figure out
all citations between the papers of interest (note that the information for
citation relationship between any two authors is not directly available). In
the third step, we identify all the authors for each paper.

In the first step, recall that the goal is to identify every paper in our range
of interest, and for each of them, to collect the title, author, DOI, keywords,
abstract, journal name, etc. In this step, we face two main challenges.

First, all popular online resources have strict limits for high-quality high-
volume downloads; see Section 1.2. We manage to overcome the challenge
by downloading the desired data and information from Web of Science and
MathSciNet little by little, each time in the maximum amount that is al-
lowed. Overall, it has taken us a few months to download and combine the
data from two different sources.

Second, it is hard to find a good identifier for the papers. While the titles
of the papers could serve as unique identifiers, they are difficult to format and
compare. Also, while many online resources have their own paper identifiers,
they are either unavailable or unusable for our purpose. Eventually, we decide
to use the DOI, which has been used as a unique identifier for papers by
most publishers for statistical papers since 2000.

Using DOI as the identifier, with substantial time and efforts, we have
successfully identified all paper in the range of interest with Web of Science
and MathSicNet. One more difficulty we face here is that Web of Science
does not have the DOIs of (about) 200 papers and MathSciNet does not
have the DOIs of (about) 100 papers, and we have to combine these two
online sources to locate the DOI for each paper in our range of interest.

We now discuss the second step. The goal is to figure out the citation
relationship between any two papers in the range of interest. MathSciNet
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does not allow automated downloads for such information, but, fortunately,
such information is retrievable from Web of Science, if we parse the XML
pages in R at a small amount each time. One issue we encounter in this step
is that (as mentioned above) Web of Science misses the DOIs of about 200
papers, and we have to deal with these papers with extra efforts.

Consider the last step. The goal is to uniquely identify all authors for each
paper in the range of interest. This is the most time consuming step, and we
have faced many challenges. First, for many papers published in Biometrika,
we do not have the first name and middle initial for each author, and this
causes problems. For instance, “L. Wang” can be any one of “Lan Wang”,
“Li Wang”, “Lianming Wang”, etc. Second, the name of an author is not
listed consistently in different occasions. For example, “Lixing Zhu” may be
also listed as “Li Xing Zhu”, “L. X. Zhu”, and “Li-Xing Zhu”. Last but not
the least, different authors may have the same name: at least three authors
(from Univ. of California at Riverside, Univ. of Michigan at Ann Arbor and
Iowa State Univ., respectively) have the same name of “Jun Li”.

To solve this problem, we have written a program which mostly uses the
author names (e.g., first, middle, and last names; abbreviations) to correct-
ly identify all except 200 (approximately) authors, about whom we may
have problems in identification. We then manually identify each of these 200
authors using additional information (e.g., affiliations, email addresses, in-
formation on their websites). After all such cleaning, the number of authors
is reduced from about 3950 to 3607.

For reproducibility purpose, we have carefully documented the data files
and R codes that produced the results in our paper. The data files include the
raw and cleaned bibtex files for all papers in the range of our study, and also
the author lists, paper lists and adjacency matrices, etc. These files (with de-
tailed instructions) can be found at http://faculty.franklin.uga.edu/

psji/sites/faculty.franklin.uga.edu.psji/files/SCC2015.zip.
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