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Summary. Since James and Stein’s seminal work, the problem of estimating n normal means
has received plenty of enthusiasm in the statistics community.Recently, driven by the fast expan-
sion of the field of large-scale multiple testing, there has been a resurgence of research interest
in the n normal means problem. The new interest, however, is more or less concentrated on
testing n normal means: to determine simultaneously which means are 0 and which are not. In
this setting, the proportion of the non-zero means plays a key role. Motivated by examples in
genomics and astronomy, we are particularly interested in estimating the proportion of non-zero
means, i.e. given n independent normal random variables with individual means Xj � N.μj, 1/,
j D 1, . . . , n, to estimate the proportion "n D .1=n/ #{j :μj =D0}. We propose a general approach
to construct the universal oracle equivalence of the proportion.The construction is based on the
underlying characteristic function. The oracle equivalence reduces the problem of estimating
the proportion to the problem of estimating the oracle, which is relatively easier to handle. In
fact, the oracle equivalence naturally yields a family of estimators for the proportion, which are
consistent under mild conditions, uniformly across a wide class of parameters. The approach
compares favourably with recent works by Meinshausen and Rice, and Genovese and Wasser-
man. In particular, the consistency is proved for an unprecedentedly broad class of situations;
the class is almost the largest that can be hoped for without further constraints on the model.We
also discuss various extensions of the approach, report results on simulation experiments and
make connections between the approach and several recent procedures in large-scale multiple
testing, including the false discovery rate approach and the local false discovery rate approach.
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1. Introduction

Consider n independent normal random variables
Xj =μj + zj, j =1, . . . , n, .1:1/

where zj ∼IID N.0, 1/ and μj are unknown parameters. In the literature, the setting is referred
to as the problem of n normal means. Frequently, a signal–noise scenario is used to describe the
setting, where a data point is thought to contain a signal if the corresponding mean is non-zero
and is regarded as pure noise otherwise (Abramovich et al., 2006). Since James and Stein’s sem-
inal work on shrinkage estimation (James and Stein, 1961), the problem of estimating n normal
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means has been extensively studied and well understood. Many modern procedures, e.g. wavelet
thresholding procedures (Donoho and Johnstone, 1994) and the lasso (Tibshirani, 1996), are
intellectually connected to the normal means problem. In these studies, the interest is more or
less focused on the regime of relatively strong signals, and the small proportion of relatively
large signals plays the key role.

Recently, there has been a resurgence of research interest in the field of large-scale multiple
testing. The impetus is the need for sophisticated and implementable statistical tools to solve
application problems in many scientific areas, e.g. genomics, astronomy, functional magnetic
resonance imaging and image processing. In this field, a problem of major interest is testing
n normal means: to determine simultaneously which means are 0 and which are not. In this
context, the collection of ‘moderately strong’ or ‘faint’ signals plays the key role.

In the past few years, interest in the regime of faint signals has been steadily growing and
many seemingly intractable problems have seen encouraging developments. The following three
interconnected questions are of particular interest.

(a) Overall testing: is there any signal at all?
(b) Estimating the proportion: how many signals are there?
(c) Simultaneous testing: which are signals and which are noise?

The first question has been studied in Ingster (1997, 1999) and Donoho and Jin (2004). The
third question has been studied in Benjamini and Hochberg (1995), Efron et al. (2001), Storey
(2002, 2007), Efron (2004) and Genovese and Wasserman (2004). In this paper, we concentrate
on the second question, i.e. estimating the proportion of signals or, equivalently, the proportion
of non-zero means.

1.1. Estimating the proportion of non-zero means: motivations
Denote the mean vector by μ= .μ1, . . . ,μn/. We are interested in estimating the proportion of
non-zero means:

"n = "n.μ/= 1
n

#{j :μj �=0}: .1:2/

Such a situation can be found in the following application examples.

1.1.1. Analysis of microarray data on breast cancer
In this example, on the basis of 15 patients who were diagnosed with breast cancer (seven with
the BRCA1 mutation and eight with the BRCA2 mutation), microarray data were generated
for the same set of 3226 genes. In this setting, the proportion of differentially expressed genes
is of interest (Efron, 2004; Jin and Cai, 2007; Storey, 2007). For each gene, a p-value was first
computed by using a two-sample t-test and then converted to a z-score. The z-scores can be
modelled as Xj ∼N.μj,σ2

0/, where μj =μ0 if and only if the corresponding gene is not differen-
tially expressed, andμ0 andσ0 are called null parameters (Efron, 2004). After the null parameters
have been estimated and the z-scores have been renormalized, the problem of estimating the
proportion of differentially expressed genes reduces to the problem of estimating the propor-
tion of non-zero normal means. The z-scores were kindly provided by Bradley Efron and can be
downloaded from http://www.stat.purdue.edu/∼jinj/Research/software. See
section 5 of Jin and Cai (2007) and Efron (2004) for the assumptions on normality and homo-
scedasticity. Also, the assumption on independence would not be a serious issue in this example.
The reason is that, although the main results of this paper are developed under the assumption
of independence, they can be naturally generalized to handle many weakly dependent cases. See
Section 7 for more discussion.
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1.1.2. Kuiper Belt object
The Kuiper Belt refers to the region in the solar system that is beyond the orbit of Neptune. The
Kuiper Belt contains a large unknown number of small objects (i.e. Kuiper Belt objects (KBOs)).
The Taiwanese–American occultation survey is a recent project that studies the abundance of
KBOs. In this project, one manipulates a very large number (1011–1012) of tests, but out of
which only a small proportion is relevant to the KBOs. A major interest in this project is to
estimate the proportion of tests that contains a KBO. Similarly, by first obtaining a p-value for
each test and then converting it to a z-score, the resulting test statistics can be approximately
modelled as normal random variables Xj ∼N.μj, 1/, j =1, . . . , n, where μj �=0 if and only if the
jth test contains a KBO. In this example, Xj can be treated as independent. See Meinshausen
and Rice (2006) for more details.

In addition to the above application examples, the proportion is also of interest for the follow-
ing reason: the implementation of many recent procedures needs a reasonable estimate of the
proportion. Among these procedures are the local false discovery rate (FDR) approach (Efron
et al., 2001), the B-statistic (Lönnstedt and Speed, 2002), the optimal discovery approach
(Storey, 2007) and the adaptive FDR approach (Benjamini et al., 2005). Hopefully, if a good
estimate of the proportion is available, some of these procedures could be improved. See Section
3 for more discussion.

Estimating the proportion has long been known as a difficult problem. There have been some
interesting developments recently, e.g. an approach by Meinshausen and Rice (2006) (see also
Efron et al. (2001), Genovese and Wasserman (2004), Meinshausen and Bühlmann (2005) and
Schweder and Spjotovoll (1982)), and an approach by Swanepoel (1999). Roughly, say, these
approaches are only successful under a condition which Genovese and Wasserman (2004) called
the ‘purity’; see Section 4 for details. Unfortunately, the purity condition is difficult to check in
practice and is also relatively stringent (see lemma 2). This motivates us to develop a different
approach to estimating the proportion.

In this paper, we concentrate on the problem of estimating the proportion of non-zero normal
means (see Cai et al. (2007), Jin and Cai (2007) and Jin et al. (2007) for related studies on other
settings). We now begin by shedding some light on what could be an appropriate approach for
this problem.

1.2. Ideas and preliminary oracle bounds for the proportion
A successful estimator needs to capture the essential features of the estimand. It seems that one
of the unique features of the proportion is its invariance to scaling. For illustration, consider a
scenario in which we can manipulate the data set by amplifying every signal component (i.e.
μj) by an arbitrary non-zero factor but keeping the corresponding noise component (i.e. zj)
untouched. In this scenario, the proportion of non-zero means remains the same, although
the data set has been dramatically changed. We call this the property of scaling invariance: the
proportion of non-zero means remains the same if we multiply each entry of the mean vector
by an arbitrary non-zero constant individually.

Unfortunately, the approaches that were introduced in Meinshausen and Rice (2006) and
Swanepoel (1999) (and also those in Efron et al. (2001), Genovese and Wasserman (2004),
Meinshausen and Bühlmann (2005) and Schweder and Spjotovoll (1982)) are based on the data
tail or extreme values. Intuitively, as the data tail is not scaling invariant, these approaches are
only successful for special cases, so we need to find somewhere other than the data tail to con-
struct the estimators. Surprisingly, the right place to build scaling invariant statistics is not the
spatial domain, but the frequency domain (Mallat, 1998). Consequently, we should use tools
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that are based on Fourier transform coefficients, instead of moments or the data tail, for the
estimation.

For illustration, suppose that out of n normal means a proportion of "0 has a common positive
mean μ0, and all others have mean 0. Denote i=√−1 and introduce

1
n

n∑
j=1

exp.itXj/

which we call the empirical characteristic function. If we neglect stochastic fluctuations, the
empirical characteristic function reduces to its own mean, which we call the underlying char-
acteristic function. The underlying characteristic function is seen to be exp.−t2=2/[1 − "0{1 −
exp.itμ0/}], which naturally factors into two components: the amplitude A.t/ = A.t; "0,μ0/ ≡
exp.−t2=2/ and the phase ϕ.t/ =ϕ.t; "0,μ0/ ≡ 1 − "0{1 − exp.itμ0/}. Note that only the phase
contains relevant information on "0, with μ0 playing the role of a nuisance parameter. A con-
venient way to remove the nuisance parameter is to maximize the phase over all frequencies:

1
2

sup
t

|ϕ.t; "0,μ0/−1|= "0

2
sup

t
{|1− exp.itμ0/|}≡ "0,

which immediately gives a desired estimate of the proportion.
Inspired by this example, we introduce the empirical phase function and the underlying phase

function (or phase function for short) for general normal means settings and denote them by
ϕn.t/ and ϕ.t/ respectively:

ϕn.t/=ϕn.t; X1, . . . , Xn, n/= 1
n

n∑
j=1

{
1− exp

( t2

2

)
cos.tXj/

}
, .1:3/

ϕ.t/=ϕ.t;μ, n/= 1
n

n∑
j=1

{1− cos.tμj/}: .1:4/

Here we use only the real parts of the phase functions. Because we shall see soon that the real
parts alone yield desired estimators for the proportion, we drop the imaginary parts everywhere
for simplicity. We call equations (1.3) and (1.4) the cosinusoid construction for phase functions.
This construction conveniently yields oracle upper and lower bounds for the true proportion.

Theorem 1. With "n.μ/ defined in equation (1.2) and ϕ.t;μ, n/ defined in equation (1.4), for
any μ and n�1, we have

1
2

sup
{t}

{ϕ.t;μ, n/}� "n.μ/� sup
{t}

{ϕ.t;μ, n/}:

Theorem 1 is proved in Appendix A. We call the bounds ‘oracle’ bounds because they depend
on the phase function, instead of on the data directly. However, replacing the phase function by
the empirical phase function naturally yields data-driven bounds. We shall return to this point
in Section 2.2.

Though the bounds hold for all mean vectors and are convenient to use, they are not tight,
so they do not immediately yield consistent estimators. However, the result suggests that we are
on the right track. In the next section, we show that, with careful refinements, the cosinusoid
construction indeed yields an oracle equivalence of the proportion, that equals the true propor-
tion for all n and all mean vectors μ (hence the terminology of universal oracle equivalence). In
addition, the oracle equivalence naturally yields consistent estimators by replacing the phase
function with its empirical counterpart—the empirical phase function.
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1.3. Content of this paper
This paper is organized as follows. In Section 2, we first introduce an approach to constructing
oracle equivalences for the proportion. We then use the oracle equivalence to construct a family
of real estimators and show that the estimators are uniformly consistent for the true proportion
for a wide class of parameters. We also introduce an approach for controlling the standard devi-
ations of the estimators; the approach is especially useful in practice. We conclude the section
by discussing some related work on estimating the proportion. Section 3 extends the results
in Section 2 to a hierarchical model, which can be viewed as the Bayesian variant of model
(1.1). This section also discusses the connection of our approach with the FDR approach of
Benjamini and Hochberg (1995), as well as with several other recent approaches in large-scale
multiple testing. Section 4 compares the approach proposed with that of Meinshausen and Rice
(2006). Section 5 describes some simulation experiments. Section 6 extends the approach to
estimating other functionals concerning the normal means, including the proportion of normal
means that exceeds a given threshold and the average lp-norm of the normal means vector.
Section 7 discusses extensions to non-Gaussian data as well as data with dependent structures.
Some concluding remarks are also made in this section. Appendix A contains proofs of the
main theorems and corollaries in this paper. Proofs for theorems 12 and 13 and all lemmas have
been omitted in this paper but can be found in sections 8 and 9 of Jin (2007).

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

http://www.blackwellpublishing.com/rss

2. Main results

In this section, we first introduce an approach to constructing oracle equivalence of the propor-
tion. We then use the oracle equivalence to construct real estimators, study their consistency
and discuss how to control their variations. Last, we comment on the connections between this
paper and Cai et al. (2007), Jin and Cai (2007) and Jin et al. (2007).

2.1. The oracle equivalence of the proportion
We now develop the ideas that were introduced in Section 1 to construct oracle equivalences of
the proportion. Consider the phase function in the form

ϕ.t/=ϕ.t;μ, n/= 1
n

n∑
j=1

{1−ψ.μj; t/}, .2:1/

where ψ is a function that we hope to construct such that,

(a) for any t, ψ.0; t/=1,
(b) for any fixed u �=0, limt→∞{ψ.u; t/}=0 and
(c) ψ.u; t/�0 for all u and t.

To distinguish from μ, we use u to denote a scalar quantity here.
In fact, for all fixed μ and n, it can be shown that, if both (a) and (b) are satisfied, then

"n.μ/= inf{s>0}[sup{|t|>s}{ϕ.t;μ, n/}], and the right-hand side provides an oracle equivalence
of "n.μ/. Moreover, if (c) is also satisfied, then the right-hand side has a simpler form and
"n.μ/= sup{t}{ϕ.t;μ, n/}.

The intuition behind the construction is that, together, (a) and (b) ensure that the individual
index function 1{μj �=0} is well approximated by 1−ψ.μj; t/ with large t. Since the proportion is
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the average of all individual index functions, it is then well approximated by the phase function,
which is nothing other than the average of all individual functions 1−ψ.μj; t/.

We now describe the construction ofψ. Note that the cosinusoid constructionψ.u; t/=cos.ut/

clearly does not satisfy condition (b), as the cosinusoid does not damp to 0 pointwisely. However,
on a second thought, we note here that, though the cosinusoid does not damp to 0 pointwisely,
it does damp to 0 ‘on average’, according to the well-known Riemann–Lebesgue theorem (e.g.
Mallat (1998), page 40).

Theorem 2 (Riemann–Lebesgue). If ω∈L1.R/, then limt→∞{∫∞
−∞ ω.ξ/ cos.tξ/dξ}=0.

Inspired by this, we employ the Bayesian point of view and model the frequency t as random.
As a result, the expected value of cos.ut/ becomes the average of cosinusoids across different
frequencies and is no longer tied to the cosinusoid pointwisely.

To elaborate, we choose a random variable Ξ on .−1, 1/ that has a symmetric, bounded and
continuous density function ω.ξ/. Let

ψ.u; t/=E[cos.uΞt/]=
∫ 1

−1
ω.ξ/ cos.uξt/dξ, ∀t, u: .2:2/

By the Riemann–Lebesgue theorem, this construction satisfies both conditions (a) and (b). We
point out thatω.ξ/ does not have to be a density function, or continuous or bounded; we assume
so only for convenience.

Next, we discuss under what conditions (c) holds. To do so, we introduce the following defi-
nitions.

Definition 1. We call a function f over .0, 1/ superadditive if f.ξ1/+f.ξ2/�f.ξ1 + ξ2/ for any
0 < ξ1, ξ2 < 1 and ξ1 + ξ2 < 1. We call a density function ω over .−1, 1/ eligible if it is symmetric,
bounded and continuous. We call ω good if additionally ω.ξ/ = g.1 − ξ/ for some convex and
superadditive function g over (0,1).

It is proved in lemma 3 that condition (c) is satisfied if ω is good.
Finally, the only unfinished step is to find an empirical phase function that naturally connects

to the phase function in equation (2.1) by taking the expectation. Comparing with equations
(1.3) and (1.4), we define the empirical phase function by

ϕn.t; X1, . . . , Xn, n/= 1
n

n∑
j=1

{1−κ.Xj; t/}, .2:3/

where

κ.x, t/=
∫ 1

−1
ω.ξ/ exp.t2ξ2=2/ cos.tξx/dξ: .2:4/

It is proved in lemma 3 that, when X∼N.u, 1/,

E[κ.X; t/]=
∫ 1

−1
ω.ξ/ cos.utξ/dξ≡ψ.u; t/,

so κ naturally connects toψ by taking the expectation. As a result,ϕn connects back to the phase
function ϕ also by taking the expectation: E[ϕn.t; X1, . . . , Xn, n/] =ϕ.t;μ, n/. This completes
the construction.

We now reveal the intuition behind the construction of κ. Since the frequency t plays the role
of a scaling parameter, we illustrate with t = 1 and write ψ.u/ =ψ.u; 1/ and κ.x/ =κ.x; 1/ for
short. Note thatψ= ω̂ and that E[κ]=κÅφ; here φ is the density function of N.0, 1/, the asterisk
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denotes the usual convolution and ω̂ is the Fourier transform of ω. Under mild conditions,
κÅφ=ψ is equivalent to κ̂φ̂= ψ̂≡ω, so κ should be the inverse Fourier transform of ω=φ̂, which
is exactly the same as that in equation (2.4). We mention here that, although it seems that the
choice ofω could be arbitrary, it is important to chooseω so thatω=φ̂ is integrable, and its inverse
Fourier transform exists. A convenient sufficient condition is that ω has a compact support.

The construction above indeed yields a family of oracle equivalences. The following theorem
is proved in Appendix A.

Theorem 3. Fix n and μ∈ Rn; let ϕ and ψ be defined as in equations (2.1) and (2.2) respec-
tively. If ω is eligible, then "n.μ/ = inf{s�0}{sup{|t|>s}ϕ.t;μ, n/}. If additionally ω is good,
then "n.μ/= sup{t}{ϕ.t;μ, n/}.

We conclude this section by giving some examples of ω.

2.1.1. Example A (triangle family)
ω.ξ/={.α+1/=2}{.1−|ξ|/+}α. When α=1, ω.ξ/ is the well-known triangle density function:
hence the name triangle family. Clearly, ω is eligible for all α> 0 and is good for all α� 1.
Moreover,

κ.x; t/= .α+1/

∫ 1

0
.1− ξ/α exp.t2ξ2=2/ cos.txξ/dξ,

and

ψ.u; t/= .α+1/

∫ 1

0
.1− ξ/α cos.tuξ/dξ:

In particular, ψ.u; t/ = 2{1 − cos.tu/}=.ut/2 when α= 1, and ψ.u; t/ = 6{ut − sin.ut/}=.ut/3

when α= 2; here, the values of ψ.0; t/ are set to limu→0{ψ.u, t/}. Fig. 1 shows the plot of
1 −ψ.u; t/ with α= 1, 2. The plot illustrates that, for a moderately large t, the index function
1{u�=0} can be well approximated by 1−ψ.u; t/.

2.1.2. Example B (uniform)
ω.ξ/ is the uniform density function over .−1, 1/. In this example,

κ.x; t/=
∫ 1

0
exp.t2ξ2=2/ cos.txξ/dξ,

and ψ.u; t/= sin.ut/=ut. Similarly, the value of ψ.0; t/ is set to limu→0{ψ.u; t/}. Note here that
ω is eligible but is not good.

2.1.3. Example C (smooth)
ω.ξ/ = c0 exp{−1=.1− ξ2/} when |ξ| < 1 and ω.ξ/ = 0 otherwise. The coefficient c0 =
{∫ 1

−1 ω.ξ/dξ}−1. Note that ω.ξ/ is smooth over .−∞, ∞/.
Interestingly, the cosinusoid construction (1.4) can also be thought of as a special case of our

construction in equation (2.1), where the random variable Ξ does not have a density function.
Instead, Ξ concentrates its mass equally on two points: 1 and −1.

2.2. Uniformly consistent estimation
We now consider empirical estimates of the proportion. The idea is to use the empirical phase
function as the estimate, and to hope to choose an appropriate t such that
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Fig. 1. Function 1�ψ.uI t/ with t D5 (in both parts, together, the horizontal line (excluding the point at (0,1))
and the dot at the origin stand for the index function 1{u =D0}): (a) densities of the triangle family with αD 1
(upper) and αD2 (lower); (b) uniform density
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ϕn.t; X1, . . . , Xn, n/="n.μ/≈ϕ.t;μ, n/="n.μ/≈1: .2:5/

There is a trade-off in the choice of t. When t increases from 0 to ∞, the second approx-
imation becomes increasingly accurate, but at the same time the variance of ϕn increases,
so the first approximation becomes increasingly unstable. It turns out that the right choice
of t is in the range of O{√

log.n/} so, for convenience, we consider the family of estimators
ϕn{tn.γ/; X1, . . . , Xn, n}, where

tn.γ/=√{2γ log.n/}, 0 <γ� 1
2 : .2:6/

We now discuss when the approximations in expression (2.5) are accurate. Consider the second
approximation first. For the approximation to be accurate, it is sufficient that

Ave
{j:μj �=0}

.ψ[μj;
√{2γ log.n/}]/=o.1/, as n→∞: .2:7/

Recall that ψ.u; t/→0 whenever |u|t →∞; a sufficient condition for expression (2.7) is

min
{j:μj �=0}

{|μj|}� log{log.n/}√{2 log.n/} : .2:8/

In comparison, condition (2.8) is stronger than condition (2.7). However, for simplicity in the
presentation, we use condition (2.8) below.

We now discuss when the first approximation in expression (2.5) is accurate. Here, two crucial
factors are the magnitude of the stochastic fluctuation of ϕn and the magnitude of the true
proportion. For the approximation to be accurate, it is necessary that the former is smaller than
the latter. It turns out that the stochastic fluctuation of ϕn is of the order of nγ−1=2, on the basis
of the following theorem which is proved in Appendix A.

Theorem 4. Let ϕ.t;μ, n/ and ϕn.t; X1, . . . , Xn, n/ be constructed as in equations (2.1) and
(2.3) with an eligible density ω. When n →∞, for any fixed q > 3=2 and 0 < γ� 1

2 , there is
a constant C = C.r, q,γ,ω/ such that, except for an event having probability distributed as
2 log.n/2n−2q=3,

sup
{μ∈B1

n.r/}
sup

{0�t�√{2γ log.n/}}
|ϕn.t; X1, . . . , Xn, n/−ϕ.t;μ, n/|�C log.n/−1=2nγ−1=2,

where B1
n.r/={μ∈Rn : .1=n/Σn

j=1|μj|� r} is the l1-ball in Rn with radius r> 0.

The accuracy of the first approximation in expression (2.5) now depends on the magnitude
of the true proportion. In the literature, the magnitude of the proportion is modelled through
the concept of sparsity (e.g. Abramovich et al. (2006)). We list three different regimes of spar-
sity.

(a) Relatively dense regime: the proportion is small (e.g. "n =10%) but does not tend to 0 as
n→∞. See Efron et al. (2001) and Genovese and Wasserman (2004).

(b) Moderately sparse regime: the proportion tends to 0 as n →∞ but does so slower than
1=n1=2 does, e.g. "n =n−β with 0<β< 1

2 . See for example section 3.1 of Meinshausen and
Rice (2006).

(c) Very sparse regime: the proportion tends to 0 faster than 1=n1=2 does, e.g. "n =n−β with
1
2 <β< 1. This is the most challenging case, with very few known results; see Donoho
and Jin (2004), Abramovich et al. (2006), Meinshausen and Rice (2006) and Cai et al.
(2007).

Now, so that the first approximation in expression (2.5) is accurate, it is necessary that the
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situation is either relatively dense or moderately sparse, but not very sparse (see Section 2.4 for
more discussion on the very sparse case). More precisely, it is necessary that

"n.μ/�nγ−1=2: .2:9/

In summary, together, conditions (2.8) and (2.9) give a sufficient condition for the consistency
of the estimators proposed. Inspired by this, we introduce the following set of parameters:

Θn.γ, r/=
{
μ∈B1

n.r/, min
{j:μj �=0}

{|μj|}� log{log.n/}√{2 log.n/} , "n.μ/�nγ−1=2

}
, r> 0: .2:10/

It turns out that, as stated in the following theorem, the estimators proposed are uniformly
consistent for all parameters in Θn.γ, r/.

Theorem 5. Let Θn.γ, r/ be defined as in expression (2.10) and ϕn.t; X1, . . . , Xn, n/ be defined
as in equation (2.3) where the density ω is eligible. When n → ∞, for any fixed 0 < γ� 1

2 ,
except for an event with algebraically small probability,

lim
n→∞

(
sup

{Θn.γ,r/}

∣∣∣∣ϕn[
√{2γ log.n/}; X1, . . . , Xn, n]

"n.μ/
−1

∣∣∣∣
)

=0:

Here, we say that a probability is algebraically small if it is bounded by Cn−a for some con-
stants C =C.γ, r/> 0 and a=a.γ, r/> 0. Theorem 5 is proved in Appendix A. We mention that
theorem 5 is closely related to theorem 5 of Jin and Cai (2007). In fact, if we take ω to be the
triangle density, then theorem 5 can be thought of as a special case of theorem 5 in Jin and Cai
(2007).

Additionally, if ω is a good density, then sup{0�t�√{2γ log.n/}}{ϕn.t; X1, . . . , Xn, n/} are also
consistent. This is the following corollary, which is proved in Appendix A.

Corollary 1. Let Θn.γ, r/ be defined as in expression (2.10), andϕn.t; X1, . . . , Xn, n/ be defined
as in equation (2.3) with a good ω. When n →∞, for any 0 < γ� 1

2 , except for an event with
algebraically small probability,

lim
n→∞

[
sup

{Θn.γ,r/}

∣∣∣∣ sup{0�t�√{2γ log.n/}}ϕn.t; X1, . . . , Xn, n/

"n.μ/
−1

∣∣∣∣
]

=0:

2.3. Adaptive control on the standard deviations of the estimators
In practice, it is of interest to know how to select the ‘best’ t for a given data set and a given ω.
To do so, a useful strategy is to preselect a tolerance parameter αn, and to pick the largest t such
that the standard deviation of the estimator is no larger than αn (recall that, the larger the t, the
smaller the bias and the larger the variance). In this section, we introduce an approach to realize
this strategy. The approach is adaptive for different n and ω; and, as a bonus, the resulting t is
non-random and can be conveniently calculated.

The approach is based on the following simple observation: for any fixed t>0 and z∼N.0, 1/,
the second moment of κ.u+ z; t/, as a function of u, reaches its maximum at u= 0. This leads
to the following lemma, which is proved in section 9 of Jin (2007).

Lemma 1. Fix u, t > 0 and z∼N.0, 1/, E[κ.z+u; t/]2 �E[κ.z; t/]2. As a result, with ϕ.t;μ, n/

defined as in equation (2.1) and ω being an eligible density function, for any fixed n and μ,

1− "n.μ/

n
var{κ.z; t/}�var{ϕn.t; X1, . . . , Xn, n/}� 1

n
[var{κ.z; t/}+1]:
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In many applications, var{κ.z; t/}�1 for t in the range of interest. So the lower bound differs
from the upper bound only by a factor of 1 − "n.μ/. In particular, for the sparse case where
"n.μ/≈0, the bounds are tight.

By lemma 1, the variance of ϕn.t/ is no greater than .1=n/[var{κ.z; t/} + 1], which can be
conveniently calculated once ω is given. Consequently, if we set t = tÅn .αn;ω/, where

tÅn .αn;ω/=max
(

t :
1
n

[var{κ.z; t/}+1]�α2
n

)
, .2:11/

then the standard deviation of ϕn.t/ is no greater than αn. This is the following theorem, which
follows directly from lemma 1.

Theorem 6.Letϕn.t; X1, . . . , Xn, n/ be defined as in equation (2.3) and tÅn .αn;ω/ be defined as in
equation (2.11), where ω is eligible. We have sup{μ∈Rn}.var[ϕn{tÅn .αn;ω/; X1, . . . , Xn}]/�α2

n.

We note here that tÅn .αn;ω/ is non-random and can be conveniently calculated. We have tab-
ulated the standard deviations of κ.z; t/ for t in the range 1–5, and for ω being the uniform,
triangle or smooth density as introduced in Section 2.1. The table can be downloaded from
www.stat.purdue.edu/∼jinj/Research/software/PropOracle. Using the table,
the values of tÅn .αn;ω/ can be easily obtained for a wide range of αn.

Next, note that, the faster that αn → 0, the slower that tÅn .αn;ω/ → ∞, and the larger the
bias. So, to ensure the consistency of ϕn{tÅn .αn;ω/; X1, . . . , Xn}, a necessary condition is that
αn → 0 sufficiently slowly. For example, to ensure the uniform consistency for all μ∈Θn.r,γ/,
we need that αn →0 sufficiently slowly that tÅn .αn;ω/� c0

√
log.n/ for some constant c0 > 0. In

practice, since the value of tÅn .αn;ω/ is non-random and is convenient to obtain, the condition
tÅn .αn;ω/ � c0

√
log.n/ can be checked before we implement the procedure. The proof of the

following theorem is similar to that of theorem 5 and so has been omitted.

Theorem 7. Fix a constant c0 > 0; let ϕn.t; X1, . . . , Xn, n/ be defined as in equation (2.3)
and tÅn .αn;ω/ be defined as in equation (2.11), where ω is eligible. When n → ∞, if αn →
0 sufficiently slowly such that tÅn .αn;ω/ � c0

√
log.n/, then, uniformly for all μ∈ Θn.γ, r/,

ϕn{tÅn .αn;ω/, X1, . . . , Xn}="n.μ/ converges to 1 in probability.

We mention that the main contribution of the adaptive procedure is that it offers a non-
asymptotic approach for controlling the standard deviations of the estimators and consequently
provides a useful guideline for choosing t. Simulations show that the control on the standard
deviations is usually tight; see Section 5 for more discussion.

2.4. Recent work on estimating the proportion
We briefly review some closely related work that we have done. Part of the work concerns
the generalization to heteroscedastic Gaussian models, part of it concerns the very sparse
case and part of it concerns the situation that, in model (1.1), the variances of Xj are un-
known.

First, we discuss the generalization to heteroscedastic Gaussian models. In this setting, we
model each Xj as a normal random variable with individual mean μj and variance σ2

j . In
the terminology of multiple testing, we assume that .μj,σj/ = .0, 1/ if Xj is a null effect and
.μj,σj/ �= .0, 1/ if Xj is a non-null effect. The proportion of signals is then the proportion of
non-null effects: "n = #{j : .μj,σj/ �= .0, 1/}=n. Clearly, this is an extension of the setting of n
normal means and is a more realistic model for applications. In Jin and Cai (2007) and Jin et al.
(2007), we have successfully extended the ideas in previous sections to construct a new family of
estimators. We show that, under mild identifiability conditions, these estimators are uniformly
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consistent for the proportion. We have also implemented these estimators in the analysis of
microarray data on breast cancer (Efron, 2004; Jin and Cai, 2007) and the analysis of compara-
tive genomic hybridization data on lung cancer (Jin et al., 2007). The new approaches compare
favourably with existing approaches both in theory and in applications (Jin and Cai, 2007; Jin
et al., 2007).

Next, we discuss the very sparse case. Since the estimators that were proposed in previous
sections generally have a standard deviation no less than 1=n1=2, we should not expect them to
be consistent in the very sparse case, where the true proportion is much smaller than 1=n1=2. The
subtlety of the sparse case has been addressed in detail in Ingster (1997, 1999), Donoho and Jin
(2004) and Cai et al. (2007). It is surprising that the proportion may not be estimable even when all
non-zero μjs tend to ∞ uniformly. In fact, Donoho and Jin (2004) considered a setting where Xj

are modelled as samples from a two-component Gaussian mixture .1−"n/N.0, 1/+"n N.μn, 1/,
where "n =n−β with β∈ . 1

2 , 1/, and μn =√{2r log.n/} with 0<r<1. Clearly, this is a very sparse
case. Define a function ρÅ.β/ which equals β− 1

2 when β ∈ . 1
2 , 3

4 ] and equals {1 −√
.1−β/}2

when β ∈ . 3
4 , 1/. It was shown in Donoho and Jin (2004) (see also Ingster (1997, 1999)) that, if

r <ρÅ.β/, then no test could reliably tell whether "n equals 0 or not (i.e. any test would have a
sum of type I and type II errors that tends to 1). Consequently, no estimator could be consistent
for the proportion. This shows that, in the very sparse case, the proportion may not be estimable
even when all signals tend to ∞.

Although the very sparse case is much more challenging than the relatively dense case and
the moderately sparse case, interesting progress is still possible. Cai et al. (2007) developed a
family of new estimators called the Cai–Jin–Low lower bounds. At any specified level α∈ .0, 1/,
the Cai–Jin–Low lower bound provides an honest confidence lower bound for the proportion,
which holds uniformly for all one-sided Gaussian shift mixtures. Additionally, when applied
to the two-component Gaussian mixture model above, the lower bound is also optimal in two
senses: it is consistent for the true proportion whenever consistent estimators exist, and it obtains
the suboptimal rate of convergence. Interesting progress was also made in Meinshausen and
Rice (2006).

Last, we discuss the case of unknown variance. A direct generalization of model (1.1) is that
we assume that Xj have a common unknown variance σ2. This setting can be viewed as a special
case of that studied in Section 3 of Jin and Cai (2007) if we set μ0 to 0 and assume homoscedas-
ticity; see details therein. We remark that, although theorem 6 of Jin and Cai (2007) has been
focused on the special case where ω is the triangle density, it can be generalized to handle the
cases where ω is only assumed to be eligible. For brevity, we skip further discussion.

3. Bayesian hierarchical model

In this section, we extend the results in Section 2.2 to the Gaussian hierarchical model. We also
use the hierarchical model to discuss the connections of the proposed procedures to some recent
procedures in large-scale multiple testing.

The Gaussian hierarchical model (e.g. Genovese and Wasserman (2004)) is the Bayesian var-
iant of model (1.1). It can be thought of as follows. Pick " ∈ .0, 1/ and a marginal cumulative
distribution function (CDF) F with no mass at 0. For each j = 1, . . . , n, we flip a coin with
probability " of landing heads. When the coin lands tails, we draw an observation Xj from
N.0, 1/. When the coin lands heads, we draw an observation μj from F and then an observation
Xj from N.μj, 1/. As a result, the marginal density of Xj can be written as a mixture of two
components, one being the standard normal and the other being a Gaussian shift mixture where
F is the mixing CDF:
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.1− "/φ.x/+ "

∫
φ.x−u/dF.u/: .3:1/

Here φ is the density function of N.0, 1/; " can be thought of as the proportion of non-zero
normal means. We assume that PF{u �=0}=1.

We now extend the results in Section 2.2 to model (3.1). First, we discuss the moderately
sparse case by calibrating "n with "n =n−β . The following theorem is proved in Appendix A.

Theorem 8. Fix F , 0 <β< 1
2 and 0 <γ� 1

2 −β, and let "n be n−β and ϕn.t; X1, . . . , Xn, n/ be
defined as in equation (2.3). When n→∞, if F has a finite second moment and ω is eligible,
then

ϕn[
√{2γ log.n/}, X1, . . . , Xn, n]

"n
→1

in probability. If ω is also good, then

sup
{0�t�√{2γ log.n/}}

{ϕn.t, X1, . . . , Xn, n/}

"n
→1

in probability.

Second, we consider the relatively dense case by calibrating " as a fixed constant. In this case,
the estimators are consistent for all γ∈ .0, 1

2 /. This is the following corollary, the proof of which
is similar to that of theorem 8 and is omitted.

Corollary 2. Fix F , 0 <"< 1 and 0 <γ� 1
2 , and let ϕn.t; X1, . . . , Xn, n/ be defined as in equa-

tion (2.3). When n→∞, if F has a finite second moment and ω is eligible, then

ϕn[
√{2γ log.n/}, X1, . . . , Xn, n]

"
→1

in probability. If in addition ω is good, then

sup
{0�t�√{2γ log.n/}}

{ϕn.t, X1, . . . , Xn, n/}

"
→1

in probability.

The conditions in theorem 8 and corollary 2 can be relaxed. However, as the Bayesian model
is not very different from the frequentist model, we feel that it is unnecessary to duplicate
theorem 5 and corollary 1 completely. The main point here is that the results under the Bayesian
model are stronger and cleaner.

From time to time, we may worry about the Gaussian assumption for the non-null effects.
We note here that theorem 8 can be extended to the following non-Gaussian case.

Theorem 9. Fix 0 < β< 1
2 and 0 < γ� 1

2 − β and let "n be n−β and ϕn.t; X1, . . . , Xn, n/ be
defined as in equation (2.3), where ω is eligible. Suppose that

Xj
IID∼ .1− "n/φ.x/+ "n g.x/,

where g.x/ is a density function which has a finite second moment and satisfies that

lim
t→∞[Re{ĝ.t/}=φ̂.t/]=0:

Then, as n→∞,
ϕn[

√{2γ log.n/}, X1, . . . , Xn, n]
"n

→1
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in probability.

Here, ĝ.t/ is the Fourier transform of g.x/ and Re{ĝ.t/} denotes its real part. We note here
that no Gaussian mixture assumption is made on g. Theorem 9 is proved in Appendix A.

Next, we discuss the connection between the approach proposed and some recent procedures
in the field of large-scale multiple testing.

3.1. Connection with false discovery rate controlling procedures
A strategy in microarray analysis is first to identify a subset of genes for follow-up study (Smyth,
2004), and then to focus on this subset in subsequent experiments. In the current setting, a nat-
ural approach to the problem is to find the largest threshold t̂n = t̂n.X1, . . . , Xn/ such that the
subset {Xj : |Xj|� t̂n} contains at least n"nα signals, where 0 <α< 1 (e.g. α=95%). Note here
that the total number of signals in the data set is n"n. By combining the estimators proposed
with the recent FDR procedure by Benjamini and Hochberg (1995), we can give an interesting
approach to setting the threshold.

To implement Benjamini and Hochberg’s FDR procedure in the current setting, we view
model (3.1) as testing n independent null hypotheses Hj :μj =0, j =1, . . . , n. For any parameter
0 < q < 1, the procedure picks a threshold tq = tFDR

q .X1, . . . , Xn/, rejects all those hypotheses
with |Xj| exceeding the threshold and accepts all others. If we call any case a ‘discovery’ when
Hj is rejected, then a ‘false discovery’ is a situation where Hj is falsely rejected. Benjamini
and Hochberg’s procedure controls the FDR, which is the expected value of the false discovery
proportion FDP (Genovese and Wasserman, 2004):

FDPq = #{falsely discoveries}q

#{total discoveries}q
:

The following theorem is proved in Benjamini and Yekutieli (2005) and Ferreira and Zwinder-
man (2006).

Theorem 10. For any 0<q<1, let FDPq be the false discovery proportion that is obtained by
implementing Benjamini and Hochberg’s FDR procedure to model (3.1); then for any μ and
n�1, E[FDPq]= .1− "n/q.

We now combine the approach proposed with Benjamini and Hochberg’s FDR procedure to
tackle the problem that was mentioned earlier in this subsection. Viewing theorem 10 from a
different perspective, we have

#{true discoveries}q ≈#{total discoveries}q{1− .1− "n/q}:

Note that the number of total discoveries is observable, so, to obtain αn"n true discoveries out
of all discoveries, we should pick q such that

#{total discoveries}q{1− .1− "n/q}≈αn"n:

This suggests the following procedure.

Step 1: estimate "n by any of the procedures proposed, denote the estimation by "̂n (e.g.
"̂n =ϕn{√

log.n/; X1, . . . , Xn, n} or "̂n = sup{0�t�√
log.n/}{ϕn.t; X1, . . . , Xn, n/} when ω is

good).
Step 2: solve for q from the equation #{total discoveries}q =αn"̂n={1− .1− "̂n/q}, where,
for any 0<q<1, #{total discoveries}q is obtained by implementing Benjamini and Hoch-
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berg’s FDR procedure. Denote the solution by q̂ (pick any if there are more than one).
Step 3: implement Benjamini and Hochberg’s FDR procedure with q= q̂.

Apply the procedure to model (3.1) and denote the resulting true positive discoveries (i.e. Hj

that are correctly rejected) by

T̂ n.α, "̂n/= T̂ n.α, "̂n; X1, . . . , Xn/: .3:2/

Though T̂ n.α, "̂n/ is a random quantity that is not directly observable and does not have an
explicit formula, it equals n"nα approximately for large n. Consequently, in the resulting set
of discoveries in step 3, about n"nα discoveries are true positive discoveries. Take α= 0:95 for
example; the resulting set contains about 95% of all true positive in the original set! This is the
following theorem, which is proved in Appendix A.

Theorem 11. Fix 0 <α< 1, 0 < " < 1 and F , and let T̂ n.α, "̂n/ be defined as in equation (3.2)
where "̂n is consistent for ". When n→∞, T̂ n.α, "̂n/=n"→α in probability.

3.2. Connection with other procedures in large-scale multiple testing
The approach proposed is also connected with several other recent procedures in the field of
large-scale multiple testing.

The procedure proposed is intellectually connected with the optimal discovery approach of
Storey (2007), as well as the local FDR approach of Efron et al. (2001). Storey noticed that, by
controlling the expected fraction of false positive discoveries, the optimal approach to obtaining
the largest expected number of true positive discoveries is to utilize an oracle which he called
the optimal discovery function. Under the current model, the optimal discovery function can be
written as

OD.x/=1− .1− "/φ.x/

.1− "/φ.x/+ "

∫
φ.x−u/dF.u/

:

Note here that the denominator is the marginal density of test statistics Xj and can be estimated
by many density estimation methods, e.g. kernel methods (Wasserman, 2006), so the problem of
estimating the optimal discovery function reduces to the problem of estimating the proportion
1−". We thus expect to see better results by combining the approach proposed with the optimal
discovery approach.

The approach proposed is also intellectually connected with the B-statistic of Lönnstedt and
Speed (2002), which was proposed for analysing microarray data. As mentioned in Lönnstedt
and Speed (2002), the implementation of the B-statistic depends on knowledge of "n:

‘... one drawback in using B is that we need a value for the prior proportion of differentially expressed
genes...’.

Combining the approach proposed with the B-statistic, we expect to see better results in many
applications.

To conclude this section, we mention that there are many other procedures that depend more
or less on the proportion, e.g. Benjamini et al. (2005). We expect the estimated proportion to be
helpful in implementing these procedures.

4. Comparison with Meinshausen and Rice’s estimator

Recently, there have been some interesting approaches to the problem of estimating the propor-
tion; among them are the work by Meinshausen and Rice (2006) (see also Efron et al. (2001),
Genovese and Wasserman (2004) and Meinshausen and Bühlmann (2005)). These procedures



476 J. Jin

are intellectually connected with each other, so we discuss only that in Meinshausen and Rice
(2006).

Meinshausen and Rice considered a setting in which they tested n uncorrelated null hypoth-
eses Hj, j = 1, . . . , n. Associated with the jth hypothesis is a p-value pj, which has a uniform
distribution—U.0, 1/—when Hj is true and some other distribution otherwise. It is of interest
to estimate the proportion of non-null effects (i.e. untrue hypotheses). Meinshausen and Rice
proposed the estimator

"MR
n = sup

0<t<1

{
Fn.t/− t −βn,αδ.t/

1− t

}
,

where Fn.t/ is the empirical CDF of the p-values and βn,α δ.t/ is the so-called bounding function
(Meinshausen and Rice, 2006). They have studied various aspects of the estimator including
its consistency. In fact, by modelling the p-values as samples from a two-component mixture:
pj ∼IID .1−"/U.0, 1/+"h, j =1, . . . , n, they found that, for the estimator to be consistent, it is
necessary that

essinf
{0<p<1}

{h.p/}=0: .4:1/

Here " is the proportion of non-null effects, U.0, 1/ is the marginal density of pj when Hj is true
and h is the marginal density when Hj is untrue. We remark here that a similar result can be
found in Genovese and Wasserman (2004), who referred to densities satisfying condition (4.1)
as pure densities. Also, Swanepoel (1999) proposed a different estimator using spacings, but the
consistency of the estimator is also limited to the case where h is pure.

Unfortunately, the purity condition is generally not satisfied in the n normal means set-
ting. To elaborate, we translate the previous model from the p-scale to the z-scale through
the transformation Xj = Φ̄−1

.pj/, j = 1, . . . , n. It follows that Xj are samples from the density
.1−"/φ.x/+"g.x/, where g.x/=h{Φ̄.x/}φ.x/. Here, Φ̄ and φ denote the survival function and
the density function of the standard normal respectively. Accordingly, the purity condition (4.1)
is equivalent to

essinf
{−∞<x<∞}

{g.x/=φ.x/}=0, .4:2/

which says that g.x/ has a thinner tail than that of the standard normal, either to the left or
to the right. The following lemma says that the purity condition is generally not statisfied for
Gaussian location mixtures.

Lemma 2. Suppose that g.x/= ∫ φ.x−u/dF.u/ for some distribution function F. If PF{u <

0} �=0 and PF{u>0} �=0, then essinf{−∞<x<∞}{g.x/=φ.x/}>0. If F is also symmetric, then

essinf
{−∞<x<∞}

{g.x/=φ.x/}=
∫

exp.−u2=2/dF.u/> 0:

The proof of lemma 2 is elementary so we skip it. Lemma 2 implies that Meinshausen and Rice’s
estimator (and also those in Genovese and Wasserman (2004), Efron et al. (2001), Meinshausen
and Bühlmann (2005) and Swanepoel (1999)) is generally not consistent. In Section 5, we shall
further compare the approach proposed with Meinshausen and Rice’s estimator and show that
the latter is generally unsatisfactory for the present setting. However, we mention here that one
advantage of Meinshausen and Rice’s estimator—which we like—is that it provides an honest
confidence lower bound for the proportion even without the Gaussian model for the non-null
effects; see Meinshausen and Rice (2006) for details.
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Recall that the approaches proposed are consistent if the following condition holds (theo-
rem 9):

lim
t→∞[Re{ĝ.t/}=φ̂.t/]=0: .4:3/

It is interesting that condition (4.3) is highly similar to the purity condition (4.2), and the only
major difference is that the former concerns g and φ themselves, and the latter concerns their
Fourier transforms. In a sense, our findings in this paper complement those in Genovese and
Wasserman (2004) and Meinshausen and Rice (2006). First, we mirror the purity condition that
was originally defined in the spatial domain to its cousin in the frequency domain—the purity
condition based on the Fourier transform. Second, we develop a class of new estimators and
show them to be consistent for the true proportion when the Fourier transform purity condition
holds (but the original purity condition may be violated). We mention that the idea here can be
largely generalized; see Jin et al. (2007) for the detail.

To conclude this section, we mention that, for an approach to be consistent, some constraint
on g is necessary, as otherwise the proportion would be unidentifiable (e.g. Genovese and Wass-
erman (2004)). In application problems where we cannot make any assumption on h (e.g. the
purity condition or the Fourier transform purity condition), it is argued in Genovese and Wass-
erman (2004) (see also Meinshausen and Rice (2006)) that all that we can hope to estimate
consistently is the quantity

"̄= "

[
1− essinf

x

{
g.x/

φ.x/

}]
, .4:4/

which we call the Genovese–Wasserman lower bound. As pessimistic as it may seem, in many
applications, some reasonable assumptions on g can be made. See for example Efron (2004),
Jin and Cai (2007) and Jin et al. (2007).

5. Simulation study

We have conducted a small-scale empirical study. The idea is to choose a few interesting cases
and to investigate the performance of the approach proposed for different choices of ω, signals
and parameters. Let ω be any one of the uniform, triangle or smooth density as introduced in
Section 2.1, and denote the estimators that were proposed in Section 2.2 and Section 2.3 by

"̂n.γ/≡ϕn[
√{2γ log.n/}; X1, . . . , Xn, n],

"̂Å
n .αn/≡ϕn{tÅn .ω;αn/; X1, . . . , Xn, n}

.5:1/

respectively. The simulation experiment contains six parts, which we now describe. For clari-
fication, we note that, except for the last part of the experiment, the variances of the Xj are
assumed to be known and equal 1.

5.1. Experiment (a)
We investigate the effect of γ over "̂n.γ/. Set n = 105, "n = 0:2 and μ0 = 0:5, 0:75, 1, 1:25. For
each μ0, we generate n.1 − "n/ samples from N.0, 1/, and n"n samples from N.μj, 1/; here |μj|
are randomly generated from U.μ0,μ0 +1/, and sgn.μj/ are randomly generated from {−1, 1}
with equal probabilities, where U denotes the uniform distribution, and sgn denotes the usual
sign function. As a result, the Genovese–Wasserman lower bound (see equation (4.4)) equals
0:079, 0:107, 0:132 and 0.153 correspondingly. Next, we pick 50 different γs so that

√
.2γ/ ranges

from 0:02 to 1 with an increment of 0:02. We then apply "̂n.γ/ to the whole sample for each γ
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Fig. 2. Effect of γ on "̂n.γ/ (see experiment (a) for details): (a) four curves corresponding, from bottom to
top, to μ0 D 0:5, 0:75, 1, 1:25; (b) four curves (which happen to be very close to each other corresponding,
from bottom to top, to μ0 D0:5, 0:75, 1, 1:25

and each ω. Last, we repeat the whole process independently 100 times. For later reference, we
refer to samples that are generated in this way as samples with signals uniformly distributed with
parameters .n, "n,μ0/.

The results are summarized in Fig. 2. To be brief, we report the results corresponding to the
triangle density only. The results suggest the following. First, "̂n.γ/ monotonely increases as γ
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increases. The estimator is generally conservative and underestimates the true proportion, but it
becomes increasingly closer to the true proportion as γ approaches 1

2 . This, together with more
empirical studies, suggests that the best choice in this family is "̂n. 1

2 /, and also that the difference
between the two estimators "̂n. 1

2 / and sup{0<γ�1=2}{"̂n.γ/} is generally negligible. Second, if
we fix γ and let μ0 increase (so that the strength of the signal increases) then "̂n.γ/ becomes
increasingly accurate and becomes fairly close to the true proportion when μ0 �1. Third, when
γ increases, the standard deviations (SDs) increase as well, which implies that the estimator
becomes increasingly unstable. However, the SDs remain of a smaller magnitude than that of
the biases, so the stochastic fluctuation of the estimator is generally negligible. It is interesting
that the SDs do not respond much to the strength of the signals; they remain almost the same
when the signals range from faint to strong.

5.2. Experiment (b)
We compare the performances of "̂n. 1

2 / and "̂Å
n .αn/. Especially, we investigate how well the SD of

"̂Å
n .αn/ is controlled. First, for each of n=0:5×104, 1×104, 2×104, 4×104, 8×104, fix "n =0:2

and generate samples with signals uniformly distributed with parameters .n, 0:2, 1/. Next, we
apply "̂n. 1

2 / and "̂Å
n .αn/ to the sample, with αn = 0:015, 0:020, 0:025 and ω being the uniform,

triangle or smooth density. We repeat the whole process 100 times and report the results in
Table 1. Here, the Genovese–Wasserman lower bound does not depend on n and equals 0.132.

The results suggest the following. Firstly, the adaptive approach—"̂Å
n .αn/—gives tight control

Table 1. Comparison of SDs and RMSEs of "̂n. 1
2 / and "̂Å

n.αn/†

Density Function αn Parameter Results for the following values of n:

0.5×104 104 2×104 4×104 8×104

Uniform "̂n. 1
2 / SD 0.0878 0.0837 0.0671 0.0682 0.0699

RMSE 0.0906 0.0841 0.0710 0.0725 0.0713
"̂Å
n .αn/ 0.015 SD 0.0083 0.0105 0.0127 0.0120 0.0155

RMSE 0.0785 0.0283 0.0128 0.0192 0.0253
0:020 SD 0.0149 0.0164 0.0172 0.0167 0.0208

RMSE 0.0350 0.0167 0.0212 0.0263 0.0302
0.025 SD 0.0214 0.0220 0.0214 0.0214 0.0259

RMSE 0.0231 0.0230 0.0275 0.0312 0.0341
Triangle "̂n. 1

2 / SD 0.0248 0.0206 0.0158 0.0139 0.0144
RMSE 0.0423 0.0391 0.0309 0.0261 0.0253

"̂Å
n .αn/ 0.015 SD 0.0054 0.0105 0.0118 0.0122 0.0150

RMSE 0.1137 0.0529 0.0360 0.0271 0.0253
0.020 SD 0.0145 0.0165 0.0160 0.0171 0.0200

RMSE 0.0566 0.0413 0.0308 0.0257 0.0267
0.025 SD 0.0205 0.0220 0.0201 0.0218 0.0249

RMSE 0.0451 0.0390 0.0300 0.0272 0.0297
Smooth "̂n. 1

2 / SD 0.0199 0.0152 0.0121 0.0092 0.0095
RMSE 0.0334 0.0281 0.0210 0.0149 0.0131

"̂Å
n .αn/ 0.015 SD 0.0055 0.0104 0.0121 0.0121 0.0151

RMSE 0.1105 0.0401 0.0210 0.0133 0.0152
0:020 SD 0.0147 0.0164 0.0163 0.0169 0.0202

RMSE 0.0451 0.0268 0.0182 0.0169 0.0202
0.025 SD 0.0209 0.0220 0.0204 0.0217 0.0251

RMSE 0.0324 0.0260 0.0206 0.0219 0.0253

†See experiment (b) for details.
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on the empirical SD; this property is not assumed by "̂n. 1
2 /. In fact, the empirical SD of "̂Å

n .αn/

seldom exceeds αn and, if so, only by a very small amount. This suggests that, as predicted by
theorem 6, the empirical SD of "̂Å

n .αn/ is nicely bounded by αn. Additionally, the bound is tight
and the empirical SDs do not change much for different n and ω: except for a few cases, the
empirical SDs fall between 0:7αn and αn. In contrast, the empirical SD of "̂n. 1

2 / may fluctu-
ate for more than seven times across different ω, and for more than two times across different
n. Secondly, in terms of the root-mean-squared errors (RMSEs), the performance of "̂Å

n .αn/ is
mainly determined byαn, and different choices of n and ω do not have prominent effects. Lastly,
all estimators yield a reasonably good estimate for the true proportion.

In practice, we might want to know how to setαn (the tolerance parameter). Ideally, if we have
good knowledge of both the variances and the biases of "̂Å

n .αn/ across a wide range of αn, then
we know how to select the best αn. Unfortunately, although sometimes it is possible to estimate
the variances (i.e. by using the bootstrap method), it is frequently impossible to estimate the
biases. Still, we propose the following ad hoc two-stage procedure for selecting αn. First, we pick
αn = 0:015 and obtain "̂Å

n .0:015/. Second, we select an αn that is much smaller than "Å
n .0:015/

and use "̂n.αn/ as the final estimate of the proportion. By doing so, we hope that the stochastic
fluctuation of "̂Å

n .αn/ has a smaller magnitude than that of the true proportion.

5.3. Experiment (c)
We compare "̂Å

n .αn/ with Meinshausen and Rice’s (2006) estimator (equation (5) of Meins-
hausen and Rice (2006)), which we denote by "̂MR

n . The bounding function βn,α δ.t/ is set to√
[2t.1− t/ log{log.n/}=n]. Fix n=80000, "n =0:2 andαn =0:015, and pickμ0 =0:5, 0:75, 1, 1:25.

Correspondingly, the Genovese–Wasserman lower bound equals 0:079, 0:107, 0:132 and 0.153.
For each μ0, we generate samples with signals uniformly distributed with parameters .8 ×
104, 0:2,μ0/. We then apply "̂Å

n .αn/ and "̂MR
n to the sample, with ω being the triangle density

and the smooth density (for brevity, we omit the case for the uniform density). We repeat the
whole process 100 times. The results are displayed in Fig. 3; they are also summarized in terms
of the SD and RMSE in Table 2. The results suggest that the performance of "̂MR

n is generally
unsatisfactory, and "̂Å

n .αn/ behaves much better. In fact, "̂Å
n .αn/ is encouragingly accurate when

μ0 is greater than 1.

5.4. Experiment (d)
We continue the study in experiment (c) by letting the proportion vary from the dense regime to
the moderately sparse regime. Fixing n=106 and αn =0:002, for each of "n =n−0:1, n−0:2, n−0:3,
n−0:4 (n−0:1 = 0:25, n−0:2 = 0:063, n−0:3 = 0:016 and n−0:4 = 0:004), we generate samples with
signals uniformly distributed with parameters .106, "n, 1:25/. Correspondingly, the Genovese–
Wasserman lower bound equals 0:192, 0:048, 0:012 and 0.003. We apply both "̂Å

n .αn/ and "̂MR
n to

the whole sample, with ω being the triangle density and the smooth density. We then repeat the
whole process 100 times. The results are summarized in Table 3, where we tabulated the RMSE
of "̂Å

n .αn/="n and "̂MR
n ="n. The results suggest that "̂Å

n .αn/ continues to perform well for the mod-
erately sparse case and continues to outperform the procedure of Meinshausen and Rice (2006).

5.5. Experiment (e)
We continue the study in experiment (c), but with a different "n and a different way to gener-
ate non-zero μjs. Fix n= 80 000, "n = 0:1 and αn = 0:015, and pick σ0 = 1, 1:25, 1:50, 1:75. For
each σ0, we generate n.1− "n/ samples from N.0, 1/, and n"n samples from N.μj, 1/, where μj

are sampled from N.0,σ2
0/. Correspondingly, the Genovese–Wasserman lower bound equals
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Fig. 3. Histogram comparisons of (a)–(h) "̂Å
n.αn/ (with ω being the triangle density and smooth density) with

(i)–(l) "̂MR
n (the true proportion is 0.2 and αn D 0:015; see experiment (c) for details): (a), (e), (i) μ0 D 0:5;

(b), (f), (j) μ0 D0:75; (c), (g), (k) μ0 D1; (d), (h), (l) μ0 D1:25

Table 2. RMSEs of "̂Å
n.αn/="n and "̂MR

n ="n for various signal strengths†

Estimator Results for the following signal strengths:

μ0 =0.5 μ0 =0.75 μ0 =1 μ0 =1.25

"̂Å
n .αn/ (αn =0:015, triangle) 0.3649 0.2194 0.1139 0.0784

"̂Å
n .αn/ (αn =0:015, smooth) 0.2957 0.1375 0.0792 0.0821

Meinshausen and Rice "̂MR
n 0.8882 0.8383 0.7903 0.7435

†See experiment (c) for details.

0:029, 0:038, 0:045 and 0.050. We apply both "̂Å
n .αn/ and "̂MR

n to the whole sample, with ω being
the triangle density and the smooth density. We then repeat the whole process 100 times. The
results are shown in Table 4 in terms of SD and RMSE. In comparison, the non-zero μjs in
experiment (c) are bounded away from 0 by a distance μ0 but, in the current case, a certain
fraction of non-zero μjs is concentrated around 0. We thus expect that the proportion is more
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Table 3. RMSEs of "̂Å
n.αn/="n and "̂MR

n ="n for various sparsity levels†

Estimator Results for the following sparsity levels:

"n =n−0:1 "n =n−0:2 "n =n−0:3 "n =n−0:4

"̂Å
n .αn/ (αn =0:0015, triangle) 0.1409 0.1391 0.1533 0.2854

"̂Å
n .αn/ (αn =0:0015, smooth) 0.0611 0.0612 0.0903 0.2613

Meinshausen and Rice "̂MR
n 0.7341 0.7421 0.7697 0.8335

†n=106. See experiment (d) for details.

Table 4. RMSEs of "̂Å
n.αn/="n and "̂MR

n ="n†

Estimator Results for the following signal strengths:

σ0 =1 σ0 =1.25 σ0 =1.5 σ0 =1.75

"̂Å
n .αn/ (αn =0:015, triangle) 0.5804 0.5122 0.4532 0.3998

"̂Å
n .αn/ (αn =0:015, smooth) 0.5389 0.4674 0.4078 0.3521

Meinshausen and Rice "̂MR
n 0.9247 0.8943 0.8671 0.8371

†The non-zero μj are Gaussian distributed; see experiment (e) for details.

difficult to estimate in the current situation. The differences can be seen in more detail by com-
paring Table 2 and Table 4. In both cases, the approaches proposed compare favourably with
that of Meinshausen and Rice (2006). We mention that the unsatisfactory behaviour of "̂MR

n is
mainly due to its inconsistency in the current setting; tuning the bounding function would not
be very helpful.

5.6. Experiment (f)
We now study an example to obtain a feeling of how the estimators behave in the cases where
the normality assumption is violated. Fix n = 104, "n = 0:2 and αn = 0:015, and pick λ=
1, 2, 3, 4. For each λ, we generate n.1−"n/ samples from N.0, 1/, and n"n samples from DE.λ/,
where DE.λ/ denotes the double-exponential distribution with mean 0 and standard devia-
tion λ

√
2. Correspondingly, the Genovese–Wasserman lower bound equals 0:048, 0:089, 0:121

and 0.139. We apply both "̂Å
n .αn/ and "̂MR

n to the whole sample, with ω being the triangle
density and the smooth density. We then repeat the whole process 100 times. The results are
reported in Fig. 4. In this example, despite the violation of the normality assumption, the esti-
mator proposed behaves well and compares favourably with that of Meinshausen and Rice
(2006).

6. Extensions

The approach proposed can be extended to estimating many other functionals of the normal
mean vector. Below are some functionals which are of interest in theory and applications.
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Fig. 4. Histogram comparison of the behaviour of (a)–(h) "̂n.αn/ (with ω being the triangle density and
smooth density) with (i)–(l) "̂MR

n when the normality assumption is violated (the true proportion is 0.2 and
the non-null effects were generated from the double-exponential distribution; see experiment (f) for details):
(a), (e), (i) λD1; (b), (f), (j) λD2; (c), (g), (k) λD3; (d), (h), (l) λD4

6.1. Example I
In many applications in designing downstream experiments (see Yang et al. (2002) as well as

www.niams.nih.gov/rtbc/labs-branches/ost/core-facility/biodata/
strategy.htm),

only signals with a magnitude exceeding a given threshold are of interest. This motivates a
careful study on estimating the proportion of normal means that exceeds a given threshold.

6.2. Example II
The level of sparsity of the mean vector plays an important role in many inference problems.
There are many models for the level of sparsity, and the model where the level of sparsity is
defined as the average lp-norm is particularly well known (e.g. Abramovich et al. (2006)). A
successful estimation for the average lp-norm .1=n/Σn

j=1|μj|p has potential applications.
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6.3. Example III
A variant of the functional in example II is .1=n/Σn

j=1 min{|μj|p, ap}, where a> 0 is a constant
which may depend on n but not j. This variant is easier to handle but can still capture the essence
of that in example II. In fact, if we take a =√{2 log.n/}, then example II can be viewed as a
special case of example III. The reason is that, since the extreme value of n standard normals is
approximately

√{2 log.n/} (Shorack and Wellner, 1986), any signals with a magnitude that is
larger than

√{2 log.n/} can be easily estimated individually, so it makes sense to assume that
the magnitude of each μj does not exceed

√{2 log.n/}. Consequently, the functional in example
II reduces to the current functional.

Motivated by these examples, we introduce a univariate function π=π.u; a/ over R which
satisfies

(a) π.u; a/=0 when |u|>a,
(b) π.u; a/ is symmetric and continuous over [−a, a] and
(c) 0�π.u; a/�π0 and π0 > 0, where π0 =π.0; a/.

We are interested in estimating the functional

Πn.μ; a/= 1
n

∑
{j:μj �=±a}

[
π0 −π.μj; a/+ 2π0 −πa

2
#{j :μj =±a}

]
, .6:1/

where πa =π.a; a/. Owing to the possible discontinuity of π at ±a, we use a randomized rule
at ±a (i.e. π.a; a/ equal to the value of limu→a+{π.u; a/} and the value of limu→a−{π.u; a/}
with 0.5 probability each, and similarly for π.−a; a/). When π is continuous at ±a, the func-
tional reduces to Πn.μ; a/= .1=n/Σn

j=1{π0 −π.μj; a/}. The functional includes examples I–III
as special cases. In fact, in example I, π.u; a/=1{|u|�a}, and

Πn.μ; a/= 1
n

#{j : |μj|>a}+ #{j : |μj|=a}
2

:

In example III, π.u; a/= .ap −|u|p/+ and Πn.μ; a/= .1=n/Σn
j=1 min.|μj|p, ap/.

The idea that we introduced in Section 2 can be extended to estimating Πn.μ; a/ (note that
π0 −π.u; a/ plays a similar role to that of 1{u>0}). Similarly, we hope to construct a function
ψ=ψ.u; t, a/ such that, for any fixed u, limt→∞{ψ.u; t, a/}= 0, πa=2 and π.u; a/ according to
|u|>a, |u|=a and |u|<a. Once such a ψ has been constructed, we let the phase function be

ϕ.t;μ, n, a/= 1
n

n∑
j=1

{π0 −ψ.μj; t, a/}: .6:2/

It follows that, for any fixed n and μ, limt→∞{ϕ.t;μ, n, a/}=Πn.μ; a/, and we expect that con-
sistent estimators of Πn.μ; a/ can be constructed in a similar fashion to that in Section 2.

To do so, we pick an eligible densityω.ξ/ and define K.u/≡ ω̂.u/=∫ 1
−1 ω.ξ/ cos.uξ/dξ. Denote

A.ω/=∫ {∫ 1
−1 ω.ξ/ cos.uξ/dξ}du≡∫ K.u/du. When A.ω/ �=0, we introduce the kernel function

Kt.u/={t=A.ω/}K.tu/, where t>0. Note that
∫

Kt.u/du=1. We then construct ψ.·; t, a/ as the
convolution of Kt and π.u; a/:

ψ.u; t, a/≡Kt.u/ Åπ.u; a/=
∫ a

−a

Kt.u−y/π.y; a/dy: .6:3/

It is shown in lemma 8.4 of Jin (2007) that the function ψ can be equivalently written as

ψ.u; t, a/= t

A.ω/

∫ 1

−1
ω.ξ/ π̂.tξ; a/ cos.tuξ/dξ
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and has the property that was desired above. As a result, we have the following theorem, which
is proved in section 8 of Jin (2007).

Theorem 12. Fix a > 0 and let Πn.μ; a/ be defined as in equation (6.1) and ϕ be defined as
in equation (6.2), where the density ω is eligible. If A.ω/ �= 0, then, for any fixed n and μ,
limt→∞{ϕ.t;μ, n, a/}=Πn.μ; a/.

We now construct the empirical phase function. Similarly, the key is to construct a function
κ.x; t, a/ that connects to ψ.t; u, a/ by taking the expectation. Define

κ.x; t, a/= t

A.ω/

∫ 1

−1
ω.ξ/ π̂.tξ; a/ exp

( t2ξ2

2

)
cos.txξ/dξ: .6:4/

It is proved in lemma 8.4 of Jin (2007) that

E[κ.X; t, a/]=ψ.u; t, a/, t> 0, X∼N.u, 1/: .6:5/

Thus, if we let the empirical phase function be

ϕn.t; X1, . . . , Xn, n, a/= 1
n

n∑
j=1

{π0 −κ.Xj; t, a/}, .6:6/

then, through the equality E[ϕn.t; X1, . . . , Xn, n, a/]≡ϕ.t;μ, n, a/, the empirical function natu-
rally connects to the phase function.

We are now ready for the main claim of this section. When π.·; a/ is discontinuous at ±a,
similarly to Θn.r,γ/ (see expression (2.10)), we define the following set of parameters:

Θa
n.r/=

{
μ∈B1

n.r/, min
1�j�n

{||μj|−a|}� log{log.n/}√{2 log.n/}
}

, .6:7/

where, as before, B1
n.r/ is the l1-ball in Rn with radius r. The following theorem is proved in

Section 8 of Jin (2007).

Theorem 13. Fix a>0, r>0 and 0<γ� 1
2 , let ϕn.t; X1, . . . , Xn, n, a/ be defined as in equation

(6.6), where the densityω is eligible with A.ω/ �=0, and suppose thatπ is absolutely continuous
over [−a, a]. When n→∞, sup{Θa

n.r/}.|ϕn[
√{2γ log.n/}; X1, . . . , Xn, n, a]−Πn.μ; a/|/→0 in

probability. If additionally π is continuous everywhere, then sup{B1
n.r/}.|ϕn[

√{2γ log.n/};
X1, . . . , Xn, n, a]−Πn.μ; a/|/→0 in probability.

Again, the condition that all μj are bounded away from ±a by an amount

log{log.n/}=
√{2 log.n/}

can be largely relaxed; we choose Θa
n.r/ only to make the presentation cleaner.

We now continue the discussion of examples I–III. Theorems 12 and 13 directly apply to
examples I and III. Moreover, it can be shown that theorems 12 and 13 continue to hold if
we take a =√{2 log.n/} in example III, so these theorems apply to example II as well. Also,
we note that some explicit formulae are available for these examples. In fact, in example I,
π̂.ξ, a/=2 sin.aξ/=ξ,

ψ.u; t, a/= t

A.ω/

∫ 1

−1
ω.ξ/

2 sin.atξ/

tξ
cos.tuξ/dξ

and
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κ.x; t, a/= t

A.ω/

∫ 1

−1
ω.ξ/

2 sin.atξ/

tξ
exp
( t2ξ2

2

)
cos.txξ/dξ:

In example III, when p=1, π̂.ξ; a/=2{1− cos.aξ/}=ξ2,

ψ.u; t, a/= t

A.ω/

∫ 1

−1
ω.ξ/

2{1− cos.atξ/}
t2ξ2 cos.tuξ/dξ,

and

κ.x; t, a/= t

A.ω/

∫ 1

−1
ω.ξ/

2{1− cos.atξ/}
t2ξ2 exp

( t2ξ2

2

)
cos.txξ/dξ:

In practice, it is convenient to pick ω as either the uniform density or the triangle den-
sity, for in both cases ω̂ has an explicit formula. For example, when ω is the uniform density,
K.u/≡ ω̂.u/= sin.u/=u, A.ω/=π and ψ can be written as

t

π

∫
sin{t.u−y/}

t.u−y/
π.y; a/dy

(here π≈3:14 is the Archimedes constant). In Fig. 5, let ω be the uniform density (Figs 5(a) and
5(b)) and the triangle density (Figs 5(c) and 5(d)); we have plotted the function π0 −ψ.u; t, a/

in example I (Figs 5(a) and 5(b)) and example III (Figs 5(c) and 5(d)). Fig. 5 shows that, with a
relatively large t, π0 −ψ well approximates the function π0 −π.t; a/.

We conclude this section by commenting on the case where Πn.μ; a/ → 0 algebraically fast
(i.e. Πn.μ; a/�O.n−c/ for some constant c>0). The theorems above do not apply to this case as
Πn.μ; a/ is very small. The difficulty is that, to ensure consistency, we need to construct ψ such
that, for all |u|>a and t>0, ψ.u; t, a/≡π.u; t, a/. Generally, such a construction is challenging.
Take example I for instance; the construction requires that ψ.u; t, a/≡ 1, which implies that ψ̂
does not have a compact support (the Heisenberg uncertainty principle (e.g. page 32 of Mallat
(1998)). However, the existence of the function κ critically depends on the condition that ψ̂ has
a compact support. In fact, expression (6.5) can be interpreted as κÅφ=ψ, which is equivalent
to κ̂= exp.ξ2=2/ψ̂ (recall that the asterisk denotes the usual convolution and that φ denotes the
density function of N.0, 1/). Without the compact support of ψ̂, the integrability of κ̂ is difficult
to ensure, and so is the existence of κ.

7. Discussion

In this section, we briefly mention the generalization of the approach proposed to non-Gaussian
data and data with dependent structures. We also make several concluding remarks.

7.1. Generalization
The approach can be conveniently extended to general location shift families. In fact, consider
n independent observations Xj =μj + "j, j = 1, . . . , n, where "j ∼IID f0 and all except a small
proportion of μj are 0; we are interested in estimating this proportion.

Let A0.t/ be the characteristic function that is associated with f0; then the underlying char-
acteristic function that is associated with the model equals

A0.t/
1
n

n∑
j=1

exp.iμjt/,

which, in a similar fashion, factors into two terms: the amplitude A0.t/ and the (underlying)
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phase function .1=n/Σn
j=1 exp.iμjt/. Surprisingly, the phase function does not depend on f0 and

is uniquely determined by the mean vector μ= {μ1, . . . ,μn}. Since the phase function is the
key to the approach proposed, we expect that results that are presented in this paper can be
extended to general location shift families.

An interesting special case is the Laplace location shift family, in which f0.x/= 1
2 exp.−|x|/,

and A0.t/=1=.1+ t2/. Similarly, if we define the empirical phase function as

ϕn.t/=ϕn.t; X1, . . . , Xn, n/=
∫ 1

−1
ω.ξ/ .1+ t2ξ2/

1
n

n∑
j=1

cos.tXjξ/dξ,

then the empirical phase function and the phase function connect to each other through
E[ϕn.t/]=ϕ.t/. Compared with the Gaussian case, the term exp.t2ξ2=2/ is replaced by 1+ t2ξ2.
When t →∞, the latter tends to ∞ much more slowly; consequently, the empirical phase func-
tion that corresponds to the Laplace family converges to the phase function much faster. In a
sense, the Gaussian case is the most difficult case, as the term exp.t2ξ2=2/ largely undermines
the convergence rate of the empirical phase function.

Our approach can also be conveniently generalized to data with weakly dependent struc-
tures. As we mentioned in Section 2.2, the key for the approach proposed to be successful is
that ϕn.t; X1, . . . , Xn, n/="n.μ/ ≈ϕ.t;μ, n/="n.μ/ and ϕ.t;μ, n/="n.μ/ ≈ 1. Note that, first, the
second approximation will not be affected by dependence and, second, the accuracy of the first
approximation is based on the central limit theorem. Since the central limit theorem holds for
many weakly dependent structures, we expect that both approximations continue to be accurate
under various weakly dependent structures, and so do the key results in this paper.

7.2. Concluding remarks
We have proposed a general approach to constructing the oracle equivalent to the proportion
of non-zero normal means. The oracle equivalent equals the true proportion universally for all
dimensions and all normal mean vectors. The construction of the oracle equivalent reduces the
problem of estimating the proportion to that of estimating the oracle equivalent. By replacing
the underlying phase function with the empirical phase function in the oracle equivalent, we
formed a family of estimators. Under mild conditions, these estimators are consistent for the
true proportion; uniformly so for a wide class of parameters. The ideas and methods that were
presented in this paper can be extended to handle more complicated models. The estimators
were also successfully applied to the analysis of microarray data on breast cancer and compar-
ative genomic hybridization data on lung cancer. See Jin and Cai (2007) and Jin et al. (2007) for
details.

The approach proposed appears to provide new solutions and new opportunities in the field
of large-scale multiple testing. As many procedures critically depend on knowledge of the pro-
portion (e.g. the local FDR procedure (Efron et al., 2001), B-statistic (Lönnstedt and Speed,
2002), optimal discovery approach (Storey, 2007) and the adaptive FDR approach (Benjamini
et al., 2005)), we expect to have better results by combining the estimated proportion with these
procedures. Moreover, the approach suggests that Fourier analysis could be a useful tool for
solving problems in large-scale multiple testing. In the literature, Fourier analysis has been
repeatedly shown to be useful for statistical inference. One example can be found in Fan (1991)
and Zhang (1990), where Fourier analysis is shown to be useful in density estimation. Another
example can be found in Tang and Zhang (2006, 2007), where Fourier analysis is used to derive
FDR controlling procedures (in a way, our approach is related to that in Fan (1991), Zhang
(1990) and Tang and Zhang (2006, 2007)). Still another example can be found in Kendall (1974).
It is tempting to think that many other seemingly intractable statistical problems can be tackled
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by Fourier analysis. We call this the temptation of the Fourier kingdom (Mallat, 1998), a kingdom
with many sophisticated tools that are ready for use.
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Appendix A: Proofs

A.1. Proof of theorem 1
The first inequality follows directly from that, for all fixed t, μ and n,

ϕ.t;μ, n/� 1
n

∑
j:μj �=0

|1− cos.μjt/|�2 "n.μ/:

For the second inequality, write ϕ.t;μ, n/="n.μ/ Ave{j:μj �=0}{1− cos.tμj/}, so it is sufficient to show that,
for any k � 1 and u = .u1, . . . , uk/, when all entries of u are non-zero, supt [.1=k/Σk

k=1{1 − cos.ujt/}] � 1.
To show this, note that, by symmetry and scaling invariance, we can assume that uk �uk−1 � . . .�u1 =1
without loss of generality. Observe that, for any x> 1,

∫ x

0

1
k

k∑
k=1

{1− cos.ujt/}dt =x− 1
k

k∑
j=1

sin.ujx/

uj

�x−1,

so

max
{0�t�x}

[
1
k

k∑
k=1

{1− cos.ujt/}
]

�1− 1
x
,

and the claim follows directly by letting x→∞.

A.2. Proof of theorem 3
The following lemma is proved in Section 9 of Jin (2007).

Lemma 3. With ψ and κ as defined in equations (2.2) and (2.4) respectively, where ω is eligible, we have

(a) ψ.0; t/≡0,
(b) for any t and X∼N.u, 1/, E[κ.X; t/]=ψ.u; t/ and
(c) if additionally ω is good, then, for any t and u, 0�ψ.u; t/�1.

We now prove theorem 3. Write ϕ.t;μ, n/="n.μ/ Ave{j:μj �=0}{1−ψ.μj ; t/}. For the first claim, by lemma
3, limt→∞{ψ.u; t/} = 0 for any u �= 0, so lims→∞.sup{|t|>s}[Ave{j:μj �=0}{1 −ψ.μj ; t/}]/ = 1, and the first
claim follows directly. For the second claim, again by lemma 3, 0�ψ�1, so we can strengthen the claim of
lims→∞.sup{|t|>s}[Ave{j:μj �=0}{1 −ψ.μj ; t/}]/ = 1 into the claim of sup{|t|>s}[Ave{j:μj �=0}{1 −ψ.μj ; t/}] = 1
for all s�0; taking s=0 yields the second claim.

A.3. Proof of theorem 4
The key for the proof is the following lemma, which is proved in Section 9 of Jin (2007).

Lemma 4. Consider n independent random variables Xj =μj + zj where zj ∼IID N.0, 1/; suppose that
.1=n/Σn

j=1|μj|� r for some constant r> 0. When n→∞, for any fixed q> 3=2,

P

[
max

{0�t�log.n/}

∣∣∣∣ 1
n

n∑
j=1

{cos.tXj/−E[cos.tXj/]}
∣∣∣∣�

√{2q log.n/}
n1=2

]
�2 log.n/2n−2q=3{1+o.1/}:
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We now proceed to prove theorem 4. For short, write ϕn.t/ =ϕ.t; X1, . . . , Xn, n/ and ϕ.t/ =ϕ.t;μ, n/.
Note that E[cos.tXj/]= exp.−t2=2/ cos.tμj/, so by definition, for t> 0,

|ϕn.t/−ϕ.t/|�2
∫ 1

0
ω.ξ/ exp

(
t2ξ2

2

)∣∣∣∣ 1
n

{cos.tξXj/−E[cos.tξXj/]}
∣∣∣∣dξ:

By lemma 3, for any fixed q>3=2, except for an event with a probability that is distributed as 2 log.n/2n−2q=3,

sup
{μ∈B1

n.r/}
sup

{0�t�√{2γ log.n/}}
|ϕn.t/−ϕ.t/|� 2

√{2q log.n/}
n1=2

∫ 1

0
ω.ξ/ exp{γ log.n/ξ2}dξ:

Now, denote A= sup{0<ξ<1}{ω.ξ/} and write γn =γ log.n/ for short. By elementary calculus,
∫ 1

0
ω.ξ/ exp{γ log.n/ξ2}dξ�A

∫ 1

0
exp{γ log.n/ξ2}dξ= A

2γn

nγ{1+o.1/}:

Combining these gives the theorem.

A.4. Proof of theorem 5
For short, write tn = √{2γ log.n/}, ϕn.t/ =ϕ.t; X1, . . . , Xn, n/, ϕ.t/ =ϕ.t;μ, n/ and "n = "n.μ/. Observe
that, for any t, we have the triangle inequality∣∣∣∣ϕn.t/

"n

−1

∣∣∣∣�
∣∣∣∣ϕn.t/−ϕ.t/

"n

∣∣∣∣+
∣∣∣∣ϕ.t/

"n

−1

∣∣∣∣ :

Now, first, using theorem 4, when n→∞, for any fixed q> 3=2, except for an event with an algebraically
small probability, there is a generic constant C =C.q, r;ω/ such that

sup
{Θn.γ,r/}

∣∣∣∣ϕn.tn/−ϕ.tn/

"n

∣∣∣∣� sup
{Θn.γ,r/}

{
C

"n

√
log.n/n1=2−γ

}
� C√

log.n/
:

Second, by the definition of ϕ and ψ,

|ϕ.tn/="n −1|= |Ave{j:μj �=0}{ψ.μj ; tn/}|� sup
{tu�γ1=2 log{log.n/}}

|ψ.u; t/|,

uniformly for all μ∈ Θn.γ, r/; note that, by the way that ψ is constructed, the right-hand side of the
inequality tends to 0. Plugging these into the triangle inequality gives the theorem.

A.5. Proof of corollary 1
For short, write "n = "n.μ/, ϕn.t/=ϕ.t; X1, . . . , Xn/, ϕ.t/=ϕ.t;μ, n/ and Θn =Θn.γ, r/. Note that∣∣∣∣ sup

{0�t�√{2γ log.n/}}
{ϕn.t/}− sup

{0�t�√{2γ log.n/}}
{ϕ.t/}

∣∣∣∣� sup
{0�t�√{2γ log.n/}}

|ϕn.t/−ϕ.t/|,

so it is sufficient to show

(a) sup{Θn}{sup{0�t�√{2γ log.n/}}|ϕn.t/−ϕ.t/|="n}→0 in probability and
(b) limn→∞[sup{Θn} |sup{0�t�√{2γ log.n/}}{ϕ.t/}="n −1|]=0.

First, for (a), using theorem 5, when n→∞, for any fixed q>3=2, except for an event with an algebraically
small probability, there is a generic constant C =C.q, r;ω/ such that

sup
{Θn}

⎧⎨
⎩

sup
{0�t�√{2γ log.n/}}

|ϕn.t/−ϕ.t/|

"n

⎫⎬
⎭�C sup

{Θn}

[
1

"n

√
log.n/n1=2−γ

]
;

(a) follows directly. Second, for (b), by theorem 1 and symmetry,ϕ[
√{2γ log.n/}]�sup{0�t�√{2γ log.n/}}{ϕ.t/}

� "n; hence
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sup
{Θn}

∣∣∣∣∣∣
sup

{0�t�√{2γ log.n/}}
{ϕ.t/}

"n

−1

∣∣∣∣∣∣� sup
{Θn}

∣∣∣∣ϕ[
√{2γ log.n/}]

"n

−1

∣∣∣∣,

and (b) follows by similar proofs to that in theorem 5.

A.6. Proof of theorem 6
The proof of the following lemma is similar to that of lemma 4 so we skip it.

Lemma 5. Consider n independent samples Xj ∼F with EF |X|2 <∞. When n→∞, there is a constant
C> 0 such that, with overwhelming probability,

max
{0�t�log.n/}

∣∣∣∣∣
1
n

n∑
j=1

[cos.tXj/−E{cos.tXj/}]

∣∣∣∣∣�C

√
log.n/

n1=2
:

We now proceed to prove theorem 8. As the proofs are similar, we prove only the first claim. Define
ϕ.t;μ, n, F/=EF [ϕn.t; X1, . . . , Xn, n/]. Using the Fubini theorem,

ϕ.t;μ, n, F/=
∫ 1

−1
ω.ξ/ E

[
1− exp

(
t2ξ2

2

)
cos.tξX1/

]
dξ= "n

∫ 1

−1
ω.ξ/

[∫
{1− cos.tuξ/}dF

]
dξ:

For short, write tn =√{2γ log.n/}, ϕn.t/=ϕ.t; X1, . . . , Xn, n/ and ϕ.t/=ϕ.t;μ, n, F/; by the Fubini theo-
rem,ϕ.tn/="n =∫

[
∫ 1

−1 ω.ξ/{1−cos.tnuξ/}dξ] dF.u/. By theorem 2, limn→∞[
∫ 1

−1 ω.ξ/{1−cos.tnuξ/}dξ]=1
for any u �=0; using dominant convergence theorem gives limn→∞ |ϕ.tn/="n −1|=0.

At the same time, by lemma 5 and similar arguments to that in the proof of theorem 4, when n→∞,
there is a constant C =C.γ,ω, F/ such that, with overwhelming probability,∣∣∣∣ϕn.t/−ϕ.t/

"n

∣∣∣∣�nβ
∫ 1

−1
ω.ξ/ exp

(
t2ξ2

2

)∣∣∣∣ 1
n

{cos.tξXj/−E[cos.tξXj/]}
∣∣∣∣�C

nβ+γ−1=2

√
log.n/

:

Since γ+β� 1
2 , combining this with limn→∞ |ϕ.tn/="n −1|=0 gives the theorem.

A.7. Proof of theorem 7
For short, write t = √{2γ log.n/}, ϕn.t/ =ϕn.t; X1, . . . , Xn/ and ϕ.t/ = E{ϕn.t/}. At the same time, we
write Re{ĝ.s/} = φ̂.s/ h.s/. Note that h.s/ is a bounded function which tends to 0 as s → ∞. On one
hand, by similar arguments to that in the proof of theorem 6, there is a constant C = C.γ,ω, g/ such
that, with overwhelming probability, |{ϕn.t/−ϕ.t/}="n| � C=

√
log.n/. On the other hand, direct calcu-

lation shows that |ϕ.t/="n − 1|= |∫ ω.ξ/ h.tξ/ dξ|, where the right-hand side tends to 0 as n →∞. Since
|ϕn.t/="n −1|� |{ϕn.t/−ϕ.t/}="n|+ |ϕ.t/="n −1|, the claim follows directly.

A.8. Proof of theorem 8
We employ the theory on the FDR functional that was developed in Donoho and Jin (2006) for the proof.
The FDR functional Tq.·/ is defined as Tq.G/= inf{t : Ḡ.t/� .1=q/Ḡ0.t/}, where Ḡ=1−G is any survival
function and Ḡ0 is the survival function of |N.0, 1/|. Particularly, we have Tq.Gn/ and Tq.G/, where Gn

and G denote the empirical CDF and underlying CDF for |X1|, . . . , |Xn| respectively. For any constant
0 < c0 < 1

2 , corollary 4.2 in Donoho and Jin (2006) can be extended to the current situation and we have
sup{c0�q�1−c0} |Tq.G/−Tq.Gn/|=Op.1=n1=2/.

G.t/ can be written in the form of G.t/ = .1 − "/ G0.t/ + " H.t/, where H.t/ is the marginal CDF that
is associated with the non-null effects. Let qα be the unique solution of α= H̄{Tq.G/}. Note that, when
Xj ∼ H , the probability that Xj exceeds Tqα .G/ is α. View Tqα .G/ as a non-stochastic oracle threshold,
and treat Xj as a discovery if and only if it exceeds the threshold; then the resulting total number of true
positive discoveries is distributed as binomial.n",α/. As a result, the proportion of signals exceeding the
threshold Tq.G/ tends to α in probability.

At the same time, note that the stochastic threshold in the procedure proposed equals Tq̂.Gn/. So, to
show the theorem, it is sufficient to show that the stochastic threshold converges to the non-stochastic
oracle threshold:

Tq̂.Gn/→Tqα .G/, in probability: .A:1/
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We now show expression (A.1). For short, write t0 =Tqα .G/ and t̂n =Tq̂.Gn/. Introduce a bridging quan-
tity t̂

Å
n =Tq̂.G/. By the definition of the FDR functional, it is not difficult to show that there is a constant

c = c.F/ ∈ .0, 1
2 / such that, with overwhelming probability, q̂ falls in the interval [c, 1 − c]. Recall that

sup{c�q�1−c} |Tq.G/−Tq.Gn/|=Op.1=n1=2/; hence

|t̂Ån − t̂n|→0, in probability: .A:2/

Now, by the way that the procedure is designed, #{total discoveries}q̂ =n Ḡn.t̂n/, so "̂nα= Ḡn.t̂n/{1− .1−
"̂n/q̂n}. Note that

(a) supt |Gn.t/ − G.t/|= Op.1=n1=2/ by the Dvoretzky–Kiefer–Wolfowitz theorem (Shorack and Well-
ner, 1986) and

(b) "̂n="→1 in probability;

combining these with expression (A.2) yields

"α{1+op.1/}= Ḡ.t̂
Å
n /{1− .1− "/q̂n}: .A:3/

In addition, observe that, for any 0 < q < 1 and t ≡ Tq.G/, .1=q/Ḡ0.t/ = Ḡ.t/ = .1 − "/ Ḡ0.t/ + " H̄.t/, so
" H̄.t̂

Å
n /= Ḡ.t̂

Å
n /{1 − .1 − "/q̂}; plugging this into equation (A.3) gives α{1 +op.1/}= H̄.t̂

Å
n /. Now, com-

paringα{1+op.1/}= H̄.t̂
Å
n / with the definition of qα gives that |t̂Ån − t0|→0 in probability, which, together

with expression (A.2), gives expression (A.1).
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