
Optimal Rates of Convergence for Estimating the Null

Density and Proportion of Non-Null Effects in Large-Scale

Multiple Testing

T. Tony Cai1 and Jiashun Jin2

Abstract

An important estimation problem that is closely related to large-scale multiple test-
ing is that of estimating the null density and the proportion of non-null effects. A few
estimators have been introduced in the literature. However, several important prob-
lems, including the evaluation of the minimax rate of convergence and the construction
of rate-optimal estimators, remain open.

In this paper, we consider optimal estimation of the null density and the proportion
of non-null effects. Both minimax lower and upper bounds are derived. The lower
bound is established by a two-point testing argument, where at the core is the novel
construction of two least favorable marginal densities f1 and f2. The density f1 is
heavy-tailed both in the spatial and frequency domains and f2 is a perturbation of
f1 such that the characteristic functions associated with f1 and f2 match each other
in low frequencies. The minimax upper bound is obtained by constructing estimators
which rely on the empirical characteristic function and Fourier analysis. The estimator
is shown to be minimax rate optimal.

Compared to existing methods in the literature, the proposed procedure not only
provides more precise estimates of the null density and the proportion of the non-null
effects, but also yields more accurate results in subsequent studies including the control
of the False Discovery Rate (FDR). The procedure is easy to implement and numerical
results are given.

Keywords: Characteristic function, empirical characteristic function, Fourier
analysis, minimax lower bound, multiple testing, null distribution, proportion
of non-null effects, rate of convergence, two-point argument.
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1 Introduction

Large-scale multiple testing is an important area in modern statistics with a wide range
of applications including DNA microarray studies, functional Magnetic Resonance Imaging
analyses (fMRI) and astronomical surveys. Since the seminal paper by Benjamini and
Hochberg (1995) on false discovery rate (FDR) control, research in this area has been very
active. See, for example, Efron et al. (2001), Storey (2002), Genovese and Wasserman
(2004), van der Laan et al. (2004), and Sun and Cai (2007). Properties of FDR-controlling
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procedures have been studied, for example, in Finner et al. (2008) and Neuvial (2008). See
also Abramovich et al. (2006) and Donoho and Jin (2006) for estimation using a multiple
testing approach.

In large-scale multiple testing, one tests simultaneously a large number of null hypotheses

H1, H2, . . . ,Hn. (1.1)

Frequently, associated with each hypothesis Hj is a test statistic Xj , which can be a z-score,
a p-value, a summary statistic, etc., depending on the situation. The goal is to use the test
statistics to determine which hypotheses are true and which are false. We call Xj a null
effect if Hj is true, and a non-null effect otherwise.

A commonly used and effective framework for large-scale multiple testing is the so-
called two-group random mixture model which assumes that each hypothesis has a given
probability of being true and the test statistics are generated from a mixture of two densities;
see for example Efron et al. (2001), Newton et al. (2001), Storey (2002) and Sun and Cai
(2007). In detail, let θ = (θ1, ..., θn) be independent Bernoulli(ε) variables, where ε ∈ (0, 1)
and θj = 0 indicates that the null hypothesis Hj is true and θj = 1 otherwise. When
θj = 0, Xj is generated from a density fnull(x). When θj = 1, Xj is generated from another
(alternative) density falt(x). Marginally, Xj obeys the following two-group random mixture
model:

Xj
iid∼ (1− ε)fnull + εfalt ≡ f, j = 1, ..., n, (1.2)

where fnull, falt, and ε are called the null density, non-null density, and proportion of
non-null effects, respectively.

An important estimation problem that is closely related to multiple testing is that of
estimating fnull, ε, and f . In fact, many commonly used multiple testing procedures require
good estimators of some or all of these three quantities. See Benjamini and Hochberg
(2000), Efron et al. (2001), Storey (2002), Genovese and Wasserman (2004), Benjamini
et al. (2006), Gilles and Roquain (2007), and Sun and Cai (2007). For example, in an
empirical Bayes framework, Efron et al. (2001) introduced the local false discovery rate
(Lfdr) which is defined as

Lfdr(x) =
(1− ε)fnull(x)

f(x)
. (1.3)

Lfdr has a useful Bayesian interpretation as the a posteriori probability of a hypothesis being
in the null group given the value of the test statistic. See also Müller et al. (2004). Sun and
Cai (2007) considered the multiple testing problem from a compound decision theoretical
point of view and showed that the Lfdr is a fundamental quantity which can be used directly
for the optimal FDR control. Calculating the Lfdr clearly requires the knowledge of ε, fnull

and f . In real applications, the proportion ε and the marginal density f are unknown and
thus need to be estimated from the data. The null density fnull is more subtle. In many
studies the null distribution is assumed to be known and can be used directly for multiple
testing. However, somewhat surprisingly, Efron (2004) demonstrated convincingly that in
some applications such as the analysis of microarray data on breast cancer and human
immunodeficiency virus (HIV) the true null distribution of the test statistic can be quite
different from the theoretical null, and possible causes for such a phenomenon include but
are not limited to unobserved covariates, correlations across different arrays and different
genes. It is further illustrated in Jin and Cai (2007) that two seemingly close choices of the
null distribution can lead to substantially different testing results. Hence, a careful study
on how to estimate the null distribution is also indispensable.
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In the present paper we study the problem of optimal estimation of the null density
fnull and the proportion ε. We should mention that estimating the marginal density f is a
standard density estimation problem and is well understood. See, for example, Silverman
(1986). Several methods for estimating the null density fnull and the proportion ε have been
introduced in the literature. See Efron (2004, 2008) and Jin and Cai (2007) for estimating
fnull and ε, and see Genovese and Wasserman (2004), Meinshausen and Rice (2006), Cai, Jin
and Low (2007), Jin (2008) and Celisse and Robin (2008) for estimating ε (also see Storey
(2002), Efron et al. (2001), Swanepoel (1999)). Unfortunately, despite the encouraging
progress in these works, the optimality of the estimators is largely unknown (it is however
not hard to show that some of these estimators are generally inconsistent in the nonsparse
case; see, e.g., Jin and Cai (2007)). It is hence of significant interest to understand how
well fnull and ε can be estimated and to what extend improving the estimation accuracy of
fnull and ε can help to enhance the performance of leading contemporary multiple testing
procedures (including but not limited to those by Benjamini and Hochberg (1995), Efron
(2001), and Sun and Cai (2007)).

In this paper, we focus on the Gaussian mixture model as in Efron (2004). We model
fnull as Gaussian but both the mean and the variance are unknown and need to be esti-
mated,

fnull(x) =
1
σ0
φ(
x− u0

σ0
), φ : density of N(0, 1). (1.4)

We shall use the terminology in Efron (2004) by calling σ2
0 the null variance parameter,

u0 the null mean parameter, and together the null parameters. The Gaussian model for
fnull is somewhat idealized, but it is a reasonable choice. On one hand, assuming fnull as
Gaussian helps to re-normalize the null distribution and is therefore a good starting point
in large-scale multiple testing. On the other hand, allowing fnull to be in a much broader
class will lead to identifiability problems. The non-null distribution falt is modeled by a
Gaussian location-scale mixture,

falt(x) =
∫ ∫

1
σ
φ(
x− u
σ

)dH(u, σ), (1.5)

where H is called the mixing distribution. Additional to the mathematical tractability that
it offers, Model (1.5) also offers great flexibility. For example, it is well known that under
the L1-metric, the set of Gaussian mixing densities of the form in (1.5) is dense in the set of
all density functions. Also, Model (1.5) is able to capture the essence of many application
examples. See Jin (2008) for an example on the analysis of gene microarray data on breast
cancer and an example on the study of the abundance of the Kuiper Belt Objects.

We consider the asymptotic minimax estimation problem and address several inter-
connected questions: what are the optimal rates of convergence? what are the best estima-
tion tools? and where do the difficulties of the estimation problem come from? Our analysis
reveals that the optimal rates of convergence for estimating the proportion and the null
parameters depend on the smoothness of H(u, σ) (more specifically, the conditional density
of u given σ associated with H). For an intuitive explanation, we note that fnull and falt

are the convolution of the standard Gaussian with the point mass concentrated at (u0, σ0)
and H, respectively. Therefore, the smoother H is, the more “different” it is from a point
mass, and the less similar that fnull and falt are. Consequently, it is easier to separate one
from the other, and hence a faster convergence rate in estimating the proportion and the
null parameters.

Since the smoothness of a density can be conveniently characterized by the tail be-
havior of its characteristic function, this suggests that frequency domain techniques can
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be naturally used for studying the optimal rate of convergence. Along this line, we first
derive a minimax lower bound by a careful analysis of the tail behavior of the characteristic
functions and by a two-point testing technique. We then establish the upper bound by
constructing estimators with the risks converging to zero at the same rate as that of the
lower bound – such estimators are then rate optimal. The procedures are closely related
to our recent work Jin and Cai (2007) and Jin (2008) which to the best of our knowledge
are the only frequency-domain-based approach to estimating the null parameters and the
proportion of non-null effects. We should emphasize that the upper bound does not follow
trivially from that in Jin and Cai (2007) and Jin (2008). For example, it is seen that the
procedure for estimating the proportion proposed in Jin and Cai (2007) and Jin (2008) is
not optimal, and careful modifications are needed to make it optimal. Also, to prove the
optimality of the procedures here, we need much more delicate analysis than that in Jin
and Cai (2007) and Jin (2008), where the scope of the study is limited to the consistency
of the procedures.

In addition to the asymptotic analysis, we also investigate the finite sample performance
of the estimators using simulated data. The proposed procedures are easy to implement.
The goal for the simulation study is two-fold: how accurate the parameters are estimated
and how the errors in the point estimation affect the results of the subsequent multiple
testing. The numerical study shows that our estimators enjoy superior performance both
in parameter estimation (measured by mean squared errors) and in the subsequent mul-
tiple testing. Our estimator of the proportion performs well uniformly in all the cases in
comparison to the estimators proposed in Storey (2002) and Efron (2004). In particular,
it is robust under many different choices of non-null distribution and sparsity level. The
multiple testing results are generally sensitive to the changes in the null parameters as
well as the proportion. In our numerical study, we compare the performance of our esti-
mators with those of Storey (2002) and Efron (2004) using two specific multiple testing
procedures, the adaptive p-value based procedure of Benjamini and Hochberg (2000) which
requires estimation of the proportion ε, and the AdaptZ procedure of Sun and Cai (2007)
which requires estimation of ε, f and fnull. The simulation study shows that our estimators
yield the most accurate multiple testing results in both cases in comparison to the other
two estimators.

The paper is organized as follows. In Section 2, after basic notation and definitions are
introduced, we consider the minimax lower bound for estimating the null parameters. We
then derive the minimax rates of convergence by showing that the lower bound is in fact
sharp. This is accomplished by constructing rate-optimal estimators using the empirical
characteristic functions. Section 3 studies the minimax estimation of the proportion. We
first consider the simpler case where the null parameters are given and then extend the
result to the case where the null parameters are unknown. Section 4 investigates the
numerical performance of our procedure by a simulation study. Section 5 discusses possible
extensions of our work and its connections with the nonparametric deconvolution problem.
The proofs of the main results are given in Section 6 and the Appendix contains the proofs
of the technical lemmas that are used to prove the main results.
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2 Estimating the null parameters: minimax risk and rate
optimal estimators

In this section, we study the minimax risks for estimating the null parameters. The minimax
lower bounds are established by a two-point testing argument in Section 2.1. At the core
of the argument is the construction of two underlying densities whose corresponding null
parameters are different but whose characteristic functions match with each other in low
frequencies. We then derive the minimax upper bounds by constructing and studying rate
optimal estimators in Section 2.2.

Return to the Gaussian mixture model

Xj
iid∼ (1− ε) 1

σ0
φ(
x− u0

σ0
) + ε

∫
1
σ
φ(
x− u
σ

)dH(u, σ) ≡ f(x). (2.1)

For any mixing distribution H(u, σ) under consideration, let H(σ) be the marginal distri-
bution of σ and let H(u|σ) be the conditional distribution of u given σ.

Definition 2.1 We call a density f eligible if it has the form as in (2.1) where H(u, σ)
satisfies that H(σ) is supported on [σ0,∞) and that H(u|σ) has a density h(u|σ) for any
σ ≥ σ0. We denote the set of all eligible f by F .

In this paper, we focus on eligible f , so that the null parameters and the proportion of
non-null effects are both identifiable. See Jin and Cai (2007) for more discussion on iden-
tifiability.

We shall define the parameter space of f for the minimax theory. First, we suppose
that for some fixed constant q > 0 and A > a > 0,

σ0 ≥ a,
∫
|x|qf(x)dx ≤ Aq, (2.2)

so that σ2
0 and u0 are uniformly bounded across the whole parameter space. Second, fix

α > 0, we assume

lim
t→∞

sup
σ≥σ0

{|t|α|ĥ(t|σ)|} ≤ A, lim
t→∞

sup
σ≥σ0

{|t|α+1|h̃′(t|σ)|} ≤ A, (2.3)

where h(u|σ) is the aforementioned conditional density, ĥ(t|σ) is the corresponding charac-
teristic function, and

h̃(t|σ) = h̃(t|σ;u0) =
∫
eituh(u+ u0|σ)du. (2.4)

Roughly speaking, (2.3) requires h(u|σ) to be sufficiently smooth so that ĥ(t|σ) decays at
a rate not slower than that of |t|−α. We shall see below that the minimax risk depends on
the smoothness parameter α. Note that in (2.2) and (2.3), different constants A can be
used in different places. However, this does not change the minimax rate of convergence,
so we use the same A for simplicity.

Last, we calibrate the proportion ε. In the literature, the proportion is a well-known
measure for sparsity; see for example Abramovich et al. (2006) and Jin and Cai (2007).
In this paper, we focus on the moderately sparse case where the proportion ε = εn can be
small but not smaller than 1/

√
n. The case εn � 1/

√
n is called the very sparse case and

has been proven to be much more challenging for statistical inference; see Donoho and Jin
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(2004) and Cai, Jin and Low (2007) for detailed discussion. In light of this, we suppose
that for some fixed parameters ε0 ∈ (0, 1) and β ∈ [0, 1/2),

εn ≤ ηn, where ηn = ηn(ε0, β) ≡ ε0n−β. (2.5)

Note that ηn = ε0 when β = 0. For this reason, we require ε0 < 1 so that the null component
will not be vanishingly small.

In summary, the parameter space we consider for the minimax risk is

F0 = F0(α, β, ε0, q, a, A;n) = {f ∈ F and satisfies (2.2), (2.3), and (2.5)}. (2.6)

We measure the performance of an estimator for the null parameters by mean squared
errors, and measure the level of difficulty for the problem of estimating the null parameters
σ2

0 and u0 by the minimax risks defined respectively by

Rσn = Rσn(F0(α, β, ε0, q, a, A;n)) = inf
σ̂2

0

{
sup

F0(α,β,ε0,q,a,A;n)
E[σ̂2 − σ2

0]2
}
,

and

Run = Run(F0(α, β, ε0, q, a, A;n)) = inf
û0

{
sup

F0(α,β,ε0,q,a,A;n)
E[û0 − u0]2

}
.

2.1 Lower bound for the minimax risk

In this section, we establish the lower bound for the minimax risk of estimating σ2
0 and

u0. As the discussions are similar, we shall focus on that for σ2
0. We use the well-known

two-point testing argument to show the lower bound (see, e.g., Ibragimov et al. (1986) and
Donoho and Liu (1991)), where the key is to construct two density functions in F0 – f1(x)
and f2(x) – such that the null variance parameters associated with them differ by a small
amount, say δn, but two densities are indistinguishable in the sense that their χ2-distance is
of a smaller order than that of 1/n. In fact, once such densities f1 and f2 are constructed,
then there is a constant C > 0 such that

Rσn ≥ Cδ2
n, (2.7)

and Cδ2
n is a lower bound for the minimax risk; see Ibragimov et al. (1986) and Donoho

and Liu (1991) for details.
Toward this end, let

a2
n = a2 + δn,

where δn > 0 to be determined. Our construction of f1 and f2 has the form of

f1(x) = (1− ηn)
1
a
φ(
x

a
) + ηn

∫
1
a
φ(
x− u
a

)h1(u)du, (2.8)

f2(x) = (1− ηn)
1
an
φ(

x

an
) + ηn

∫
1
an
φ(
x− u
an

)h2(u)du, (2.9)

where a and ηn are as in the definition of F0(α, β, ε0, q, a, A;n), h1(u) and h2(u) are two
density functions to be determined (note that the null variance parameters associated with
f1 and f2 differ by an amount of δn). There are two key elements in our construction. First,
the characteristic functions of f1 and f2 match with each other in low frequencies, i.e., for
a constant τ = τn to be determined,

f̂1(t) = f̂2(t), ∀ |t| ≤ τn. (2.10)
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Second, f1 is heavy-tailed in the spatial domain,

f1(x) ≥ Cηn(1 + |x|)−k, ∀x, (2.11)

where k > 0 is an integer to be determined. Below, we first show that the χ2-distance
between f1 and f2 equals to o(1/n) if we take the τn in (2.10) to be

τn =
1
a

√
3 log n. (2.12)

We then sketch how to construct f1 and f2 to satisfy (2.10) and (2.11), and discuss how
large δn could be so that such a construction is possible. We conclude this subsection with
the statement for the minimax lower bounds. To focus on the main ideas, we try to be
simple and heuristic in this section and leave proof details to Section 6.

We now begin by investigating the χ2-distance

d(f1, f2) ≡
∫

(f2(x)− f1(x))2

f1(x)
dx. (2.13)

First, the heavy-tailed property of f1 largely simplifies the calculation of the χ2-distance.
In fact, by (2.11) and the well-known Parseval formula (Mallat, 1998), the χ2-distance
is proportional to the L2-distance in the spatial domain, and so the L2-distance in the
frequency domain,

d(f1, f2) ≤ C logk/2(n)η−1
n

∫
(f2(x)− f1(x))2dx = C logk/2(n)η−1

n

∫
(f̂1(t)− f̂2(t))2dt.

See Section 6 for the proof. Moreover, since that f̂1 and f̂2 match each other in low
frequencies, and that |f̂j(t)| ≤ Ce−a

2t2/2 for j = 1, 2,∫
(f̂1(t)− f̂2(t))2dt =

∫
|t|≥τn

(f̂1(t)− f̂2(t))2dt ≤ C
∫
|t|≥τn

e−a
2t2/2dt.

Putting these together,

d(f1, f2) ≤ C logk/2(n)η−1
n e−a

2τ2
n/2 = Cη−1

n logk/2(n)n−3/2. (2.14)

Since ηn � 1/
√
n, this show that the χ2-distance d(f1, f2) = o(1/n).

Next, we sketch the idea for constructing f1 and f2. Consider f1 first. We construct h1

as a perturbation of the standard normal density,

h1(u) = φ(u) + ϑ0w1(u). (2.15)

The key is to show that for an appropriate constant ϑ0 > 0 and a function w1, h1 is
indeed a density function, and f1 satisfies the heavy-tailed requirement (2.11). Let k be
an even number, we construct w1(u) through its characteristic function as follows: ŵ1(t) =
(−1)k/2π

(k−1)! |t|
k−1 in the vicinity of 0, ŵ1(t) = |t|−α for large |t|, and is smooth in between (details

are given later in (6.1)). By elementary Fourier analysis, first, we note that
∫
w1(u)du =

ŵ1(0) = 0. Second, we note that the tail behavior of w1 is determined by the only singular
point of ŵ1 (which is t = 0); in fact, by repeatedly using integration by parts, we have that
for large u, w1(u) ∼ |u|−k, i.e.,

lim
|u|→∞

w1(u)|u|k = 1. (2.16)
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We shall see that, first, (2.16) implies the heavy-tailed property of f1, and second, (2.16)
ensures that w1(u) is positive for sufficiently large u, so h1 is a density function for an
appropriately small ϑ0 > 0. Additionally, we will justify later that f1 belongs to F0.
Therefore, f1 constructed this way meets all the desired requirements.

Now consider f2. Similarly, we construct h2 as a perturbation of a normal density,

h2(u) =
1√

1− δn
φ(

u√
1− δn

) + ϑ0w2(u), (2.17)

and the key is to construct w2 so that f̂1 and f̂2 match in low frequencies. Note that

f̂1(t) = ηne
− (a2+1)t2

2 + e−
a2t2

2 [(1− ηn) + ϑ0ηnŵ1(t)],

and
f̂2(t) = ηne

− (a2+1)t2

2 + e−
a2
nt

2

2 [(1− ηn) + ϑ0ηnŵ2(t)].

By direct calculations, in order for f̂1 and f̂2 to match in low frequencies, it is necessary
that

ŵ2(t) = w̃(t) for all |t| ≤ τn, where w̃(t) ≡ e
δnt

2

2 ŵ1(t) + 1
ϑ0

1−ηn
ηn

[e
δnt

2

2 − 1]. (2.18)

In light of this, we construct w2 through its characteristic function as follows: ŵ2(t) = w̃(t)
for |t| ≤ τn, ŵ2(t) = 0 for |t| > τn + 1, and is smooth in between. Figure 1 illustrates the
construction of ŵ1 and ŵ2; see details therein.

We now investigate what is the largest δn so that f2 constructed this way belongs to
F0. By the definition of F0, it is necessary that |ĥ2(t)| ≤ A|t|−α for all t, and especially
that |ĥ2(τn)| ≤ Aτ−αn . Recall that ŵ1(τn) = ϑ0τ

−α
n , we have

ĥ2(τn) = e
δnt

2

2 ŵ1(τn) +
1
ϑ0

1− ηn
ηn

[e
δnτ

2
n

2 − 1] ∼ O(τ−αn +
δn
ϑ0ηn

τ2
n).

Together, these require that
δn ≤ Cηnτ−(α+2)

n .

In light of this, we calibrate δn as

δn = θ0ϑ0ηnτ
−(α+2)
n , (2.19)

where θ0 > 0 is a constant to be determined. Interestingly, it turns out that for an appropri-
ately small θ0, w2 constructed in this way ensures that h2 is a density function and that f2

lives F0 (see Section 6). Therefore, the largest possible δn is of the order of O(ηnτ
−(α+2)
n ).

We are now ready to state the minimax lower bounds. Let Mq be the q-th moment of
the standard normal (i.e. Mq = E|X|q with X ∼ N(0, 1)), the following theorem is proved
in Section 6.

Theorem 2.1 Fix α > 2, β ∈ [0, 1/2), ε0 ∈ (0, 1), q > 0, a > 0, and A >
√
a2 + 1M1/q

q .
There is a constant C > 0 which depends on α, β, ε0, q, a, and A such that,

lim
n→∞

n2β · (log n)(α+2) ·Rσn(F0(α, β, ε0, q, a, A;n)) ≥ C,

and
lim
n→∞

n2β · (log n)(α+1) ·Run(F0(α, β, ε0, q, a, A;n)) ≥ C.
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Figure 1: The first three panels illustrate ŵ1(t) (red), w̃(t) (blue), and ŵ2(t) (green). Note
that w̃ is not a characteristic function as w̃(t) > 1 for large |t|, and that ŵ2 is a truncated
version of w̃. The last panel is the overlay and zoom in of the first three panels.

Due to the calibrations we choose in (2.3) and (2.5), the optimal rate is expressed in
terms of parameters α, β. Such calibrations are mainly for the simplicity in the presentation:
Theorem 2.1 (as well as Theorem 2.2, 3.1, and 3.2 below) can be extended to more general
settings. Here is an example. Fix ε0 ∈ (0, 1) and β ∈ [0, 1/2), suppose we (a). modify
the calibration of εn in (2.5) into that ηn ≤ εn ≤ ε0 with ηn being a sequence satisfying
ηn ≥ ε0n

−β, and (b). change the parameter space from F0 to F ′0 = F ′0(α, q, a,A, ηn;n),
where

F ′0(α, β, q, a, A, ηn;n) = {f ∈ F and satisfies (2.2), (2.3), and constraints on εn above}.

The following corollary can be proved similarly as that of Theorem 2.1.

Corollary 2.1 Fix α > 2, β ∈ [0, 1/2), ε0 ∈ (0, 1), q > 0, a > 0, and A >
√
a2 + 1M1/q

q , let
εn and F ′0 be calibrated as above. There is a constant C > 0 which depends on α, β, ε0, q, a,
and A such that,

lim
n→∞

η−2
n · (log n)(α+2) ·Rσn(F ′0(α, β, q, a, A, ηn;n)) ≥ C,

and
lim
n→∞

η−2
n · (log n)(α+1) ·Run(F ′0(α, β, q, a, A, ηn;n)) ≥ C.

We remark that for the case β > 0, the condition A >
√
a2 + 1M1/q

q can be re-
laxed to that of A > aM

1/q
q . The latter is the minimum requirement for otherwise
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F0(α, β, ε0, q, a, A;n) is an empty set. Theorem 2.1 shows that the minimax risk for esti-
mating σ2

0 can not converge to 0 faster than O(n−2β · (log n)−(α+2), and that for estimating
u0 can not be faster than O(n−2β · (log n)−(α+1). In next section, we shall show that these
rates can indeed be attained and thus establish the minimax rates of convergence.

2.2 Rate optimal estimators for the null parameters

In this section, we seek estimators of the null parameters whose risks converge at the same
rates as those of the lower bounds. Once such estimators are constructed, then their risks
give upper bounds for the minimax risks, and the estimators themselves are rate optimal.

Given that estimating the null parameters is a relatively new problem, there are only a
small number of methods in the literature. One straightforward approach is the method of
moments, and another approach, proposed by Efron (2004), is to use the half-width of the
central peak of the histogram. However, these approaches are only consistent in the sparse
case where the proportion ε = εn tends to 0 as n tends to ∞. See Jin and Cai (2007) for
more discussion.

In our recent work (Jin and Cai, 2007), we demonstrated that the null component can
be well isolated in high frequency Fourier coefficients and based on this observation we
introduced a Fourier approach for estimating the null parameters. In detail, for any t and
complex-valued differentiable function ξ, let Im(ξ) be the imaginary part and ξ̄ be the
complex conjugate, we introduce two functionals as follows:

σ2
0(t; ξ) = −

( d
ds |ξ(s)|
s|ξ(s)|

)∣∣∣∣
s=t

, u0(t; ξ) =
(

1
|ξ(s)|2

· Im(ξ̄(s)ξ′(s))
)∣∣∣∣

s=t

. (2.20)

Next, fix γ ∈ (0, 1/2), let ϕn(t) be the empirical characteristic function,

ϕn(t) =
1
n

n∑
j=1

eitXj , (2.21)

and
t̂n(γ) = min{t : t > 0, |ϕn(t)| ≤ n−γ}. (2.22)

We define the estimators for σ2
0 and u0 as

σ̂2
0(γ) = σ2

0(t̂n(γ);ϕn), û0(γ) = u0(t̂n(γ);ϕn).

To illustrate the idea behind the construction of these estimators, we consider a simpli-
fied case where f is a homoscedastic Gaussian location mixture,

f(x) = (1− ε) 1
σ0
φ(
x− u0

σ0
) + ε

∫
1
σ0
φ(
x− u
σ0

)h(u)du, h: a univariate density.

First, the empirical characteristic function approximates the underlying characteristic func-
tion ϕ(t) = ϕ(t; f) ≡ E[eitXj ],

ϕn(t) ≈ ϕ(t) = e−σ
2
0t

2/2[(1− ε)eiu0t + εĥ(t)].

Second, by the well-known Riemann-Lebesgue lemma, for large t, ĥ(t) ≈ 0, so

ϕ(t) ≈ (1− ε)e−σ2
0t

2/2eiu0t ≡ ϕ0(t).
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Last, t̂n(γ) approximates its non-stochastic counterpart tn(γ),

tn(γ) = min{t : t > 0, |ϕ(t)| ≤ n−γ}. (2.23)

Putting these together, we have that, heuristically,

σ̂2
0(γ) ≈ σ2

0(tn(γ), ϕ0) ≡ σ2
0, û0(γ) ≈ u0(tn(γ), ϕ0) ≡ u0,

where “≡” follow from direct calculations. See more discussions in Jin and Cai (2007).
The above approach has been studied in Jin and Cai (2007), where it was shown to be

uniformly consistent across a wide class of cases. However, whether any of these estimators
attains the optimal rate of convergence remains an open question. The difficulty is two-fold.
First, compared to the study on consistency as in Jin and Cai (2007), the study on the
optimal rate of convergence needs a much more delicate analysis on several small probability
events. Tighter bounds on such events are not necessary for showing the consistency,
but they are indispensable for proving the optimal rate of convergence. Second, a major
technical difficulty is that the frequency t̂n(γ) is stochastic and is not independent of the
sample Xj . The stochasticity and dependence pose challenges in evaluating the estimation
risks, and are the culprits for the lengthy analysis.

In this paper, we develop new analytical tools to solve these problems. The new analysis
provides better probability bounds on several nuisance events and better control on the
stochastic fluctuation of t̂n(γ), σ̂2

0(γ), and û0(γ). The analysis reveals that the estimators
σ̂2

0(γ) and û0(γ) are in fact rate-optimal under minimum regularity conditions. This is the
following theorem, which is proved in Section 6.

Theorem 2.2 Fix γ ∈ (0, 1/2), α > 2, β ∈ [0, 1/2), ε0 ∈ (0, 1), q ≥ 4, a > 0, and
A >

√
a2 + 1M1/q

q . There is a constant C > 0 which only depends on γ, α, β, ε0, q, a, and
A such that

sup
F0(α,β,ε0,q,a,A;n)

E[σ̂2
0(γ)− σ2

0]2 ≤ C
(
n−2β log−(α+2)(n) + log(n) · n2γ−1

)
and

sup
F0(α,β,ε0,q,a,A;n)

E[û0(γ)− u0]2 ≤ C
(
n−2β log−(α+1)(n) + log2(n) · n2γ−1

)
.

Take γ < 1/2−β in Theorem 2.2, it then follows from Theorems 2.1 and 2.2 that the mini-
max rate of convergence for estimating the null parameters σ2

0 and u0 are n−2β log−(α+2)(n)
and n−2β log−(α+1)(n), respectively. Furthermore, the estimators σ̂2

0(γ) and µ̂0(γ) with
γ < 1/2 − β are rate optimal. Different choices of γ does not affect the convergence rate
but may affect the constant. In section 4, we investigate how to choose γ in practice
with simulated data. We find that in many situations, the mean square error is relatively
insensitive to the choice of γ, provided that it falls in the range of (0.15, 0.25).

We mention that the logarithmic term in the minimax risk bears some similarity with
the conventional deconvolution problem. See Section 5 for further discussion.

3 Estimating the proportion of non-null effects

We now turn to the minimax estimation of the proportion. First, we consider the case where
the null parameters are known. We show that, with careful modifications, the approach
proposed in our earlier work (Jin and Cai (2007) and Jin (2008)) attains the optimal rate of
convergence. We then extend the optimality to the case where the null parameters (u0, σ

2
0)

are unknown.
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3.1 Estimating the proportion when the null parameters are known

When the null parameters (u0, σ
2
0) are known, we can always use them to re-normalize the

test statistics Xj . So without loss of generality, we assume u0 = 0 and σ0 = 1. As a result,
the marginal density of Xj obeys a simplified form,

Xj
iid∼ (1− ε)φ(x) + ε

∫
φ(
x− u
σ

)dH(u, σ) ≡ f. (3.1)

The problem of estimating the proportion has received much recent attention. See, e.g.,
Storey (2002), Genovese and Wasserman (2004), Meinshausen and Rice (2006) (see also
Efron et al. (2001) and Swanepoel (1999)). A necessary condition for the consistency of
several of these approaches is that the marginal density of the non-null effects (i.e. falt) is
pure, a notion introduced in Genovese and Wasserman (2004). Unfortunately, the purity
condition is generally not satisfied in the current setting; see Jin (2008) for a detailed
discussion.

In our recent work Jin and Cai (2007) and Jin (2008), we proposed a Fourier approach to
estimating the proportion which is described as follows. Let ω(ξ) be a bounded, continuous,
and symmetric density function supported in (−1, 1). Define a so-called phase function

ψn(t;ω) = ψn(t;ω,X1, X2, . . . , Xn) =
∫
ω(ξ)e

t2ξ2

2 ϕn(tξ)dξ,

where as before ϕn(t) = 1
n

∑n
j=1 e

itXj is the empirical characteristic function. Fix γ ∈
(0, 1/2) and let tn = tn(γ) be as in (2.23), the estimator is defined as

ε̂n(γ;ω) = ε̂n(γ;ω,X1, X2, . . . , Xn) = 1− Re(ψn(tn(γ);ω)), (3.2)

where Re(z) stands for the real part of z. In Jin and Cai (2007) and Jin (2008), three
different choices of ω(ξ) are recommended, namely the uniform density, the triangle density,
and the smooth density that is proportional to exp(− 1

1−|ξ|2 ) · 1{|ξ|<1}.
The advantage of the Fourier approach is that, it is no longer tied to the purity condition,

and can be shown to be consistent for the proportion uniformly for all eligible H(u, σ); see
details in Jin and Cai (2007) and Jin (2008). However, unfortunately, it is not hard to show
that these estimators are not rate optimal with any of these three ω.

In this paper, we propose the following estimator,

ε̂n(γ) =
(

1− 1
n

n∑
j=1

e
t2

2 cos(tXj)
)∣∣∣∣

t=
√

2γ logn

= 1− n−(1−γ)
n∑
j=1

cos(
√

2γ log nXj).

In comparison, ε̂n(γ) is a special case of ε̂n(γ;ω), where instead of being a density function
as in (3.2), ω is a point mass concentrated at 1. We shall show that under mild conditions,
the proposed estimator ε̂n(γ) attains the optimal rate of convergence. In detail, fix α > 0,
β ∈ [0, 1/2), ε0 ∈ (0, 1), q ≥ 2, and A >

√
2M1/2

q , let ηn = ε0n
−β be as before. Consider

the following parameter space for the minimax theory on estimating the proportion,

F̃ = F̃(α, β, ε0, q, A;n) = {f ∈ F : ε ≤ ηn,
∫
|x|qf(x)dx ≤ Aq}. (3.3)

The minimax risk for estimating the proportion when the null parameters are known is

Rε,an = Rε,an (F̃(α, β, ε0, q, A;n)) = inf
ε̂

{
sup

F̃(α,β,ε0,q,A;n)

E[ε̂− ε]2
}
. (3.4)

We have the following theorem.
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Theorem 3.1 Fix γ ∈ (0, 1/2), α > 0, β ∈ [0, 1/2), ε0 ∈ (0, 1), q ≥ 2, A >
√

2M1/q
q .

There is a generic constant C > 0 which only depends on α, β, ε0, q, A and γ such that
for sufficiently large n,

Rε,an (F̃(α, β, ε0, q, A;n)) ≥ Cn−2β log−α(n),

and

sup
F̃0(α,β,ε0,q,A;n)

E[ε̂(γ)− ε]2 ≤ C
(
n−2β log−α(n) + n2γ−1

)
.

In particular, if γ < 1/2− β, then ε̂n(γ) attains the optimal rate of convergence.

The proof of Theorem 3.1 is similar (but significantly simpler) than Theorem 3.2 below,
which deals with the case where the null parameters are unknown. For reasons of space,
we provide the proof of Theorem 3.2 in Section 6 but omit that of Theorem 3.1.

3.2 Estimating the proportion when the null parameters are unknown

We now turn to the case where the null parameters are unknown. A natural approach is
to first estimate the null parameters with (σ̂0(γ), û0(γ)) and then plug them into ε̂n(γ) to
obtain an estimate of the proportion. In other words, fix γ ∈ (0, 1/2), the plug-in estimator
is

ε̂∗n(γ) = 1− 1
n

n∑
j=1

e
t2

2 cos
(
t
[Xj − û0(γ)

σ̂0(γ)
])∣∣∣∣
{t=
√

2γ logn}
. (3.5)

We consider the minimax risk over the parameter space F0. The minimax risk for estimating
the proportion when the null parameters are unknown is then

Rε,bn = Rε,bn (F0(α, β, ε0, q, A, a;n)) = inf
ε̂

{
sup

F0(α,β,ε0,q,a,A;n)
E[ε̂− ε]2

}
. (3.6)

The following theorem, proved in Section 6, shows that the plug-in estimator is rate optimal.

Theorem 3.2 Fix γ ∈ (0, 1/2), α > 2, β ∈ [0, 1/2), ε0 ∈ (0, 1), q > 4 + 2γ, a > 0, and
A >

√
a2 + 1M1/q

q . There is a generic constant C > 0 which only depends on γ, α, β, ε0,
q, a, and A such that for sufficiently large n,

Rε,bn ≥ Cn−2β log−α(n),

and

sup
F0(α,β,ε0,q,a,A;n)

E[ε̂∗n(γ)− ε]2 ≤ C
(
n−2β log−α(n) + log3(n) · n2γ−1

)
.

Especially, if γ < 1/2− β, then ε̂∗n(γ) attains the optimal rate of convergence.

Compare Theorem 3.2 with Theorem 3.1, we see that except for the small difference in
the upper bound (one has the log3(n) term and the other does not), the minimax rates of
convergence are the same whether the null parameters are known or not. The log3(n) is the
price we pay for the extra variability in estimation when the null parameters are unknown.
Therefore, the plug-in estimator ε̂∗n(γ) given in (3.5) is rate-optimal under almost the same
conditions as in the case where the null parameters are known.
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4 Simulation Study

The procedures for estimating the proportion and null parameters presented in Sections 2
and 3 are easy to implement. In this section, we investigate the numerical performance of
the procedure with simulated data.

The numerical study has several goals. The first is to consider the effect of the tuning
parameter γ on mean squared error (MSE) of the estimators and to make a recommendation
on the choice of γ. The second is to compare the performance of the estimators with different
sample size n. The third is to compare the procedure with those in the literature. Several
different combinations of the proportion and the non-null distributions are used for such
comparisons. The fourth is to investigate the performance of the estimators when the
assumptions on eligibility and independence do not hold. The last and the most important
goal is to study the effect of the estimation accuracy over the subsequent multiple testing
procedures. Along this line, we consider two specific multiple testing procedures in our
numerical study. One is the adaptive p-value based procedure (AP) introduced in Benjamini
and Hochberg (2000) which requires an estimation of the proportion ε. This is the original
Benjamini-Hochberg step-up procedure with an adjusted FDR level accounting for the
sparsity. Another is the AdaptZ procedure (AZ) proposed in Sun and Cai (2007). This
procedure thresholds the ranked Lfdr statistic (1.3) and requires estimations of ε, f and
fnull. The procedure is asymptotically optimal in the sense that it minimizes the false
non-discovery rate asymptotically when the estimators of ε, f and fnull are consistent.

Unless specified otherwise, the simulation results given in this section are based on
sample size n = 10, 000, 1000 replications and the following Gaussian mixture model,

Xi ∼ (1− ε)N(µ0, σ
2
0) +

ε

2
N(µ1i, σ

2) +
ε

2
N(µ2i, σ

2), (4.1)

where µ1i and µ2i are drawn from some distributions that may change from one case to
another. Below, we report the simulation results along with the 5 aforementioned directions.

First, we study the effect of the tuning parameter γ on the performance of the estimators.
Towards this end, we consider the following setting.

Setting 1: We take µ0 = 0, σ0 = 1, µ1i ∼ Uniform(−0.9,−0.1), µ2i ∼ Uniform(0.5, 1.5),
ε = 0.2, and σ = 1.2.

γ 0.08 0.11 0.14 0.17 0.20 0.23 0.26 0.29 0.32 0.35 0.38
MSE(ε̂∗n) 15.1 11.8 8.58 5.90 4.14 3.81 6.33 16.5 46.1 91.6 142
MSE(û0) 0.37 0.93 1.79 3.11 5.40 9.65 17.8 33.3 63.0 114 204
MSE(σ̂2

0) 2.31 1.57 1.07 0.78 0.68 0.77 1.08 1.70 2.83 4.89 8.84

Table 1: MSE (in unit of 10−4) of the estimators ε̂∗n(γ), û0(γ) and σ̂2
0(γ) for different γ.

Table 1 tabulates the MSE of the three estimators ε̂∗n(γ), û0(γ) and σ̂2
0(γ). The results

suggest that ε̂∗n and σ̂2
0 perform well in terms of the MSE when γ is in a neighborhood

of 0.2, ranging from 0.14 to 0.26 (note that however the estimator µ̂0 favors a smaller γ).
Additional simulations show similar patterns. In light of this, we conclude that an overall
good choice is γ = 0.2. We recommend this choice for practical use, and use it in the rest
of simulation study in this paper.

Second, we investigate how the sample size n affects the estimation accuracy. The
setting we consider is the same as Setting 1, but with different n.
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Setting 2: We take µ0 = 0, σ0 = 1, µ1i ∼ Uniform(−0.9,−0.1), µ2i ∼ Uniform(0.5, 1.5),
ε = 0.2, σ = 1.2, and n ranges from 2, 000 to 500, 000.

Table 2 summarizes the MSE of the estimators under Setting 2. The results show that
the accuracy of the estimators improves quickly as the sample size increases.

n 2000 5000 10000 15000 20000 50000 100000 500000
MSE (ε̂∗n(0.2)) 306.6 102.6 43.9 26.1 17.7 4.6 1.7 0.2
MSE(µ̂0(0.2)) 596.6 143.8 60.5 31.7 19.3 5.8 1.9 0.2
MSE(σ̂2

0(0.2)) 74.6 19.6 7.1 3.95 2.5 0.6 0.2 0.01

Table 2: Comparison of MSE (in unit of 10−5) for different n under Setting 2. The tuning
parameter γ is set at 0.2.

We now move to our third goal and compare the proposed estimator for the proportion
with those in the literature, namely Efron’s estimator ε̂E (Efron (2004)) and Storey’s esti-
mator ε̂S (Storey (2002), Genovese and Wasserman (2004)), assuming the null distribution
is known. To distinguish from ε̂n(γ), we denote the special case of γ = 0.2 by

ε̂CJn = ε̂n(0.2)

and may drop the subscript n for simplicity. We compare these three estimators with data
generated with different proportion ε (Setting 3a) and different hertoscedasticity parameter
σ (Setting 3b).

Setting 3a: We take µ0 = 0, σ0 = 1, µ1i ∼ Uniform(−0.9,−0.1), µ2i ∼ Uniform(0.5, 1.5),
and σ = 1.2. The value of ε varies from 0.03 to 0.30. The goal is to see how the performance
of the three estimators depends on the sparsity.

Setting 3b: We set µ0 = 0, σ0 = 1, µ1i ∼ Uniform(−0.9,−0.1), µ2i ∼ Uniform(0.5, 1.5),
and ε = 0.2. The value of σ varies from 1.2 to 2.1. The goal is to study the effect of the
non-null distribution on the estimation accuracy of the proportion estimators.

Table 3 tabulates the MSEs of these three point estimators. It is clear that our estimator
ε̂CJ performs well uniformly in all the cases. In particular it is robust under the various
settings of non-null distribution and sparsity. Table 3 shows that the MSE of ε̂CJ increases
gradually from 5.7×10−5 to 10.1×10−5 as ε increases from 0.03 to 0.30. In comparison, the
other two estimators ε̂S and ε̂E perform well in the sparse case but poorly in the non-sparse
case. The MSEs of ε̂E and ε̂S increase about 120 times and 80 times respectively and they
can sometimes be more than 10 times (some times even 39 times) larger than the MSE of
ε̂CJ .

Next, we consider the case where either the assumption on eligibility or the assumption
on independence is violated. Consider the eligible assumption first. Denote by DE(µ, τ)
the double exponential distribution with the density function f(x;µ, τ) = 1

2τ e
−|x−µ|/τ . We

shall generate Xi as

Xi ∼ (1− ε)N(µ0, σ
2
0) +

ε

2
DE(µ1i, τ) +

ε

2
DE(µ2i, τ). (4.2)

In this case the eligible condition does not hold. Two different settings are considered.

Setting 4a: We take µ0 = 0, σ0 = 1 and assume the null parameters µ0 and σ0 are known.
First generate µ1i from U(−0.9,−0.1) and µ2i from U(0.5, 1.5), then generate Xi as in (4.2)
with τ = 1.2. The proportion ε varies from 0.03 to 0.30.
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Setting 3a
ε 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30
MSE (ε̂CJ) 5.7 7.7 9.0 9.9 9.3 10.3 10.0 11.2 11.5 10.1
MSE(ε̂E) 3.3 14.6 33.4 60.3 95.8 139 190 249 316 394
MSE(ε̂S) 2.4 8.9 19.5 32.9 49.9 72.8 99.7 130 163 195

Setting 3b
σ 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1
MSE(ε̂CJ) 67.3 53.7 41.8 31.7 24.0 17.6 13.2 9.4 7.0 4.8
MSE(ε̂E) 172 164 153 146 138 129 122 114 108 100
MSE(ε̂S) 89.0 81.6 72.2 67.7 61.9 55.4 50.3 46.7 43.5 41.0

Table 3: Comparison of MSE (in unit of 10−5) of three point estimators ε̂CJ , ε̂E and ε̂S .

Setting 4b: We take µ0 = 0, σ0 = 1 and assume the null parameters µ0 and σ0 are
unknown. First generate µ1i from U(−0.9,−0.1) and µ2i from U(0.5, 1.5), then generate
Xi as in (4.2) with ε = 0.2. The value of τ varies from 1.2 to 2.1.

Setting 4a
ε 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

MSE(ε̂n(0.2)) 8.10 7.25 6.45 5.66 4.95 4.29 3.68 3.09 2.58 2.11

Setting 4b
σ 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

MSE(ε̂∗n(0.2)) 11.9 10.7 9.7 8.7 7.9 7.1 6.5 5.8 5.3 4.8
MSE(µ̂0(0.2)) 0.16 0.18 0.19 0.18 0.19 0.19 0.20 0.22 0.23 0.23
MSE(σ̂2

0(0.2)) 4.1 4.1 4.2 4.2 4.0 3.9 3.7 3.6 3.5 3.3

Table 4: MSE (in unit of 10−4) of ε̂n(γ) corresponds to Setting 4a, and that of ε̂∗n(γ), û0(γ)
and σ̂2

0(γ) correspond to Setting 4b.

Table 4 gives the MSEs of our estimators in Settings 4a and 4b. The results show that,
although the eligible condition is violated, our estimators continue to perform well in both
settings.

We now consider a case where the assumption on independence is violated. To do so,
let L be an integer that ranges from 0 to 50 with an increment of 10. For each L, we
generate n + L samples w1, w2, . . . , wn+L from N(0, 1), then let zj = 1√

L+1

∑j+L
`=j w`. The

samples zj generated in this way are blockwise dependent with a block size L (note that
L = 0 corresponds the independent case). The setting we consider is as follows, where the
null parameters are assumed as unknown.

Setting 4c: Fix ε = 0.2 and σ = 1.2. Generate Xi = zi for i = 1, 2, . . . , 8000, Xi = µi1+σzi
for 8001 ≤ i ≤ 9000, and Xi = µi2+σzi for 9001 ≤ i ≤ 10000, where µ1i from U(−0.9,−0.1)
and µ2i from U(0.5, 1.5).

Table 5 summarizes the results. In terms of MSE, the estimation accuracy decreases as
the range of dependence increases, however, the MSE are still relatively small, especially
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those correspond to proportion and the null variance parameter σ2
0.

L 0 10 20 30 40 50
MSE (ε̂∗n(0.2)) 8.3 11.5 15.9 22.6 32.2 40.5
MSE(µ̂0(0.2)) 11.6 36.7 68.7 94.1 128.3 153.0
MSE(σ̂2

0(0.2)) 5.7 13.9 23.6 35.9 40.6 51.7

Table 5: MSE (in unit of 10−3) of ε̂∗n(γ), u0(γ) and σ̂2
0(γ) as the range of dependence

increases. Data generated according to Setting 4c, and the tuning parameters is γ = 0.2.

Finally, we investigate how the point estimators affect the results of subsequent multiple
testing procedures. First, we use the adaptive p-value based procedure (Benjamini and
Hochberg (2000)) to compare the effect of the three point estimators of the proportion in
the subsequent multiple testing. Towards this end, we consider the following two settings
(which are the same as Setting 3a and 3b, respectively, but we restate them to avoid
confusion).

Setting 5a: We take µ0 = 0, σ0 = 1, µ1i ∼ Uniform(−0.9,−0.1), µ2i ∼ Uniform(0.5, 1.5),
and σ = 1.2. The value of ε varies from 0.03 to 0.30.

Setting 5b: We set µ0 = 0, σ0 = 1, µ1i ∼ Uniform(−0.9,−0.1), µ2i ∼ Uniform(0.5, 1.5),
and ε = 0.2. The value of σ varies from 1.2 to 2.1.

It is known that the original step-up procedure of Benjamini and Hochberg (1995) is
conservative: it controls the FDR level at (1−ε)α instead of the nominal level α. To remedy
this shortcoming, Benjamini and Hochberg (2000) proposed an adaptive BH procedure
which applies the original step-up procedure at level α′ = α/(1 − ε̂) instead of α, where ε̂
is an estimate of ε. Clearly the true FDR level of the adaptive BH procedure depends on
the estimation accuracy of ε̂.

We now compare the actual FDR level of the adaptive BH procedure using ε̂CJ , ε̂S , and
ε̂E . In addition we also use the deviations of the false discovery proportion (FDP) from the
nominal FDR level as a measure of the accuracy of the testing procedure. The FDP is a
notion that is closely related to FDR: the FDP is the proportion of false positives among all
rejections, and the FDR is the expected value of the FDP; see, for example, Genovese and
Wasserman (2004). The deviations of the FDP from the nominal FDR level are natually
summarized by mean squared error. Denote the FDP of the adaptive BH procedure with
the proportion being estimated by ε̂E , ε̂S and ε̂CJ by FDPE , FDPS and FDPCJ .

Figure 2 compares the actual FDR levels as well as the MSEs of FDPE , FDPS and
FDPCJ . The two right panels are the ratios of the MSEs of FDPE , FDPS and FDPCJ

to MSE(FDPCJ). In each of these settings, overall, the true FDR level of the adaptive
BH procedure using ε̂CJ is closest to the nominal level. The other two estimators, ε̂E and
ε̂S , tend to under-estimate the proportion ε and consequently yield conservative testing
procedure with the true FDR level below the nominal value. The FDP plots indicate that
overall FDPE has larger deviations from the nominal FDR level in individual realizations
than that of FDPS which is itself larger than that of FDPCJ . These results show that our
estimator ε̂CJ yields the most accurate testing procedure: compared to FDPS and FDPE ,
FDPCJ is not only smaller in biases, but also smaller in variances.

Next, we consider the following setting under which the performance of our estimators
of the proportion and null parameters is compared with that of estimators given in Efron
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Figure 2: The actual FDR levels (left panels) and the MSEs of the FDP (right panels) of
the adaptive BH procedure using the proportion estimators ε̂E (◦ line), ε̂S (4 line) and
ε̂CJ (+ line). The nominal level is .10. Top row: Setting 5a. The horizontal axis is the
proportion ε. Bottom row: Setting 5b. The horizontal axis is the parameter σ.

(2004) (Note that Storey (2002) assumed a known null distribution and did not provided
estimators for the null parameters, so we exclude it from the comparison). In this setting
the performance of the estimators is measured by the accuracy of the actual FDR level of
the adaptive testing procedure introduced in Sun and Cai (2007).

Setting 5c: We take µ0 = 0, µ1i ∼ Uniform(−0.9,−0.1), µ2i ∼ Uniform(0.5, 1.5), ε = 0.2,
and σ = 1.3. The value of σ0 varies from 0.5 to 1. In this setting we estimate both the
proportion ε and the null parameters µ0 and σ0.

The AdaptZ procedure given in Sun and Cai (2007) aims to minimize the false non-
discovery rate subject to the constraint that the FDR is controlled at a prespecified level.
It enjoys certain optimality properties. The procedure thresholds the ordered Lfdr statistic

L̂fdr(zi) = (1− ε̂)f̃null(zi)/f̃(zi),

where f̃null and f̃ are estimators of fnull and f respectively. The marginal density f is
estimated by a kernel density estimator with bandwidth chosen by cross-validation. Figure
3 plots the true FDR levels of the AdaptZ procedure using our estimators of ε and f̃null

with those of the same procedure using the estimators of ε and f̃null given in Efron (2004).
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Figure 3: The actual FDR levels (left panel) and the relative MSEs of the FDP (right panel)
of the AdaptZ procedure using the estimated null parameters and proportion: Efron’s
estimators (◦ line) and our estimators (4 line). The nominal FDR level is .10 and the
horizontal axis is the parameter σ0.

Figure 3 also displays the ratio of the MSEs of the FDP of the two testing procedures,
MSE(FDPE)/MSE(FDPCJ). The results clearly show that the true FDR level of the
testing procedure with our estimator is much closer to the nominal level than that with the
estimators given in Efron (2004) and the FDP has smaller deviations from the nominal FDR
level. Indeed, the MSE(FDPCJ) can sometimes be 15 times smaller than MSE(FDPE)
(see Panel (b)).

We conclude this section by mentioning that, the proposed estimators usually yield
a more accurate point estimation for the proportion and the null parameters than those
by Efron (2004) and Storey (2002), not only asymptotically, but also for finite n. The
accuracy of the proportion and the null parameters directly affects the performance of the
subsequent testing procedures. Our estimators yield more accurate testing results than
those by in Efron (2004) and Storey (2002).

5 Discussion

We derived the optimal rates of convergence for estimating the null parameters and the pro-
portion of non-null effects in large-scale multiple testing using a Gaussian mixture model.
It was shown that the convergence rates depend on the smoothness of the mixing density
h(u|σ). The empirical characteristic function and Fourier analysis are crucial tools in our
analysis of the optimality results. The proposed estimators not only are asymptotically
rate-optimal but also enjoy superior finite sample performance. Both theoretical and nu-
merical results show that these estimators outperform the commonly used estimators in
the literature. The improvement in the parameter estimation leads directly to more precise

19



results in the subsequent multiple testing.
The minimax rates of convergence are proportional to the square of the true proportion

multiplied by some logarithmic factors. The slowly convergent logarithmic factors can be
attributed to the super-smooth nature of the Gaussian density, which attributes to the thin-
tailed behavior of the corresponding characteristic function. As a result, even a relatively
large perturbation in the true null parameters or in the true proportion may only result in a
small difference in the L2-norm of the characteristic function, which makes the perturbation
hard to detect. The logarithmic terms are reminiscent of that found in the study of the
conventional nonparametric deconvolution with Gaussian errors (e.g., Zhang (1990) and
Fan (1991)), where the culprit for the slow convergence is also the super-smoothness of the
Gaussian density. However, we should note that the problem considered here is different
from the deconvolution problem; this explains the difference in the rate of minimax risk,
the need for new procedures, and the need for new approaches to derive the minimax risk
bounds.

The work presented in this paper can be extended in several directions. First, while
we have focused on the case where the characteristic function of h decays at a polynomial
rate, the results can be conveniently extended to the case where it has an exponential tail.
Consider for example the following case,

|ĥ(t)| ≤ Cexp(−|t|α).

The bias of the proposed estimator for the null parameters (and that for the proportion is
similar) is of the order of

exp(−C logα/2(n)).

When 0 < α < 2, the bias is still larger than the variance and the rate of convergence
is basically exp(−C logα/2(n)). When α > 2, the bias tends to 0 faster than 1/

√
n. In

this case, the variance dominates the MSE, and we have O(1/n) convergence rate. Second,
while we focus on the case where Xj are independent, extensions to the case of weak de-
pendence is possible. Jin and Cai (2007) considered two dependent structures: the strongly
α-mixing case and the short-range dependent case and showed that the estimators con-
structed in that paper continue to be uniformly consistent under these dependent settings;
see details therein. We expect that some of the results given in this paper are also extend-
able to the weakly dependent case. Third, while we focus on Gaussian mixtures in this
paper, extensions to non-Gaussian mixtures is possible, see Jin (2008) for more discussion.
An interesting example along this line is to replace the Gaussian mixture by the Laplace
mixture. Due to the singularity of the Laplace density around the origin, the associated
characteristic function decays much slower than that of the Gaussian density. As a result,
the minimax risks for estimating the null parameters and the proportion are expected to
have faster rates of convergence than those presented here. Last, while we focus on squared
error loss here, the results can be extended to general loss functions.

We conclude this section by mentioning some possible future research directions. First,
two key assumptions we make in this paper are the Gaussian mixture structure of the
marginal density of the z-scores, and the independence among different z-scores. An in-
teresting direction is to study the extend to which the presented results continue to hold
when these assumptions are violated. An equally interesting direction is to study how to
normalize/pre-process the data such that the assumptions hold approximately. Given the
considerable efforts on normalization and pre-processing by the gene microarray community
in recent years, the research along this direction could be very fruitful. Second, it would
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also be interesting to develop an adaptive approach to select the tuning parameter γ in
our proposed procedure. Given the overwhelming practical interest in large-scale multiple
testing, this is an interesting problem for further study.

6 Proof of the main results

In this section, we prove the main results: Theorem 2.1, Theorem 2.2, and Theorem 3.2.

6.1 Proof of Theorem 2.1

The proofs of the minimax lower bounds for estimating the null parameters σ2
0 and u0 are

similar. We present a detailed proof for the first claim and only a brief outline for the
second one.

Consider the first claim. The key is to flesh out the ideas sketched in Section 2.1. We
begin by filling in the details of the construction of w1 and w2. Let k be the smallest even
number that is greater than 2q + 1, let

ξ(t) =

{
(−1)k/2π

(k−1)! |t|
k−1, 0 ≤ t ≤ 1,

|t|−α, t > 1,

and let s1 and s2 be two symmetric smooth functions, where s1 satisfies (1). 0 ≤ s1(t) ≤ 1,
(2). s1(t) = 1 when |t − 1| > 2/3, and (3). s1(t) = 0 when |t − 1| < 1/3, and s2 satisfies
(1). 0 ≤ s2(t) ≤ 1, (2). s2(t) = 1 when 0 < |t| < τn + 1/3, and (3). s2(t) = 0 when
|t| > τn + 2/3. The existence of such smooth function is well-known in the literature; see
Erdelyi (1956) for example. We construct w1 and w2 through their characteristic functions
by

ŵ1(t) = s1(t)ξ(t), (6.1)

and

ŵ2(t) = s2(t) ·
(
e
δnt

2

2 ŵ1(t) + (
1
ϑ0

1− ηn
ηn

)[e
δnt

2

2 − 1]
)

; (6.2)

see Figure 1 for illustrations.
Now, to show the claim, it remains to show (a). h1 and h2 are indeed densities, (b). the

χ2-distance between f1 and f2 is equal to o(1/n), and (c). the densities f1 and f2 in (2.8)
and (2.9) satisfy the constraints (2.2) and (2.3) and therefore live in F0(α, β, ε0, q, a, A;n).
To do so, we need some lemmas.

Let g be the Gaussian mixing density

g(x) = g(x;w1, a) =
∫

1
a
φ(
x− u
a

)w1(u).

By the way f1 is defined in (see (2.8)), it is not hard to see that

f1(x) = (1− ηn)φa(x) + ηnφ√a2+1(x) + ϑ0ηng(x), (6.3)

where φa denotes the density of N(0, a2). The following lemma characterizes the tail be-
havior of w1, and so that of g and f1.

Lemma 6.1 For large |u|, w1(u) ∼ |u|−k. As a result, for sufficiently small ϑ0 > 0, there
is a constant C > 0,

|g(x)| ≤ C(1 + |x|)−k, f1(x) ≥ Cηn(1 + |x|)−k. (6.4)
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Here, C > 0 is a generic constant which only depends on (some or all) the parameters
α, β, ε0, q, a, A, k, ϑ0, and θ0. Same rule applies below.

Next, the following lemma elaborates the tail behavior of w2.

Lemma 6.2 For sufficiently large |u| and n, there is a constant C > 0 such that∣∣|u|kw2(u)− 1
∣∣ ≤ C/|u|. (6.5)

Last, the following lemma describes how close f1 and f2 are in the frequency domain.

Lemma 6.3 When 0 ≤ |t| ≤ τn, f̂1(t) = f̂2(t). When |t| > τn, there is a constant C > 0
such that for sufficiently large n,

|f̂ (m)
1 (t)− f̂ (m)

2 (t)| ≤ C|t|me−a2t2/2, m = 0, 1, . . . , k/2.

Lemma 6.1 - 6.3 are proved in the appendix.
We are now ready to prove (a) – (c). Consider (a) first. By Lemma 6.1 and 6.2, both w1

and w2 are positive for sufficiently large |u|. Therefore, (a) holds once we take ϑ0 sufficiently
small.

Consider (b) next. Recall that the χ2-distance is d(f1, f2) =
∫

[(f1(x)−f1(x))2/f1(x)]dx.
By (6.4) in Lemma 6.1,∫

|f2(x)− f1(x)|2

f1(x)
dx ≤ Cη−1

n

∫
(1 + |x|)k|f2(x)− f1(x)|2dx ≤ Cnβ(I + II), (6.6)

where I =
∫
|f2(x)−f1(x)|2dx and II =

∫
|x|k(f2(x)−f1(x))2dx. Now, by Parseval formula

(Mallat, 1998), for any integers 0 ≤ m ≤ k/2,∫
x2m|f2(x)− f1(x)|2dx =

∫
|xmf2(x)− xmf1(x)|2dx =

∫
|f̂ (m)

2 (t)− f̂ (m)
1 (t)|2dt, (6.7)

where by Lemma 6.3, the last term satisfies that∫
x2m|f2(x)− f1(x)|2dx ≤ C

∫
|t|>τn

|t|me−a2t2/2dt. (6.8)

Now, applying (6.8) to the case of m = 0 and m = ` gives

I + II ≤ C
∫
|t|>τn

(1 + |t|k/2)e−a
2t2/2dt ≤ Cτ

k
2
−1

n e−a
2τ2
n/2, (6.9)

and (b) follows by that β < 1/2 and that aτn =
√

3 log n.
Last, we show (c). It is sufficient to check both f1 and f2 satisfy (2.2) and (2.3).

Consider f1 first. Recall that Mq is the q-th moment of N(0, 1), combining (6.3) and (6.4)
gives∫

|x|qf(x)dx ≤ [(1− ηn)aq + ηn(a2 + 1)q/2]Mq + Cϑ0ηn ≤ (a2 + 1)q/2Mq + Cϑ0ε0.

Therefore, by the assumption of A >
√
a2 + 1M1/q

q , (2.2) is satisfied once we take ϑ0

sufficiently small. At the same time, recall that ĥ1(t) = e−t
2/2 + ϑ0ŵ1(t) and that ŵ1(t) =
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|t|−α when |t| ≥ 4/3, so (2.3) is also satisfied. Consider f2 next. By Lemma 6.1 and the
choice of k, the 2q-moment of f1 is finite. Using Hölder inequality and (b),∫

|x|q|f1(x)− f2(x)|dx ≤ (
∫
|x|2qf1(x)dx)1/2(

∫
(f1(x)− f2(x))2

f1(x)
dx)1/2 = o(1/

√
n).

Now, by triangle inequality,
∫
|x|qf2(x)dx ≤

∫
|x|qf1(x) + o(1/

√
n), so f2 satisfies the

moment constraint in (2.2). At the same time, recall that ĥ2(t) = e−(1−δn)t2/2 + ϑ0ŵ2(t)
and that

ŵ2(t) =

{
eδnt

2/2ŵ1(t) + 1
ϑ0

1−ηn
ηn

[eδnt
2/2 − 1], |t| ≤ τn,

0, |t| ≥ τn + 1.

By elementary calculus and the choice of τn and δn, there is a constant C > 0 such that
for sufficiently large n and |t| > 4/3,

|ŵ2(t)− ŵ1(t)| ≤ Cθ0τ
−(α+2)
n t2 ≤ Cθ0|t|−α,

|ŵ′2(t)− ŵ′1(t)| ≤ Cθ0τ
−(α+2)
n t ≤ Cθ0|t|−(α+1),

where we have used w1(t) = |t|−α for |t| ≥ 4/3. Combining these we conclude that for a
sufficiently small θ0, h2 satisfies (2.3). This concludes the proof of (c) and the first claim
of Theorem 2.1.

We now consider the second claim of Theorem 2.1. Similarly, the goal is to construct
two density functions (say f3 and f4) in F0(α, β, ε0, q, a, A;n) such that the null mean
parameter u0 associated with them differ by a small amount, and their χ2-distance is equal
to o(1/n). Let τn, s2, and w1 be the same as in the proof associated with σ2

0, and let θ0 > 0
be a constant to be determined. Define

δn = ϑ0θ0ηnτ
−(α+1)
n , (6.10)

w3 = w1,

and define w4 through its characteristic function by

ŵ4(t) = s2(t) ·
(
ŵ3(t)− 2i

ϑ0

1− ηn
ηn

sin(
δnt

2
)
)
.

We construct

ĥ3(t) = eiδnt/2[e−t
2/2 + ϑ0 · ŵ3(t)], ĥ4(t) = e−iδnt/2[e−t

2/2 + ϑ0 · ŵ4(t)],

and

f3(x) = (1− ηn)
1
a
φ(
x

a
) + ηn

∫
1
a
φ(
x− u
a

)h3(u)du, (6.11)

f4(x) = (1− ηn)
1
a
φ(
x− δn
a

) + ηn

∫
1
a
φ(
x− δn − u

a
)h4(u)du. (6.12)

Note that the null parameters associated with f3 and f4 differ by an amount of δn. We
are able to show that for appropriately small constants ϑ0 > 0 and θ0 > 0, h3 and h4 are
indeed densities, and f3 and f4 live in F0(α, β, ε0, q, a, A;n). Also, the χ2-distance between
f3 and f4 is equal to o(1/n). As the proofs are similar to that associated with σ2

0, we skip
them for reasons of space. �
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6.2 Proof of Theorem 2.2

Since the proofs are similar, we only prove the first claim. The following lemmas are proved
in the appendix.

Lemma 6.4 Fix q ≥ 4 and γ ∈ (0, 1/2). For sufficiently large n, and any event Bn with
P{Bc

n} ≤ C/n, E[σ2
0(ϕn, t̂n(γ))− σ2

0)2 · 1{Bcn}] ≤ Cn
2γ−1.

Lemma 6.5 Fix q ≥ 4 and γ ∈ (0, 1/2). For sufficiently large n,

E[ϕ′n(t̂n(γ))− ϕ′(t̂(γ))]2 ≤ C log(n)/n.

We now proceed to show the theorem. Fix q1 > 3, introduce the event

D0 = { 1
n

n∑
j=1

|Xj | ≤ m1 + 1,
1
n

n∑
j=1

X2
j ≤ m2 + 1, W0(ϕn;n) ≤

√
2q1 log n/

√
n}, (6.13)

where m1 and m2 are the first two moments of X1 and

W0(ϕn;n) = W0(ϕn;n,X1, X2, . . . , Xn) = sup
{0≤t≤logn}

|ϕn(t)− ϕ(t)|.

Note that, first, by Chebyshev inequality,

P{ 1
n

n∑
j=1

|Xj | > m1 + 1} ≤ C/n, P{ 1
n

n∑
j=1

X2
j > m2 + 1} ≤ C/n.

Second, by Lemma A.2 of Jin and Cai (2007),

P{W0(ϕn;n) >
√

2q1 log n/
√
n} . 4 log2(n)n−q1/3.

Recall that q1 > 3, it thus follows that P{Dc
n} ≤ C/n. By Lemma 6.4, Dc

n only has a
negligible contribution to the mean squared errors:

E[σ2
0(ϕn, t̂n(γ))− σ2

0)2 · 1{Dc0}] ≤ Cn
2γ−1, (6.14)

and all remains to show is

E[σ2
0(ϕn, t̂n(γ))− σ2

0)2 · 1{D0}] ≤ C[n−2β log−(α+2)(n) + log(n)n2γ−1]. (6.15)

We now show (6.15). Write for short t̂n = t̂n(γ) and tn = tn(γ). By triangle inequality,

|σ2
0(ϕn, t̂n)− σ2

0| ≤ |σ2
0(ϕn, t̂n)− σ2

0(ϕ, t̂n)|+ |σ2
0(ϕ, t̂n)− σ2

0(ϕ, tn)|+ |σ2
0(ϕ, tn)− σ2

0|.

So to show (6.15), all we need to show are

E[(σ2
0(ϕn, t̂n)− σ2

0(ϕ, t̂n))2 · 1{D0}] ≤ C log(n)n2γ−1, (6.16)

E[(σ2
0(ϕ, t̂n)− σ2

0(ϕ, tn))2 · 1{D0}] ≤ Cn
2γ−1, (6.17)

and
|σ2

0(ϕ, tn)− σ2
0| ≤ Cn−β log−(α+2)/2(n), over D0. (6.18)

Below, we show (6.16) – (6.18) separately.
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Consider (6.16) first. By Lemma A.2 and A.3 of Jin and Cai (2007), over the event D0,

|ϕn(t̂n)− ϕ(t̂n)| ≤ C
√

log n/
√
n, |t̂n − tn| ≤ c0n

γ−1/2, (6.19)

where c0 > σ0

√
q1/γ is a constant. Apply Lemma 6.1 of Jin and Cai (2006) with f = ϕn,

g = ϕ, and t = t̂n,

|σ2
0(ϕn, t̂n)− σ2

0(ϕ, t̂n)| . nγ [3σ2
0|ϕn(t̂n)− ϕ(t̂n)|+ 1

t̂n
|ϕ′n(t̂n)− ϕ′(t̂n)|]. (6.20)

Combining (6.19) and (6.20) gives that over the event D0,

|σ2
0(ϕn, t̂n)− σ2

0(ϕ, t̂n)| ≤ Cnγ [
√

log n√
n

+
1
tn
|ϕ′n(t̂n)− ϕ′(t̂n)|],

and applying the Lemma 6.5 gives (6.16).
Consider (6.17) next. Direct calculations show that | ddtσ

2
0(ϕ, t)| ≤ C for sufficiently

large t. Using the second part of (6.19),

|σ2
0(ϕ, t̂n)− σ2

0(ϕ, tn)| ≤ C|t̂n − tn| ≤ Cnγ−1/2, over D0, (6.21)

and (6.17) follows directly.
Last, we consider (6.18). Similar to Lemma 6.5 of Jin and Cai (2007), |σ2

0(ϕ, tn)−σ2
0| ≤

C |ψ
′(tn)|
tn

, where ψ(t) = εn
∫
eit(u−u0)− (σ2−σ2

0)t2

2 h(u|σ)dH(σ). By direct calculations,

|ψ′(t)| = εn|
∫

(i(u− u0)− (σ2 − σ2
0)t)eit(u−u0)− (σ2−σ2

0)t2

2 h(u|σ)dH(σ)| ≤ I + II,

where

I = εn|
∫

(u− u0)eit(u−u0)− (σ2−σ2
0)t2

2 h(u|σ)dH(σ)|,

and

II = εn|
∫

(σ2 − σ2
0)teit(u−u0)− (σ2−σ2

0)t2

2 h(u|σ)dH(σ)|.

By elementary Fourier analysis and the definition of ĥ(t|σ) and h̃(t|σ) (see (2.4)),

I = εn|
∫
h̃′(t|σ)e−

(σ2−σ2
0)t2

2 dH(σ)| ≤ εn
∫
|h̃′(t|σ)|dH(σ),

and

II ≤ εn|
∫
ĥ(t|σ)(σ2 − σ2

0)te−
(σ2−σ2

0)t2

2 dH(σ)| ≤ C(εn/t)
∫
|ĥ(t|σ)|dH(σ),

where we have used the fact that supa≥0{ate−at
2/2} ≤ C/t. Combining these with (2.3)

and (2.5) gives (6.18). This concludes the proof of Theorem 2.2. �

6.3 Proof of Theorem 3.2

Consider the first claim first. Similar to the construction of the minimax lower bound for
estimating the null parameter σ2

0, the goal is to construct two density functions (say f5 and
f6) in F0(α, β, ε0, q, a, A;n) such that the proportion associated with them differ by a small
amount, and their χ2-distance is equal to o(1/n).
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We construct f5 and f6 as follows. Let τn, w1, and s2 be the same as in Section 6.1.
Similarly, for a constant θ0 > 0 to be determined, let

δn = ϑ0θ0ηnτ
−α
n , (6.22)

w5 ≡ w1,

and

ŵ6(t) = s2(t) ·
(
ηn − δn
ηn

ŵ5(t) +
1
ϑ0

δn
ηn

(1− e−t2/2)
)
.

We define h5 and h6 as

ĥ5(t) = e−t
2/2 + ϑ0 · ŵ5(t), ĥ6(t) = e−t

2/2 + ϑ0 · ŵ6(t),

and

f5(x) = (1− ηn + δn)
1
a
φ(
x

a
) + (ηn − δn)

∫
1
a
φ(
x− u
a

)h5(u)du, (6.23)

f6(x) = (1− ηn)
1
a
φ(
x

a
) + ηn

∫
1
a
φ(
x− u
a

)h6(u)du. (6.24)

Note that the proportion associated with f5 and f6 differ by an amount of δn. We are able
to show that for appropriately small constants ϑ0 > 0 and θ0 > 0, h5 and h6 are indeed
densities, and f5 and f6 live in F0(α, β, ε0, q, a, A;n). Also, the χ2-distance between f5 and
f6 is equal to o(1/n). As the proofs are similar to the case for σ2

0, we skip them for reasons
of space.

We now consider the second claim. Write for short ε̂∗n = ε̂∗n(γ), σ̂2
0 = σ2

0(γ), and
û0 = û0(γ), introduce the non-stochastic counterparts of σ̂2

0 and û0 respectively by

σ̄2
0 = σ0(ϕ, tn), ū0 = u0(ϕ, tn),

where tn is defined in (2.23). The following lemma is a direct result of Theorem 1 of Jin
and Cai (2007), which elaborates the stochastic fluctuation of σ̂2

0 and û0.

Lemma 6.6 Let γ ∈ (0, 1/2) and q > 4 + 2γ be as in the theorem. There is an event Bn
such that P{Bc

n} = o(1/n) and over the event Bn,

|σ̂2
0 − σ̄2

0| ≤ C log1/2(n)nγ−1/2, |û0 − ū0| ≤ C log(n)nγ−1/2. (6.25)

Now, by replacing û0 with ū0 in the definition of ε̂∗n, we introduce the following pseudo-
estimator,

ε̃n = ε̃n(γ,X1, . . . , Xn, ū0) = 1− nγ−1
n∑
j=1

cos(
√

2γ log n
Xj − ū0

σ̂0
). (6.26)

The pseudo-estimator plays a key role in the proof. To see the point, we need some nota-
tions. Let ϕ̃n be the empirical characteristic function corresponding to (Xj − ū0)/σ̄0,

ϕ̃n(t) = ϕ̃n(t;X1, . . . , Xn; ū0, σ̄0) =
1
n

n∑
j=1

e
it

(Xj−ū0)

σ̄0 . (6.27)

let ϕ̃(t) be the corresponding (underlying) characteristic function,

ϕ̃(t) = ϕ̃(t; f, ū0, σ̄0) ≡ E[ϕ̃n(t)],
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and denote the real part of ϕ̃n and ϕ̃ by ϕ̃Rn and ϕ̃R, respectively. Observe that if we denote

t̃n = t̃n(γ; σ̂0, σ̄0) =
σ̄0

σ̂0

√
2γ log n, (6.28)

then ε̃n can be rewritten as
ε̃n = 1− nγϕ̃Rn (t̃n). (6.29)

The advantage of introducing ε̃n is two fold. First, by elementary trigonometrics, the
difference between ε̂∗n and ε̃ has a very simple form. This is the following lemma, whose
proof is elementary so we omit it.

Lemma 6.7

ε̂∗n − ε̃n = nγRe
(
ϕ̃n(t̃n) · [sin2(

t̃n
2
ū0 − û0

σ̄0
)− i sin(t̃n

ū0 − û0

σ̄0
)]
)
.

Second, the stochastic fluctuation of ε̃n can be conveniently bounded through the maximum
deviation of ϕ̃n(t) over the interval, say, [0, log(n)]. In detail, fix a constant q1 > 3, introduce
the following event

D̃0 = { sup
{0≤t≤logn}

{|ϕ̃n(t)− ϕ̃(t)|} ≤
√

2q1 log n/
√
n}.

The following lemma can be proved similarly as that of Lemma A.2 in Jin and Cai (2007),
so we omit it.

Lemma 6.8 P{D̃c
0} . 4 log2(n)n−q1/3.

A direct consequence of Lemma 6.8 is that

E|ϕ̃n(t̃n)− ϕ̃(t̃n)|2 ≤ E
[

sup
{0≤t≤logn}

{|ϕ̃n(t)− ϕ̃(t)|2}
]

+ o(1/n) ≤ C log(n)/n. (6.30)

Given the lemmas above, what remains to analyze is ϕ̃R(t̃n). Note that t̃n fluctuates
around

√
2γ log n. We have the following lemma, which is proved in the appendix.

Lemma 6.9 Let Bn be the event as in Lemma 6.6. We have

|ϕ̃R(t̃n)− ϕ̃R(
√

2γ log n)| ≤ C log3/2(n)n−1/2, over Bn,

and
|(1− εn)− nγϕ̃R(

√
2γ log n)| ≤ C log−α/2(n)n−β.

We now ready to show the theorem. By triangle inequality and Cauchy-Schwarz in-
equality,

|ε̂∗n − εn|2 ≤ (|ε̂∗n − ε̃n|+ |ε̃n − (1− nγϕ̃R(t̃n))|+ |(1− nγϕ̃R(t̃n))− εn|)2

≤ C(|ε̂∗n − ε̃n|2 + |ε̃n − (1− ϕ̃R(t̃n))|2 + |(1− nγϕ̃R(t̃n))− εn|2). (6.31)

First, by (6.29) and (6.30),

E|ε̃n − (1− nγϕ̃R(t̃n))|2 = n2γE|ϕ̃Rn (t̃n)− ϕ̃R(t̃n)|2 ≤ C log(n)n2γ−1. (6.32)
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Second, by Lemma 6.9 and Cauchy-Schwarz inequality,

E|(1− εn)− nγϕ̃R(t̃n)|2 ≤ C[log−α/2(n)n−β + log3/2(n)nγ−1/2]2

≤ C[log−α(n)n−2β + log3(n)n2γ−1]. (6.33)

Plugging this into (6.31) gives

E|ε̂∗n − εn|2 ≤ C[E|ε̂∗n − ε̃n|2 + log−α(n)n−2β + log3(n)n2γ−1]. (6.34)

Compare (6.34) with the theorem, all remains to show is

E|ε̂∗n − ε̃n|2 ≤ C log3(n)n2γ−1. (6.35)

We now show (6.35). Note that |ε̂∗n − ε̃n|2 ≤ n2γ and P{D̃c
0 ∪Bc

n} = o(1/n), so

E[|ε̂∗n − ε̃n|2 · 1{D̃c0∪Bcn}] ≤ o(n
2γ−1),

and all we need to show is

E[|ε̂∗n − ε̃n|2 · 1{D̃0∩Bn}] ≤ C log3(n)n2γ−1. (6.36)

Towards this end, note that over the event D̃0∩Bn, by Lemma 6.7 and that | sin(x)| ≤ C|x|
for all x,

|ε̂∗n − ε̃n|2 ≤ Ct̃2n|ϕn(t̃n)|2 (û0 − ū0)2

σ̄2
. (6.37)

Now, first, by Lemma 6.6,

t̃n ∼
√

2 log n, |û0 − ū0| ≤ C log(n)nγ−1/2(n), (6.38)

Second, by Lemma 6.8 and Cauchy-Schwarz inequality,

|ϕn(t̃n)|2 ≤ |ϕ̃(t̃n) +
√

2q1 log n√
n

|2,

where according to Lemma 6.9,
ϕ(t̃n) ≤ Cn−γ .

Therefore, over the event D̃0 ∩Bn,

|ϕn(t̃n)|2 ≤ Cn−2γ . (6.39)

Inserting (6.38) - (6.39) into (6.37) gives (6.36), and concludes the proof of the theorem.
�

7 Appendix

We shall prove in this section the technical lemmas which are used in the proofs of the main
results in the previous sections.
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7.1 Proof of Lemma 6.1

Consider the first claim first. The symmetry of ŵ implies

w1(u) =
1

2π

∫
e−ituŵ1(t)dt =

1
π

∫ ∞
0

cos(tu)ŵ1(t)dt.

Note that ŵ1 is smooth in (0,∞) and ŵ
(k−1)
1 (0) = (−1)k/2π. Repeatedly using integration

by parts k times yields

1
π

∫ ∞
0

cos(tu)ŵ1(t)dt = u−k + r1(u), u > 0, (7.1)

where

|r1(u)| = 1
π|u|k

∣∣∫ ∞
0

cos(tu)ŵ(k)
1 (t)dt

∣∣ =
1

π|u|k+1

∣∣∫ ∞
0

sin(tu)ŵ(k+1)
1 (t)dt

∣∣.
Direct calculations show that there is a constant C = C(α, k) > 0 such that

|ŵ(k+1)
1 (t)| ≤ C(1 + |t|)−(α+k+1),

so
|r1(u)| ≤ C|u|−(k+1). (7.2)

Combining (7.1) and (7.2) gives the claim.
Next, consider the second claim. It is sufficient to show that for sufficiently large x,

g(x) ≥ C|x|−k. (7.3)

By the way g is defined,

g(x) =
∫
φa(x)w1(x− u)du = I + II, (7.4)

where
I =

∫
|u|≥x/2

w1(x− u)φa(u)du, II =
∫
|u|<x/2

w1(x− u)φa(u)du.

First, we have
|I| ≤ Cφa(x/2). (7.5)

Second, by the first claim, there are generic constants C2 > C1 > 0 such that for sufficiently
large x and |u| < x/2,

C1|x|−k ≤ w1(x− u) ≤ C2|x|−k,

and so
C1(1 + |x|)−k ≤ II ≤ C2|x|−k. (7.6)

Inserting (7.5) and (7.6) into (7.4) gives (7.3).
Last, consider the third claim. Recall that (i.e. (6.3))

f1(x) = (1− ηn)φa(x) + ηnφ√a2+1(x) + ϑ0ηng(x).

Once we take ϑ0 appropriately small, the claim follows from (7.3). �
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7.2 Proof of Lemma 6.2

Similarly, write

w2(u) =
1
π

∫
cos(tu)ŵ2(u)du = u−k + r2(u), u > 0,

where

|r2(u)| ≤ 1
π|u|k+1

∫ ∞
0
|ŵ(k+1)

2 (t)|dt =
1

π|u|k+1

∫ τn+1

0
|ŵ(k+1)

2 (t)|dt. (7.7)

Compare (7.7) with the lemma, it is sufficient to show that for sufficiently large n,∫ τn+1

0
|ŵ(k+1)

2 (t)|dt ≤ C, (7.8)

which is equivalent to ∫ τn+1

2
|ŵ(k+1)

2 (t)|dt ≤ C. (7.9)

We now show (7.9). To do so, we limit our attention to 2 ≤ |t| ≤ τn + 1. Recall that
ŵ2(t) = s2(t)w̃(t), where

w̃(t) = eδnt
2/2ŵ1(t) +

1
ϑ0

1− ηn
ηn

(eδnt
2/2 − 1).

First, by the way δn is defined,

|w̃(t)| ≤ C[|t|−α + t2τ−(α+2)
n ] ≤ C|t|−α. (7.10)

Second, fix m = 1, 2, . . . , k + 1, write

w̃(m)(t) =
m∑
j=0

(eδnt
2/2)(m−j)ŵ

(j)
1 (t) +

1
ϑ0

1− ηn
ηn

(eδnt
2/2)(m). (7.11)

Recall that ŵ1(t) = |t|−α. By elementary calculus, there is a constant C = C(k) > 0 such
that

|(eδnt2/2)(m)| ≤ Cδnt, |ŵ(m)
1 (t)| ≤ C|t|−α. (7.12)

Combining (7.11) and (7.12) gives

|w̃(m)(t)| ≤ Cδn|t|1−α + C
δnt

ϑ0ηn
≤ Cδn|t|1−α + Cτ−(α+1)

n , m = 1, 2, . . . , k + 1. (7.13)

Last, direct calculations show that

|s(m)
2 (t)| ≤ C, m = 0, 1, . . . , k. (7.14)

Combining (7.10), (7.13), and (7.14) gives

|ŵ(k+1)
2 (t)| ≤ C

[
δn|t|1−α + τ−(α+1)

n + |t|−α
]
, (7.15)

and (7.9) follows directly. �
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7.3 Proof of Lemma 6.3

The first claim follows by the way that f̂2 is constructed. Consider the second claim. Recall
that

f̂1(t) = ηne
−(a2+1)t2/2 + e−a

2t2/2[(1− ηn) + ϑ0ηnŵ1(t)],

and that
f̂2(t) = ηne

−(a2+1)t2/2 + e−a
2
nt

2/2[(1− ηn) + ϑ0ηnŵ2(t)].

Fix 0 ≤ m ≤ k. On one hand,

|(e−a2t2/2)(m)(t)| ≤ C|t|me−a2t2/2.

On the other hand, by the proof of Lemma 6.2,

|ŵ(m)
1 (t)| ≤ C, |ŵ(m)(t)

2 | ≤ C.

Combining these gives the claim. �

7.4 Proof of Lemma 6.4

Write for short t̂ = t̂n(γ). By elementary calculus, for any t > 0,

|ϕn(t)− 1| ≤ 1
n

n∑
j=1

|eitXj − 1| ≤ t

n

n∑
j=1

|Xj |. (7.16)

Note that for sufficiently large n, |ϕn(t̂n)| = n−γ ≤ 1/2. Applying (7.16) with t = t̂n gives

t̂n ≥
n∑n

j=1 |Xj |
|1− ϕn(t̂n)| ≥ n/2∑n

j=1 |Xj |
. (7.17)

Now, first, by direct calculations and Hölder inequality,

|σ2
0(ϕn, t̂)| ≤

|Re(ϕn(t̂))Re(ϕ′n(t̂)) + Im(ϕn(t̂))Im(ϕ′n(t̂))|
t̂|ϕn(t̂)|

≤ nγ |ϕ′n(t̂)|/t̂, (7.18)

where in the last step we have used |ϕn(t̂)| = n−γ . Second, note that for any t,

|ϕ′(t)| ≤ | i
n

n∑
j=1

Xje
itXj | ≤ 1

n

n∑
j=1

|Xj |. (7.19)

Combine (7.17), (7.18), and (7.19) and use Cauchy-Schwarz inequality,

|σ2
0(ϕn, t̂)| ≤ 2nγ(

1
n

n∑
j=1

|Xj |)2 ≤ 2nγ(
1
n

n∑
j=1

X2
j ). (7.20)

Hence, to show the claim, it is sufficient to show

E[(
1
n

n∑
j=1

X2
j ) · 1{Bcn}] ≤ C/n. (7.21)
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We now show (7.21). Recall that m2 denotes the second moment of X1, we write

1
n

n∑
j=1

X2
j = m2 +

z√
n
, (7.22)

where z =
√
n[ 1
n

∑n
j=1X

2
j −m2]. It is seen that Ez2 ≤ C, so by Hölder inequality,

|E[
1√
n
z · 1{Bcn}]| ≤ (

1
n
Ez2 · P{Bc

n})1/2 ≤ C/n. (7.23)

Inserting (7.23) into (7.22) gives (7.21). This concludes the proof. �

7.5 Proof of Lemma 6.5

Before we show the Lemma 6.5, we need some notation and lemmas. Introduce the event

D1 = {W1(ϕn;n) ≤
m2(

√
(q − 2) log n+ 2m2)√

n
}, (7.24)

where

W1(ϕn;n) = W1(ϕn;n,X1, X2, . . . , Xn) = sup
{|t−tn|≤c0nγ−1/2}

|ϕ′n(t)− ϕ′(t)|,

m2 is the second moment of X1, and c0 is a constant defined in (6.19). We have the following
lemmas.

Lemma 7.1 Fix q ≥ 4 and γ ∈ (0, 1/2). For sufficiently large n,

P{Dc
1} ≤ ō(nγ−1).

Lemma 7.2 Fix q ≥ 4 and γ ∈ (0, 1/2). For sufficiently large n,

E[|ϕ′n(t̂n)− ϕ′(t̂n)|2 · 1{D0\D1}] ≤ C/n. (7.25)

Here, ō(na) denotes a term which equals o(na+δ) for any δ > 0. The proof of Lemma 7.1 is
similar to that of Lemma 6.4 of Jin and Cai (2006) so we skip it. Lemma 7.2 is the tricky
part of the proof of Lemma 6.5 and is proved in Section 7.5.1.

We now proceed to prove Lemma 6.5. Write for short t̂n = t̂n(γ) and tn = tn(γ). By
triangle inequality,

E[|ϕ′n(t̂n)−ϕ′(t̂n)|2] ≤ E[|ϕ′n(t̂n)− ϕ′(t̂n)|2 · 1{D0∩D1}]

+ E[|ϕ′n(t̂n)− ϕ′(t̂n)|2 · 1{Dc0}] + E[ϕ′n(t̂n)− ϕ′(t̂n)|2 · 1{D0\D1}]. (7.26)

First, recall that over the event D0 (i.e. (6.19)),

|t̂n − tn| ≤ c0n
γ−1/2,

so by the definition of the event D1,

|ϕ′n(t̂n)− ϕ′(t̂n)| ≤ C
√

log(n)/
√
n, over D0 ∩D1,
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and
E[|ϕ′n(t̂n)− ϕ′(t̂n)|2 · 1{D0∩D1}] ≤ C log(n)/n. (7.27)

Second, note that for all t,

|ϕ′n(t)− ϕ′(t)| ≤ 1
n

n∑
j=1

[|Xj |+m1] ≤ 2m1 +
1
n

n∑
j=1

(|Xj | −m1),

where m1 is the first moment of X1. It follows that

E[|ϕ′n(t̂n)− ϕ′(t̂n)|2 · 1{Dc0}] ≤ C
(
E[(

1
n

n∑
j=1

(|Xj | −m1))2 · 1{Dc0}] + 2m1P{Dc
n}
)
. (7.28)

Moreover, note that E[ 1
n

∑n
j=1(|Xj | −m1)]4 ≤ C/n2, by Hölder Inequality,

E[(
1
n

n∑
j=1

(|Xj | −m1))2 · 1{Dc0}] ≤
(
E[

1
n

n∑
j=1

(|Xj | −m1)]4 · P{Dc
0}
)1/2

≤ o(1/n). (7.29)

Combining (7.28) and (7.29) gives

E[|ϕ′n(t̂n)− ϕ′(t̂n)|2 · 1{Dc0}] ≤ C/n, (7.30)

and the claim follows by inserting (7.25), (7.27), and (7.30) into (7.26). �

7.5.1 Proof of Lemma 7.2

We prove it for the case γ ≤ 1/3 and the case γ > 1/3 separately.
Consider the case γ ≤ 1/3 first. By Taylor expansion, for some ξ that falls between tn

and t̂n,
ϕ′n(t̂n)− ϕ′(t̂n) = ϕ′n(tn)− ϕ′(tn) + (ϕ′′n(ξ)− ϕ′′(ξ)) · (t̂n − tn). (7.31)

By direct calculations and the definition of D0,

|ϕ′′n(ξ)− ϕ′′(ξ)| ≤ 1
n

n∑
j=1

(X2
j + E[X2

j ]) ≤ C, over D0. (7.32)

Also, recall that
|t̂n − tn| ≤ c0n

γ−1/2. (7.33)

Inserting (7.33) and (7.32) into (7.31) gives

|ϕ′n(t̂n)− ϕ′(t̂n)| ≤ |ϕ′n(tn)− ϕ′(tn)|+ Cnγ−1/2,

which implies
|ϕ′n(t̂n)− ϕ′(t̂n)|2 ≤ C(|ϕ′n(tn)− ϕ′(tn)|2 + n2γ−1).

It follows that

E[|ϕ′n(t̂n)− ϕ′(t̂n)|2 · 1{D0\D1}] ≤ C
(
E[|ϕ′n(tn)− ϕ′(tn)|2] + n2γ−1 · P{D0 \D1}

)
. (7.34)

By Lemma 7.1 and elementary statistics,

P{D0 \D1} ≤ ō(nγ−1), E[|ϕ′n(tn)− ϕ′(tn)|2] ≤ C/n, (7.35)
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inserting (7.35) into (7.34) gives

E[|ϕ′n(t̂n)− ϕ′(t̂n)|2 · 1{D0\D1}] = C/n+ ō(n3γ−1),

and the claim follows by γ < 1/3.
Next, consider the case γ ≥ 1/3. Fix δ ∈ (γ, 2− 3γ) and let

K = K(n, c0, γ, δ) = c0n
γ+δ/2−1/2.

Note here that
γ + δ/2− 1/2 >

3γ − 1
2

≥ 0.

Lay out a grid sk = tn + (k − K − 1)n−δ/2, k = 1, 2, . . . , 2K + 1. Observe that for any
t ∈ [sk, sk+1],

|ϕ′n(t)− ϕ′(t)| ≤ |ϕ′n(sk)− ϕ′(sk)|+ n−δ/2 ·
(

sup
|ξ−tn|≤c0·nγ−1/2

|ϕ′′n(ξ)− ϕ′′(ξ)|
)
. (7.36)

Combining (7.36) with (7.32) gives

|ϕ′n(t)− ϕ′(t)| ≤ |ϕ′n(sk)− ϕ′(sk)|+ Cn−δ/2, over D0.

Now, note that the endpoints of the grid are

tn ±Kn−δ/2 = tn ± c0n
γ−1/2,

and that over the event D0,
|t̂n − tn| ≤ c0n

γ−1/2,

it follows that

|ϕ′n(t̂n)− ϕ′(t̂n)| ≤ max
{1≤k≤2K+1}

|ϕ′n(sk)− ϕ′(sk)|+ Cn−δ/2.

Therefore, by Cauchy-Schwarz inequality,

|ϕ′n(t̂n)− ϕ′(t̂n)|2 ≤ C( max
{1≤k≤2K+1}

|ϕ′n(sk)− ϕ′(sk)|2) + n−δ). (7.37)

Recall that
P{D0 \D1} ≤ ō(nγ−1). (7.38)

It follows from (7.37) and (7.38) that

E[|ϕ′n(t̂n)− ϕ′(t̂n)|2 · 1{D0\D1}]

≤ C
(
E[( max
{1≤k≤2K+1}

|ϕ′n(sk)− ϕ′(sk)|2) · 1{D0\D1}] + n−δP{D0 \D1}
)

= C

2K+1∑
k=1

E[|ϕ′n(sk)− ϕ′(sk)|2 · 1{D0\D1}] + o(n−1), (7.39)

where in the last step we have used δ > γ.
Now, for any k = 1, 2, . . . , 2K + 1, observe that by elementary statistics,

E[|ϕ′n(sk)− ϕ′(sk)|4] ≤ C/n2.
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By Hölder inequality and (7.38),

E[|ϕ′n(sk)− ϕ′(sk)|2 · 1{D0\D1}] ≤
(
E|ϕ′n(sk)− ϕ′(sk)|4 · P{D0 \D1}

)1/2

≤ ō(n
γ−3

2 ),

so by K ≤ Cnγ+δ/2−1/2

K∑
k=1

E[|ϕ′n(sk)− ϕ′(sk)|2 · 1{D0\D1}] ≤ ō(Kn
γ−3

2 ) = ō(n3γ/2+δ/2−2). (7.40)

Recall δ < 2− 3γ, it follows from (7.40) that

K∑
k=1

E[|ϕ′n(sk)− ϕ′(sk)|2 · 1{D0\D1}] = o(1/n), (7.41)

and the claim follows by plugging (7.41) into (7.39). �

7.6 Proof of Lemma 6.9

Consider the first claim. Write for short t̄n =
√

2γ log n. By the definition and elementary
Fourier analysis,

ϕ̃R(t) = (1− εn)e−
1
2

(
σ0
σ̄0

)2t2 cos(t
u0 − ū0

σ̄0
) + εn

∫
e
− 1

2
( σ
σ̄0

)2t2 cos(t
u− ū0

σ̄0
)h(u|σ)dH(σ).

(7.42)
By Lemma 6.6, we have that over the event Bn,

|σ̂0 − σ̄0| ≤ C log1/2(n)nγ−1/2, |û0 − ū0| ≤ C log(n)nγ−1/2. (7.43)

As a result, by Taylor expansion and that t̃n = σ̄0
σ̂0
t̄n,

|ϕ̃R(t̃n)− ϕ̃R(t̄n)| . |(ϕ̃R)′(t̄n)| · |t̃n − t̄n| ≤ C log(n)nγ−1/2|(ϕ̃R)′(t̄n)|, (7.44)

where
|(ϕ̃R)′(t̄n)| ≤ Ct̄ne

− 1
2

(
σ0
σ̄0

)2·t̄2n ≤ C log1/2(n)n−γ . (7.45)

Combining (7.44) and (7.45) gives the first claim.
Consider the second claim. Introduce a bridging quantity

E[cos(t̄n
X1 − u0

σ0
)]. (7.46)

By triangle inequality,
|(1− εn)− nγϕ̃R(t̄n)| ≤ I + II, (7.47)

where I = |(1− εn)−nγE[cos(t̄nX1−u0
σ0

)]| and II = nγ |E[cos(t̄nX1−u0
σ0

)]− ϕ̃R(t̄n)|. Consider
I first. By direct calculations and et̄

2
n/2 = nγ ,

(1− εn)− nγE[cos(t̄n
X1 − u0

σ0
)] = −εn

∫
e
− 1

2
[( σ
σ0

)2−1]t̄2n [
∫

cos(t̄n
u− u0

σ0
)h(u|σ)]dH(σ).

(7.48)
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Note that by elementary Fourier analysis,∫
cos(t

u− u0

σ0
)h(u|σ) = Re(h̃(

t

σ0
|σ)).

Since H is eligible and obeys the constraint (2.3), we have

|(1− εn)− nγE[cos(t̄n
X1 − u0

σ0
)]| ≤ εn

∫
e
− 1

2
[( σ
σ0

)2−1]t̄2n |h̃(
t̃n
σ0
|σ)|dH(σ) ≤ Cεnt̄−αn . (7.49)

Consider II next. It follows from the proof of Theorem 2.2 (i.e. (6.18)) that

|σ̄0 − σ0| ≤ Cεn log−(α+2)/2(n), |ū0 − u0| ≤ Cεn log−(α+1)/2(n). (7.50)

Compare (7.48) with (7.42),

|ϕ̃R(t̄n)− E[cos(t̄n
X1 − u0

σ0
)]| ≤ Cn−γ [(1− εn)(|σ̄2

0 − σ2
0|t̄2n + |ū0 − u0|t̄n)

+ εn

∫
(σ2t̄2n|σ̄2

0 − σ2
0|+ |ut̄n||ū0 − u0|)dH(u, σ)].

Note that E|u| ≤ C and E|σ2 − σ2
0| ≤ C, it follows from (7.50) that

|ϕ̃R(t̄n)− E[cos(t̄n
X1 − u0

σ0
)]| ≤ Cεnn−γ log−α/2(n). (7.51)

Inserting (7.49) and (7.51) to (7.47) gives

|(1− εn)− nγϕ̃R(t̄n)| ≤ Cεn log−α/2(n).

This concludes the proof of the second claim of the lemma. �
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