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Comment
Jiashun JIN

I would like to congratulate Fan, Han, and Gu for a very
interesting and thought-provoking article. The idea in this ar-
ticle sounds very promising to me, and I have no doubt that it
could be useful in the areas of large-scale multiple testing and
genomics. I also believe that the idea can be useful in solving
many other problems in the area of high-dimensional data anal-
ysis, such as variable selection, low-rank matrix recovery, and
sparse principal component analysis (PCA).

The article considers a p-dimensional Gaussian vector

Z ∼ N (µ,�), (1)

where � = �p×p is a correlation matrix that is assumed as
known, and µ is a p × 1 vector that is unknown but is pre-
sumably sparse in the sense that only a small fraction of its
coordinates is nonzero. The primary interest is to test simulta-
neously that, for each 1 ≤ j ≤ p, which of the following two
hypotheses is true:

H0j : µj = 0 versus H1j : µj �= 0. (2)

Driven by the recent development of “big data” in many scien-
tific areas, this problem has received a lot of attention in the past
decade.

In practice, it is frequently desirable to control the so-called
quantity of false discovery rate (FDR; see, e.g., Benjamini and
Hochberg 1995). In the simplest case where� is thep × p iden-
tity matrix Ip, the problem is well understood, and two popular
approaches are the FDR-controlling method by Benjamini and
Hochberg (1995), and the local FDR-controlling approach by
Efron et al. (2001). However, the case for general � �= Ip is
much more challenging, and it remains an open problem to
date.

Fan, Han, and Gu propose a very interesting approach that
paves the way for solving the above problem in the case where
� has spiky eigenvalues. In detail, suppose the eigenvalues of�
are sparse in the sense that all eigenvalues are small except for
a few very large spikes (such a situation can be found in many
applications including, but not limited to, factor analysis). In
this case, � can be well approximated by a low rank matrix, so
the multiple testing problem is much easier to tackle. Fan, Han,
and Gu (2012) further develop this idea and derive an elegant
formula for the FDR that holds for general correlation matrix
�. The approach is interesting both from theoretic and scientific
point of views.

The article also raises some very interesting and closely re-
lated questions.

The first question is: What kind of role does the correlation
matrix � play in the multiple testing? The study by Fan, Han,
and Gu (2012) focuses on the false discovery proportion (FDP;
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as well as the FDR) associated with “marginal” methods. Us-
ing these methods, we calculate a (two-sided) p-value for each
coordinate of Z as follows:

Pi = 2(1 −�(|Zi |), 1 ≤ i ≤ p,

where� is the cumulative distribution function ofN (0, 1). Now,
for a threshold t ∈ (0, 1), we call the ith hypothesis a discovery
if and only if Pi ≤ t . The goal of Fan, Han, and Gu (2012)
is to study the false discovery proportion FDP(t) = V (t)/R(t),
where V (t) is the number of false discoveries and R(t) is the
number of total discoveries. Seemingly, their study starts from
p-values obtained “marginally,” where the correlation structure
of � is neglected. A natural question then is: Could we better
the results of multiple testing by using the correlation structure
in �?

The second question concerns the optimality of large-scale
multiple testing. In the work by Fan, Han, and Gu (2012) and
many recent works in large-scale multiple testing, the emphasis
has been placed on how to control the FDR. While it is de-
sirable to develop FDR-controlling procedures, we must note
that merely controlling the FDR only tells one side of the story.
What is more satisfying is to develop procedures that control
the FDR at a prescribed level, say, 0 < q < 1 (in the literature,
q is referred to as the FDR control parameter), but at the same
time have powers that is as large as possible (In the context
of large-scale multiple testing, the power is referred to as the
number of the true discoveries; see e.g., Genovese, Roeder, and
Wasserman 2006). Procedures satisfying both properties can be
viewed as optimal in multiple testing.

In this note, I would like to contribute some preliminary
thoughts on the two intertwined questions above. The discussion
covers a different angle from that by Fan, Han, and Gu (2012)
where the eigenvalues of � are not spiky.

1. THE ROLE OF � IN LARGE-SCALE MULTIPLE
TESTING

In this section, we use a simple example to illustrate that we
can improve the results of multiple testing by using the matrix
� properly.

In this example, we assume p = 3m for some integer m, and
let � be the following diagonal block-wise matrix:

� =

⎛⎜⎜⎜⎜⎝
D 0 . . . 0

0 D . . . 0
...

...
. . .

...

0 0 . . . D

⎞⎟⎟⎟⎟⎠ . (3)
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In (3), D is a 3 × 3 equicorrelation matrix having the form of

D = (1 − a)I3 + a11′,

where I3 is the 3 × 3 identity matrix and 1 is the 3 × 1 vector of
ones. The parameter a satisfies −0.5 < a < 1 so D is positive
definite. To be consistent with Fan, Han, and Gu (2012), we
assume � as known, and so a is known.

At the same time, we model the vector µ as follows. Fix-
ing ε ∈ (0, 1) and τ > 0, let k be the integer that is closest
to mε. According to the partition of �, we partition the set
{1, 2, . . . , p} into m different blocks: {1, 2, 3}, {4, 5, 6}, . . . ,
{p − 2, p − 1, p}. We randomly generate k indices 1 ≤ j1 <

j2 < · · · < jk ≤ m, and let

S = {3j1 + 1, 3j2 + 1, . . . , 3jk + 1}.
We then model µ by

µi =
{
τ, i ∈ S,
0, i /∈ S.

Note that in this model, S is actually the support of µ. When ε
is small and τ is moderately large, the model is an example of
the so-called rare and weak signal model (see, e.g., Jin, Zhang,
and Zhang 2012).

Suppose we are interested in using the FDR-controlling meth-
ods by Benjamini and Hochberg (1995). How to use this method
depends on how we calculate the p-values. Below are three rea-
sonable approaches to calculate the p-values.

In the first approach, we neglect the correlation structure in
�, and compute the (two-sided) p-values by

Pi = 2[1 −�(|Zi |)], 1 ≤ i ≤ p. (4)

This is the approach by Fan, Han, and Gu (2012) and many
recent works in this area. To differentiate it from the approaches
below, we call this the naive approach.

In the second approach, we first take the transformation

Z �→ Z̃ ≡ �−1Z.

We call this the innovated transform, as it is related to the notion
of innovation in the context of time series (see, e.g., Hall and
Jin 2009). It is seen that

Z̃ ∼ N (�−1µ,�−1),

where

�−1 =

⎛⎜⎜⎜⎜⎝
D−1 0 . . . 0

0 D−1 . . . 0
...

...
. . .

...

0 0 . . . D−1

⎞⎟⎟⎟⎟⎠ , with

D−1 = 1

1 − a
I3 − a

(1 − a)(1 + 2a)
11′.

Especially, all diagonals of �−1 equal to (1 + a)/[(1 − a)(1 +
2a)]. As a result, we can compute the (two-side) p-values by

P̃i = 2

(
1 −�

(∣∣Z̃i∣∣/√(1 + a)/[(1 − a)(1 + 2a)]
))
,

1 ≤ i ≤ p. (5)

Still another approach is based on whitening. In this approach,
we first take the transform of

Z �→ ˜̃Zi ≡ �−1/2Z.

Note that ˜̃Z ∼ N (�−1/2µ, Ip) and the noise is whitened. A
natural way to calculate the (two-sided) p-values is then

˜̃P i = 2(1 −�(| ˜̃Zi |)), 1 ≤ i ≤ p.

It turns out that the innovated transform could largely improve
the results of multiple testing. The whitening approach could
also improve the results, but the improvement is not as large
as that of the innovated transform. For this reason, we compare
only the naive approach and the innovated approach below.

Toward this end, we note that by our constructions, in the
naive approach,

Zi ∼
{
N (τ, 1), i ∈ S,
N (0, 1), i /∈ S,

and in the innovated approach,

Z̃i√
(1 + a)/[(1 − a)(1 + 2a)]

∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
N (

√
(1 + a)/[(1 − a)(1 + 2a)]τ, 1), i ∈ S,

N (−aτ/
√

(1 − a2)(1 + 2a), 1), i − 1 ∈ S,
N (−aτ/

√
(1 − a2)(1 + 2a), 1), i − 2 ∈ S,

N (0, 1), otherwise.

In other words, we have the following observations regarding Z
and Z̃/

√
(1 + a)/[(1 − a)(1 + 2a)].

• At a signal location (i.e., an index i ∈ S), the inno-
vated transform increases the (marginal) signal-to-noise
ratio (SNR) by a factor of

√
(1 + a)/[(1 − a)(1 + 2a)];

note for all a �= 0 and −0.5 < a < 1, the constant√
(1 + a)/[(1 − a)(1 + 2a)] > 1.

• At a location corresponding to a noise (i.e., an index
i /∈ S) but in the same block of a signal location, the vec-
tor Z̃/

√
(1 + a)/[(1 − a)(1 + 2a)] may contain a “signal”

(i.e., �−1µ is nonzero at this location). We call this signal
a fake signal as µi = 0.

The increased SNR at all signal locations imply that we can have
larger testing powers if we apply the Benjamini and Hochberg
procedure to the p-values computed from Equation (4) instead
of from Equation (5).

For illustration, we have conducted a small-scale simulation
experiment, in which we compare the receiver operating
characteristic (ROC) corresponding to the vector Z and
the transformed vector Z̃/

√
(1 + a)/[(1 − a)(1 + 2a)].

In this experiment, we take p = 3000 and four dif-
ferent combinations of (ε, τ, a), where (ε, τ, a) =
(0.1, 1, 0.75), (0.025, 15, 0.75), (0.2, 1.5, 0.5), and (0.15, 1.25,
−0.45). The ROC curves are displayed in Figure 1, where the
results in each panel are based on one replication, but similar
results hold for multiple repetitions.

The ROC curves suggest that the innovated transform can
substantially improve the power of multiple testing, especially
when local correlations are strong. We mention that a more
sophisticated method can be developed to filter out the “fake
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Figure 1. ROC curves associated with Z (green) and Z̃/
√

(1 + a)/[(1 − a)(1 + 2a)] (red). x-axis: false positive rate; y-axis: true positive
rate. From top to bottom, left to right: (ε, τ, a) = (0.1, 1, 0.75), (0.025, 15, 0.75), (0.2, 1.5, 0.5), (0.15, 1.25,−0.45). The online version of this
figure is in color.

signals” created artificially by the transform. In that case, the
difference between two ROC curves in each panel can be even
larger, in the favor of the innovated transform.

How general are the above findings? In the literature by Hall
and Jin (2009), we have carefully investigated this, where the
following lemma plays a key role.

Lemma 1.1 For any positive definite matrix � with unit di-
agonals, all diagonals of �−1 are at least as large as 1.

The lemma follows directly from Cholesky factorization so
we omit the proof. In the literature by Hall and Jin (2009), we
showed that the aforementioned increases in (marginal) SNR
can be found in a broad context. We termed this phenomenon
as: the correlation is a blessing rather than a curse (see details
therein).

2. OPTIMAL PROCEDURES FOR MULTIPLE TESTING

The above discussion suggests that by using the correlation
matrix� properly, we could improve the power of the Benjamini
and Hochberg procedure (and also many other methods driven
by the p-values). This raises the question: What could be the
optimal procedure for large-scale multiple testing? Clearly, this

is a challenging problem. In this section, we suggest some ideas
that could be useful.

Toward this end, note that if we let X = �−1/2 and Y =
�−1/2Z, then Equation (1) can be equivalently rewritten as a
linear regression model

Y = Xµ+ z, z ∼ N (0, Ip). (6)

In this model, the problem of large-scale multiple testing (Equa-
tion (2)) is the same as the problem of variable selection.

For any variable selection procedure µ̂, it is natural to mea-
sure the risk with the weighted-L0-loss. In detail, fix a weight
parameter

λ > 0.

The weighted L0-risk is defined as the (expected) weighted sum
of Type I and Type II errors:

wHp(µ̂, λ) =
[ p∑
j=1

P (µ̂j �= 0, µj = 0)

]

+ λ

[ p∑
j=1

P (µ̂j = 0, µj �= 0)

]
.
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The parameter λ is the ratio between the cost of making a Type
II error over that of making a Type I error.

Fix λ > 0. It is desirable to obtain variable selection proce-
dures that minimize the weighted L0-risk. This is a well-known
challenging problem. However, recently, progresses have been
made in the case where the Gram matrix

G = X′X

is sparse, or is sparsifiable (see e.g., Jin, Zhang, and Zhang
2012; Ke, Jin, and Fan 2012). Note that in Equation (6), the
Gram matrix coincides with the concentration matrix �−1.

Let µ̂λ be an optimal variable selection procedure. It can be
argued (e.g., Sun and Cai 2007) that in a general setting,

• µ̂λ controls FDR at a level q = q(λ) > 0, asymptotically,
and

• among all procedures that control FDR at the level q =
q(λ), µ̂λ is asymptotically most powerful.

Therefore, variable selection procedures that optimize the
weightedL0-risk simultaneously control the FDR at some levels
and maximize the testing power. This suggests an intimate re-
lationship between optimal procedures for multiple testing and
optimal procedures for variable selection, and the solution of
one is also the solution of the other. Note that, however, the
mapping λ �→ q(λ) may have a complicated form.

3. OTHER COMMENTS

Below are two additional comments to the authors.

• It seems that the work focuses on the case where the eigen-
values of � is spiky. What happens if � is structured in a
different way, say, � is a Toeplitz matrix where the eigen-
values are not spiky. Is the approach extendable to such
situations?

• How robust is the proposed approach to the Gaussianity of
the noise?

4. CONCLUSION

This is a very nice article that provides a fresh perspective
in solving a long-standing hard problem in large-scale multiple
testing. I particularly like the idea of reducing � to a low rank
matrix by exploiting the sparsity of the eigenvalues.

On the other hand, the article focuses on estimating the FDR
associated with some types of marginal methods. It seems that
exploiting the graphical structure of �−1 could be very helpful,
especially when the eigenvalues of� is not spiky. I wonder what
is the authors’ opinion on the role of � and on what could be
done in the line of pursuing “optimal” procedures for large-scale
multiple testing.
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