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By Jiashun Jin∗ and Wanjie Wang∗

Carnegie Mellon University

We consider a clustering problem where we observe feature vec-
tors Xi ∈ Rp, i = 1, 2, . . . , n, from K possible classes. The class labels
are unknown and the main interest is to estimate them. We are pri-
marily interested in the modern regime of p � n, where classical
clustering methods face challenges.

We propose Influential Features PCA (IF-PCA) as a new cluster-
ing procedure. In IF-PCA, we select a small fraction of features with
the largest Kolmogorov-Smirnov (KS) scores, obtain the first (K−1)
left singular vectors of the post-selection normalized data matrix, and
then estimate the labels by applying the classical k-means procedure
to these singular vectors. In this procedure, the only tuning parame-
ter is the threshold in the feature selection step. We set the threshold
in a data-driven fashion by adapting the recent notion of Higher Crit-
icism. As a result, IF-PCA is a tuning-free clustering method.

We apply IF-PCA to 10 gene microarray data sets. The method
has competitive performance in clustering. Especially, in three of the
data sets, the error rates of IF-PCA are only 29% or less of the error
rates by other methods. We have also rediscovered a phenomenon on
empirical null by Efron (2004) on microarray data.

With delicate analysis, especially post-selection eigen-analysis, we
derive tight probability bounds on the Kolmogorov-Smirnov statistics
and show that IF-PCA yields clustering consistency in a broad con-
text. The clustering problem is connected to the problems of sparse
PCA and low-rank matrix recovery, but it is different in important
ways. We reveal an interesting phase transition phenomenon associ-
ated with these problems and identify the range of interest for each.

1. Introduction. Consider a clustering problem where we have feature
vectors Xi ∈ Rp, i = 1, 2, . . . , n, from K possible classes. For simplicity, we
assume K is small and is known to us. The class labels y1, y2, . . ., yn take
values from {1, 2, . . . ,K}, but are unfortunately unknown to us, and the
main interest is to estimate them.

Our study is largely motivated by clustering using gene microarray data.
In a typical setting, we have patients from several different classes (e.g., nor-
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mal, diseased), and for each patient, we have measurements (gene expression
levels) on the same set of genes. The class labels of the patients are unknown
and it is of interest to use the expression data to predict them.

Table 1 lists 10 gene microarray data sets (arranged alphabetically). Data
sets 1, 3, 4, 7, 8, and 9 were analyzed and cleaned in Dettling (2004), Data set
5 is from Gordon et al. (2002), Data sets 2, 6, 10 were analyzed and grouped
into two classes in Yousefi et al. (2010), among which Data set 10 was cleaned
by us in the same way as by Dettling (2004). All the data sets can be found
at www.stat.cmu.edu/~jiashun/Research/software/GenomicsData. The
data sets are analyzed in Section 1.4, after our approach is fully introduced.

In these data sets, the true labels are given but (of course) we do not use
them for clustering; the true labels are thought of as the ‘ground truth’ and
are only used for comparing the error rates of different methods.

Table 1
Gene microarray data sets investigated in this paper. Note that K is small and p� n (p:

number of genes; n: number of subjects).

# Data Name Abbreviation Source K n p

1 Brain Brn Pomeroy (02) 5 42 5597
2 Breast Cancer Brst Wang et al. (05) 2 276 22215
3 Colon Cancer Cln Alon et al. (99) 2 62 2000
4 Leukemia Leuk Golub et al. (99) 2 72 3571
5 Lung Cancer(1) Lung1 Gordon et al. (02) 2 181 12533
6 Lung Cancer(2) Lung2 Bhattacharjee et al. (01) 2 203 12600
7 Lymphoma Lymp Alizadeh et al. (00) 3 62 4026
8 Prostate Cancer Prst Singh et al. (02) 2 102 6033
9 SRBCT SRB Kahn (01) 4 63 2308
10 SuCancer Su Su et al (01) 2 174 7909

View each Xi as the sum of a ‘signal component’ and a ‘noise component’:

(1.1) Xi = E[Xi] + Zi, Zi ≡ Xi − E[Xi].

For any numbers a1, a2, . . . , ap, let diag(a1, a2, . . . , ap) be the p× p diagonal
matrix where the i-th diagonal entry is ai, 1 ≤ i ≤ p. We assume

(1.2) Zi
iid∼ N(0,Σ), where Σ = diag

(
σ2(1), σ2(2), . . . , σ2(p)

)
,

and the vector σ = (σ(1), σ(2), . . . , σ(p))′ is unknown to us. Assumption
(1.2) is only for simplicity: our method to be introduced below is not tied
to such an assumption, and works well with most of the data sets in Table
1; see Sections 1.1 and 1.4 for more discussions.

Denote the overall mean vector by µ̄ = 1
n

∑n
i=1E[Xi]. For K different

vectors µ1, µ2, . . . , µK ∈ Rp, we model E[Xi] by (yi are class labels)

(1.3) E[Xi] = µ̄+ µk, if and only if yi = k.
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For 1 ≤ k ≤ K, let δk be the fraction of samples in Class k. Note that

(1.4) δ1µ1 + δ2µ2 + . . .+ δKµK = 0,

so µ1, µ2, . . . , µK are linearly dependent. However, it is natural to assume

(1.5) µ1, µ2, . . . , µK−1 are linearly independent.

Definition 1.1. We call feature j a useless feature (for clustering) if
µ1(j) = µ2(j) = . . . = µK(j) = 0, and a useful feature otherwise.

We call µk the contrast mean vector of Class k, 1 ≤ k ≤ K. In many
applications, the contrast mean vectors are sparse in the sense that only a
small fraction of the features are useful. Examples include but are not limited
to gene microarray data: it is widely believed that only a small fraction of
genes are differentially expressed, so the contrast mean vectors are sparse.

We are primarily interested in the modern regime of p � n. In such a
regime, classical methods (e.g., k-means, hierarchical clustering, Principal
Component Analysis (PCA) (Hastie, Tibshirani and Friedman, 2009)) are
either computationally challenging or ineffective. Our primary interest is to
develop new methods that are appropriate for this regime.

1.1. Influential Features PCA (IF-PCA). Denote the data matrix by:

X = [X1, X2, . . . , Xn]′.

We propose IF-PCA as a new spectral clustering method. Conceptually, IF-
PCA contains an IF part and a PCA part. In the IF part, we select features
by exploiting the sparsity of the contrast mean vectors, where we remove
many columns of X leaving only those we think are influential for clustering
(and so the name of Influential Features). In the PCA part, we apply the
classical PCA to the post-selection data matrix.1

We normalize each column of X and denote the resultant matrix by W :

W (i, j) = [Xi(j)− X̄(j)]/σ̂(j), 1 ≤ i ≤ n, 1 ≤ j ≤ p,

where X̄(j) = 1
n

∑n
i=1Xi(j) and σ̂(j) = [ 1

n−1

∑n
i=1(Xi(j) − X̄(j))2]1/2 are

the empirical mean and standard deviation associated with feature j, re-
spectively. Write

W = [W1,W2, . . . ,Wn]′.

1Such a two-stage clustering idea (i.e., feature selection followed by post-selection clus-
tering) is not completely new and can be found in Chan and Hall (2010) for example. Of
course, their procedure is very different from ours.
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For any 1 ≤ j ≤ p, denote the empirical CDF associated with feature j by

Fn,j(t) =
1

n

n∑
i=1

1{Wi(j) ≤ t}.

IF-PCA contains two ‘IF’ steps and two ‘PCA’ steps as follows.

Input: data matrix X, number of classes K, and parameter t.
Output: predicted n× 1 label vector ŷIFt = (ŷIFt,1 , ŷ

IF
t,2 , . . . , ŷ

IF
t,n).

• IF-1. For each 1 ≤ j ≤ p, compute a Kolmogorov-Smirnov (KS) statis-
tic by

(1.6) ψn,j =
√
n · sup
−∞<t<∞

|Fn,j(t)− Φ(t)|, (Φ: CDF of N(0, 1)).

• IF-2. Following the suggestions by Efron (2004), we renormalize by

(1.7) ψ∗n,j = [ψn,j −mean of all p KS-scores]/SD of all p KS-scores.2

• PCA-1. Fix a threshold t > 0. For short, let W (t) be the matrix formed
by restricting the columns of W to the set of retained indices Ŝp(t),
where

(1.8) Ŝp(t) = {1 ≤ j ≤ p : ψ∗n,j ≥ t}.

Let Û (t) ∈ Rn,K−1 be the matrix consisting the first K − 1 (unit-

norm) left singular vectors of W (t).3 Define a matrix Û
(t)
∗ ∈ Rn,K−1 by

truncating Û (t) entry-wise with threshold Tp = log(p)/
√
n.4

• PCA-2. Cluster by applying the classical k-means to Û
(t)
∗ assuming

there are ≤ K classes. Let ŷIFt be the predicted label vector.

In the procedure, t is the only tuning parameter. In Section 1.3, we propose
a data-driven approach to choosing t, so the method becomes tuning-free.
Step 2 is largely for gene microarray data, and is not necessary if Models
(1.1)-(1.2) hold.

2Alternatively, we can normalize the KS-scores with sample median and Median Ab-
solute Deviation (MAD); see Section 1.5 for more discussion.

3For a matrix M ∈ Rn,m, the k-th left (right) singular vector is the eigenvector asso-
ciated with the k-th largest eigenvalue of the matrix MM ′ (of the matrix M ′M).

4That is, Û
(t)
∗ (i, k) = Û(i, k)1{|Û(i, k)| ≤ Tp}+Tpsgn(Û(i, k))1{|Û(i, k)| > Tp}, 1 ≤ i ≤

n, 1 ≤ k ≤ K−1. We usually take Tp = log(p)/
√
n as above, but log(p) can be replaced by

any sequence that tends to∞ as p→∞. The truncation is mostly for theoretical analysis
in Section 2 and is not used in numerical study (real or simulated data).
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In Table 2, we use the Lung Cancer(1) data to illustrate how IF-PCA
performs with different choices of t. The results show that with t properly set,
the number of clustering errors of IF-PCA can be as low as 4. In comparison,
classical PCA (column 2 of Table 2; where t = .000 so we do not perform
feature selection) has 22 clustering errors.

Table 2
Clustering errors and # of selected features for different choices of t (Lung Cancer(1)

data). Columns highlighted correspond to the sweet spot of the threshold choice.

Threshold t .000 .608 .828 .938 1.048 1.158 1.268 1.378 1.488
# of selected features 12533 5758 1057 484 261 129 63 21 2

Clustering errors 22 22 24 4 5 7 38 39 33

In Figure 1, we compare IF-PCA with classical PCA by investigating Û (t)

defined in Step 3 for two choices of t: (a) t = .000 so Û (t) is the first singular
vector of pre-selection data matrix W , and (b) a data-driven threshold choice
by Higher Criticism to be introduced in Section 1.3. For (b), the entries
of Û (t) can be clearly divided into two groups, yielding almost error-free
clustering results. Such a clear separation does not exist for (a). These results
suggest that IF-PCA may significantly improve classical PCA.
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Fig 1. Comparison of Û (t) for t = .000 (left; no feature selection) and t = 1.057 (right;
t is set by Higher Criticism in a data-driven fashion); note Û (t) is an n × 1 vector since
K = 2. y-axis: entries of Û (t), x-axis: sample indices. Plots are based on Lung Cancer(1)
data, where ADCA and MPM represent two different classes.

Two important questions arise:

• In (1.7), we use a modified KS statistic for feature selection. What is
the rationale behind the use of KS statistics and the modification?
• The clustering errors critically depend on the threshold t. How to set
t in a data-driven fashion?
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In Section 1.2, we address the first question. In Section 1.3, we propose a
data-driven threshold choice by the recent notion of Higher Criticism.

1.2. KS statistic, normality assumption, and Efron’s empirical null. The
goal in Steps 1-2 is to find an easy-to-implement method to rank the features.
The focus of Step 1 is on a data matrix satisfying Models (1.1)-(1.5), and the
focus of Step 2 is to adjust Step 1 in a way so to work well with microarray
data. We consider two steps separately.

Consider the first step. The interest is to test for each fixed j, 1 ≤ j ≤ p,
whether feature j is useless or useful. Since we have no prior information
about the class labels, the problem can be reformulated as that of testing
whether all n samples associated with the j-th feature are iid Gaussian

(1.9) H0,j : Xi(j)
iid∼ N(µ̄(j), σ2(j)), i = 1, 2, . . . , n,

or they are iid from a K-component heterogenous Gaussian mixture:

(1.10) H1,j : Xi(j)
iid∼

K∑
k=1

δkN(µ̄(j)+µk(j), σ
2(j)), i = 1, 2, . . . , n,

where δk > 0 is the prior probability that Xi(j) comes from Class k, 1 ≤
k ≤ K. Note that µ̄(j), σ(j), and

(
(δ1, µ1(j)), . . . , (δK , µK(j))

)
are unknown.

The above is a well-known difficult testing problem. For example, in such
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Fig 2. Left: The histogram of KS-scores of the Lung Cancer(1) data. The two lines in
blue and red denote the theoretical null and empirical null densities, respectively. Right:
empirical survival function of the adjusted KS-scores based on Lung Cancer(1) data (red)
and the survival function of theoretical null (blue).

a setting, the classical Likelihood Ratio Test (LRT) is known to be not
well-behaved (e.g., Chen and Li (2009)).

Our proposal is to use the Kolmogorov-Smirnov (KS) test, which measures
the maximum difference between the empirical CDF for the normalized data
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and the CDF of N(0, 1). The KS test is a well-known goodness-of-fit test
(e.g., Shorack and Wellner (1986)). In the idealized Gaussian Model (1.9)-
(1.10), the KS test is asymptotically equivalent to the optimal moment-based
tests (e.g., see Section 2), but its success is not tied to a specific model for
the alternative hypothesis, and is more robust against occasional outliers.
Also, Efron’s null correction (below) is more successful if we use KS instead
of moment-based tests for feature ranking. This is our rationale for Step 1.

We now discuss our rationale for Step 2. We discover an interesting phe-
nomenon which we illustrate with Figure 2 (Lung Cancer(1) data). Ideally,
if the normality assumption (1.2) is valid for this data set, then the density
function of the KS statistic for Model (1.9) (the blue curve in left panel;
obtained by simulations) should fit well with the histogram of the KS-scores
based on the Lung Cancer(1) data. Unfortunately, this is not the case, and
there is a substantial discrepancy in fitting. On the other hand, if we trans-
late and rescale the blue curve so that it has the same mean and standard
deviation as the KS-scores associated with Lung Cancer(1) data, then the
new curve (red curve; left panel of Figure 2) fits well with the histogram.5

A related phenomenon was discussed in Efron (2004), only considering
Studentized t-statistics in a different setting. As in Efron (2004), we call the
density functions associated with two curves (blue and red) the theoretical
null and the empirical null, respectively. The phenomenon is then: the the-
oretical null has a poor fit with the histogram of the KS-scores of the real
data, but the empirical null may have a good fit.

In the right panel of Figure 2, we view this from a slightly different per-
spective, and show that the survival function associated with the adjusted
KS-scores (i.e., ψ∗n,j) of the real data fits well with the theoretical null.

The above observations explain the rationale for Step 2. Also, they suggest
that IF-PCA does not critically depend on the normality assumption and
works well for microarray data. This is further validated in Section 1.4.

Remark. Efron (2004) suggests several possible reasons (e.g., dependence
between different samples, dependence between the genes) for the discrep-
ancy between the theoretical null and empirical null, but what has really
caused such a discrepancy is not fully understood. Whether Efron’s empiri-
cal null is useful in other application areas or other data types (and if so, to
what extent) is also an open problem, and to understand it we need a good
grasp on the mechanism by which the data sets of interest are generated.

5If we replace sample mean and standard deviation by sample median and MAD,
respectively, then it gives rises to the normalization in the second footnote of Section 1.1.
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1.3. Threshold choice by Higher Criticism. The performance of IF-PCA
critically depends on the threshold t, and it is of interest to set t in a data-
driven fashion. We approach this by the recent notion of Higher Criticism.

Higher Criticism (HC) was first introduced in Donoho and Jin (2004) as a
method for large-scale multiple testing. In Donoho and Jin (2008), HC was
also found to be useful to set a threshold for feature selection in the context
of classification. HC is also useful in many other settings. See Donoho and
Jin (2015); Jin and Ke (2016) for reviews on HC.

To adapt HC for threshold choice in IF-PCA, we must modify the pro-
cedure carefully, since the purpose is very different from those in previous
literature. The approach contains three simple steps as follows.

• For 1 ≤ j ≤ p, calculate a P -value πj = 1− F0(ψn,j), where F0 is the
distribution of ψn,j under the null (i.e., feature j is useless).
• Sort all P -values in the ascending order π(1) < π(2) < . . . < π(p).
• Define the Higher Criticism score by

(1.11) HCp,j =
√
p(j/p− π(j))/

√
max{

√
n(j/p− π(j)), 0}+ j/p.

Let ĵ be the index such that ĵ = argmax{1≤j≤p/2,π(j)>log(p)/p}{HCp,j}.
The HC threshold tHCp for IF-PCA is then the ĵ-th largest KS-scores.

Combining HCT with IF-PCA gives a tuning-free clustering procedure IF-
HCT-PCA, or IF-PCA for short if there is no confusion. See Table 3.

Table 3
Pseudocode for IF-HCT-PCA (for microarray data; threshold set by Higher Criticism)

Input: data matrix X, number of classes K. Output: class label vector ŷIFHC .

1. Rank features: Let ψn,j be the KS-scores as in (1.6) and F0 be the CDF of ψn,j under null, 1 ≤ j ≤ p.
2. Normalize KS-scores: ψ∗n = (ψn −mean(ψn))/SD(ψn).
3. Threshold choice by HCT: Calculate P -values by πj = 1− F0(ψ∗n,j), 1 ≤ j ≤ p and sort them by

π(1) < π(2) < . . . < π(p). Define HCp,j =
√
p(j/p− π(j))/

√
max{

√
n(j/p− π(j)), 0}+ j/p, and let

ĵ = argmax{j:π(j)>log(p)/p,j<p/2}{HCp,j}. HC threshold tHCp is the ĵ-largest KS-score.

4. Post-selection PCA: Define post-selection data matrix W (HC) (i.e., sub-matrix of W consists of all
column j of W with ψ∗n,j > tHCp ). Let U ∈ Rn,K−1 be the matrix of the first (K − 1) left singular

vectors of W (HC). Cluster by ŷIFHC = kmeans(U,K).

For illustration, we again employ the Lung Cancer(1) data. In this data
set, ĵ = 251, tHCp = 1.0573, and HC selects 251 genes with the largest
KS-scores. In Figure 3, we plot the error rates of IF-PCA applied to the k
features of W with the largest KS-scores, where k ranges from 1 to p/2 (for
different k, we are using the same ranking for all p genes). The figure shows
that there is a ‘sweet spot’ for k where the error rates are the lowest. HCT
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corresponds to ĵ = 251 and 251 is in this sweet spot. This suggests that
HCT gives a reasonable threshold choice, at least for some real data sets.
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0.6Fig 3. Error rates by IF-PCA (y-axis) with different number of selected features k (x-axis)
(Lung Cancer(1) data). HCT corresponds to 251 selected features (dashed vertical line).

Remark. When we apply HC to microarray data, we follow the discus-
sions in Section 1.2 and take F0 to be the distribution of ψn,j under the null
but with the mean and variance adjusted to match those of the KS-scores.
In the definition, we require π(ĵ) > log(p)/p, as HCp,j may be ill-behaved

for very small j (e.g., Donoho and Jin (2004)).
The rationale for HCT can also be explained theoretically. For illustration,

consider the case whereK = 2 so we only have two classes. Fixing a threshold
t > 0, let Û (t) be the first left singular vector of W (t) as in Section 1.1. In a
companion paper (Jin, Ke and Wang, 2015a), we show that when the signals
are rare and weak, then for t in the range of interest,

(1.12) Û (t) ∝ s̃nr(t) · U + z + rem,

where U is an n × 1 non-stochastic vector with only two distinct entries
(each determines one of two classes), s̃nr(t) is a non-stochastic function
of t, z ∼ N(0, In), and rem is the remainder term (the entries of which
are asymptotically of much smaller magnitude than that of z or s̃nr(t) ·U).
Therefore, performance of IF-PCA is best when we maximize s̃nr(t) (though
this is unobservable). We call such a threshold the Ideal Threshold: tidealp =
argmint>0{s̃nr(t)}.

Let F̄p(t) be the survival function of ψn,j under the null (not dependent on
j), and let Ĝp(t) = 1

p

∑p
j=1 1{ψn,j ≥ t} be the empirical survival function. In-

troduce HCp(t) =
√
p[Ĝp(t)− F̄p(t)]/

√
Ĝp(t) +

√
n[max{Ĝp(t)− F̄p(t), 0}],

and let ψ(1) > ψ(2) > . . . > ψ(p) be the sorted values of ψn,j . Recall that

π(k) is the k-th smallest P -value. By definitions, we have Ĝp(t)|t=ψ(k)
=

k/p and F̄p(t)|t=ψ(k)
= π(k). As a result, we have HCp(t)

∣∣
t=ψ(k)

= [k/p −

π(k)]/
√
k/p+

√
nmax{k/p− π(k), 0}, where the right hand side is the form
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of HC introduced in (1.11). Note that HCp(t) is a function which is only
discontinuous at t = ψ(k), 1 ≤ k ≤ p, and between two adjacent discontinu-
ous points, the function is monotone. Combining this with the definition of
tHCp , tHCp = argmaxt{HCp(t)}.

Now, as p → ∞, some regularity appears, and Ĝp(t) converges to a
non-stochastic counterpart, denoted by Ḡp(t), which can be viewed as the
survival function associated with the marginal density of ψn,j . Introduce

IdealHC(t) =
√
p[Ḡp(t) − F̄p(t)]/

√
Ḡp(t) +

√
n[max{Ḡp(t)− F̄p(t), 0}] as

the ideal counterpart of HCp(t). It is seen that HCp(t) ≈ IdealHC(t) for t
in the range of interest, and so tHCp ≈ tidealHCp , where the latter is defined
as the non-stochastic threshold t that maximizes IdealHC(t).

In Jin, Ke and Wang (2015a), we show that under a broad class of rare
and weak signal models, the leading term of the Taylor expansion of s̃nr(t)
is proportional to that of IdealHC(t) for t in the range of interest, and
so tidealHCp ≈ tidealp . Combining this with the discussions above, we have

tHCp ≈ tidealHCp ≈ tidealp , which explains the rationale for HCT.
The above relationships are justified in Jin, Ke and Wang (2015a). The

proofs are rather long (70 manuscript pages in Annals of Statistics format),
so we will report them in a separate paper. The ideas above are similar to
that in Donoho and Jin (2008) but the focus there is on classification and
our focus is on clustering; our version of HC is also very different from theirs.

1.4. Applications to gene microarray data. We compare IF-HCT-PCA
with four other clustering methods (applied to the normalized data ma-
trix W directly, without feature selection): (1) SpectralGem (Lee, Luca and
Roeder, 2010) which is the same as classical PCA introduced earlier, (2)
classical k-means, (3) hierarchical clustering (Hastie, Tibshirani and Fried-
man, 2009), and (4) k-means++ (Arthur and Vassilvitskii, 2007). In theory,
k-means is NP hard, but heuristic algorithms are available; we use the built-
in k-means package in Matlab with the parameter ‘replicates’ equal to 30,
so that the algorithm randomly samples initial cluster centroid positions 30
times (in the last step of either classical PCA or IF-HCT-PCA, k-means
is also used, where the number of ‘replicates’ is also 30). The k-means++
(Arthur and Vassilvitskii, 2007) is a recent modification of k-means. It im-
proves the performance of k-means in some numerical studies, though the
problem remains NP hard in theory. For hierarchical clustering, we use ‘com-
plete’ as the linkage function; other choices give more or less the same results.
In IF-HCT-PCA, the P -values associated with the KS-scores are computed
using simulated KS-scores under the null with 2×103×p independent repli-
cations; see Section 1.3 for remarks on F0. In Table 3, we repeat the main
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steps of IF-HCT-PCA for clarification, by presenting the pseudocode.

Table 4
Comparison of clustering error rates by different methods for the 10 gene microarray data
sets introduced in Table 1. Column 5: numbers in the brackets are the standard deviations
(SD); SD for all other methods are negligible so are not reported. Last column: see (1.13).

# Data set K kmeans kmeans++ Hier SpecGem IF-HCT-PCA r

1 Brain 5 .286 .427(.09) .524 .143 .262 1.83
2 Breast Cancer 2 .442 .430(.05) .500 .438 .406 .94
3 Colon Cancer 2 .443 .460(.07) .387 .484 .403 1.04
4 Leukemia 2 .278 .257(.09) .278 .292 .069 .27
5 Lung Cancer(1) 2 .116 .196(.09) .177 .122 .033 .29
6 Lung Cancer(2) 2 .436 .439(.00) .301 .434 .217 .72
7 Lymphoma 3 .387 .317(.13) .468 .226 .065 .29
8 Prostate Cancer 2 .422 .432(.01) .480 .422 .382 .91
9 SRBCT 4 .556 .524(.06) .540 .508 .444 .87
10 SuCancer 2 .477 .459(.05) .448 .489 .333 .74

We applied all 5 methods to each of the 10 gene microarray data sets
in Table 1. The results are reported in Table 4. Since all methods except
hierarchical clustering have algorithmic randomness (they depend on built-in
k-means package in Matlab which uses a random start), we report the mean
error rate based on 30 independent replications. The standard deviation of
all methods is very small (< .0001) except for k-means++, so we only report
the standard deviation of k-means++. In the last column of Table 4,

(1.13) r =
error rate of IF-HCT-PCA

minimum of the error rates of the other 4 methods
.

We find that r < 1 for all data sets except for two. In particular, r ≤ .29 for
three of the data sets, marking a substantial improvement, and r ≤ .87 for
three other data sets, marking a moderate improvement. The r-values also
suggest an interesting point: for ‘easier’ data sets, IF-PCA tends to have
more improvements over the other 4 methods.

We make several remarks. First, for the Brain data set, unexpectedly,
IF-PCA underperforms classical PCA, but still outperforms other methods.
Among our data sets, the Brain data seem to be an ‘outlier’. Possible reasons
include (a) useful features are not sparse, and (b) the sample size is very
small (n = 42) so the useful features are individually very weak. When
(a)-(b) happen, it is almost impossible to successfully separate the useful
features from useless ones, and it is preferable to use classical PCA. Such a
scenario may be found in Jin, Ke and Wang (2015b); see for example Figure
1 (left) and related context therein.

Second, for Colon Cancer, all methods behave unsatisfactorily, and IF-
PCA slightly underperforms hierarchical clustering (r = 1.04). The data set
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is known to be a difficult one even for classification (where class labels of
training samples are known (Donoho and Jin, 2008)). For such a difficult
data set, it is hard for IF-PCA to significantly outperform other methods.

Last, for the SuCancer data set, the KS-scores are significantly skewed to
the right. Therefore, instead of using the normalization (1.7), we normalize
ψn,j such that the mean and standard deviation for the lower 50% of KS-
scores match those for the lower 50% of the simulated KS-scores under the
null; compare this with Section 1.3 for remarks on P -value calculations.

1.5. Three variants of IF-HCT-PCA. First, in IF-HCT-PCA, we nor-
malize the KS-scores with the sample mean and sample standard deviation
as in (1.7). Alternatively, we may normalize the KS-scores by ψ∗n,j = [ψn,j −
median of all KS-scores]/[MAD of all KS-scores] (MAD: Median Absolute
Deviation), while other steps of IF-HCT-PCA are kept intact. Denote the
resultant variant by IF-HCT-PCA-med (med: median). Second, recall that
IF-HCT-PCA has two stages: in the first one, we select features with a
threshold determined by HC; in the second one, we apply PCA to the post-
selection data matrix. Alternatively, in the second stage, we may apply clas-
sical k-means or hierarchical clustering to the post-selection data instead
(the first stage is intact). Denote these two alternatives by IF-HCT-kmeans
and IF-HCT-hier, respectively.

Table 5
Clustering error rates of IF-HCT-PCA, IF-HCT-PCA-med, IF-HCT-kmeans, and

IF-HCT-hier.

Brn Brst Cln Leuk Lung1 Lung2 Lymp Prst SRB Su

IF-HCT-PCA .262 .406 .403 .069 .033 .217 .065 .382 .444 .333
IF-HCT-PCA-med .333 .424 .436 .014 .017 .217 .097 .382 .206 .333
IF-HCT-kmeans .191 .380 .403 .028 .033 .217 .032 .382 .401 .328
IF-HCT-hier .476 .351 .371 .250 .177 .227 .355 .412 .603 .500

Table 5 compares IF-HCT-PCA with the three variants (in IF-HCT-
kmeans, the ‘replicate’ parameter in k-means is taken to be 30 as before),
where the first three methods have similar performances, while the last one
performs comparably less satisfactorily. Not surprisingly, these methods gen-
erally outperform their classical counterparts (i.e., classical PCA, classical
k-means, and hierarchical clustering; see Table 4).

We remark that, for post-selection clustering, it is frequently preferable to
use PCA than k-means. First, k-means could be much slower than PCA, es-
pecially when the number of selected features in the IF step is large. Second,
the k-means algorithm we use in Matlab is only a heuristic approximation
of the theoretical k-means (which is NP-hard), so it is not always easy to
justify the performance of k-means algorithm theoretically.
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1.6. Connection to sparse PCA. The study is closely related to the re-
cent interest on sparse PCA (Arias-Castro, Lerman and Zhang (2013); Amini
and Wainwright (2008); Johnstone (2001); Jung and Marron (2009); Lei and
Vu (2015); Ma (2013); Zou, Hastie and Tibshirani (2006)), but is different in
important ways. Consider the normalized data matrixW = [W1,W2, . . . ,Wn]′

for example. In our model, recall that µ1, µ2, . . . , µK are the K sparse con-
trast mean vectors and the noise covariance matrix Σ is diagonal, we have

W ≈MΣ−1/2 + Z, where Z ∈ Rn,p has iid N(0, 1) entries,

and M ∈ Rn,p is the matrix where the i-th row is µ′k if and only if i ∈ Class k.
This is a setting that is frequently considered in the sparse PCA literature.

However, we must note that the main focus of sparse PCA is to recover
the supports of µ1, µ2, . . . , µK , while the main focus here is subject clus-
tering. We recognize that, the two problems—support recovery and subject
clustering—are essentially two different problems, and addressing one suc-
cessfully does not necessarily address the other successfully. For illustration,
consider two scenarios.

• If useful features are very sparse but each is sufficiently strong, it is easy
to identify the support of the useful features, but due to the extreme
sparsity, it may be still impossible to have consistent clustering.
• If most of the useful features are very weak with only a few of them

very strong, the latter will be easy to identify and may yield consis-
tent clustering, still, it may be impossible to satisfactorily recover the
supports of µ1, µ2, . . . , µK , as most of the useful features are very weak.

In a forthcoming manuscript Jin, Ke and Wang (2015b), we investigate
the connections and differences between two problems more closely, and
elaborate the above points with details.

With that being said, from a practical viewpoint, one may still wonder
how sparse PCA may help in subject clustering. A straight-forward cluster-
ing approach that exploits the sparse PCA ideas is the following:

• Estimate the first (K−1) right singular vectors of the matrix MΣ−1/2

using the sparse PCA algorithm as in (Zou, Hastie and Tibshirani,
2006, Equation (3.7)) (say). Denote the estimates by ν̂sp1 , ν̂

sp
2 , . . . , ν̂

sp
K−1.

• Cluster by applying classical k-means to the n×K−1 matrix [Wν̂sp1 ,W ν̂sp2 ,
. . . ,W ν̂spK−1], assuming there are ≤ K classes.

For short, we call this approach Clu-sPCA. One problem here is that, Clu-
sPCA is not tuning-free, as most existing sparse PCA algorithms have one
or more tuning parameters. How to set the tuning parameters in subject
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clustering is a challenging problem: for example, since the class labels are
unknown, using conventional cross validations (as we may use in classifica-
tion where class labels of the training set are known) might not help.

Table 6
Clustering error rates for IF-HCT-PCA and Clu-sPCA. The tuning parameter of

Clu-sPCA is chosen ideally to minimize the errors (IF-HCT-PCA is tuning-free). Only
SDs that are larger than 0.01 are reported (in brackets).

Brn Brst Cln Leuk Lung1 Lung2 Lymp Prst SRB Su

IF-HCT-PCA .262 .406 .403 .069 .033 .217 .065 .382 .444 .333
Clu-sPCA .263 .438 .435 .292 .110 .433 .190(.01) .422 .428 .437

In Table 6, we compare IF-HCT-PCA and Clu-sPCA using the 10 data
sets in Table 1. Note that in Clu-sPCA, the tuning parameter in the sparse
PCA step (Zou, Hastie and Tibshirani, 2006, Equation (3.7)) is ideally cho-
sen to minimize the clustering errors, using the true class labels. The results
are based on 30 independent repetitions. Compared to Clu-sPCA, IF-HCT-
PCA outperforms for half of the data sets (bold face), and has similar per-
formances for the remaining half.

The above results support our philosophy: the problem of subject clus-
tering and the problem of support recovery are related but different, and
success in one does not automatically lead to the success in the other.

1.7. Summary and contributions. Our contribution is three-fold: feature
selection by the KS statistic, post-selection PCA for high dimensional clus-
tering, and threshold choice by the recent idea of Higher Criticism.

In the first fold, we rediscover a phenomenon found earlier by Efron (2004)
for microarray study, but the focus there is on t-statistic or F -statistic, and
the focus here is on the KS statistic. We establish tight probability bounds
on the KS statistic when the data is Gaussian or Gaussian mixtures where
the means and variances are unknown; see Section 2.5. While tight tail
probability bounds have been available for decades in the case where the
data are iid from N(0, 1), the current case is much more challenging. Our
results follow the work by Siegmund (1982) and Loader et al. (1992) on the
local Poisson approximation of boundary crossing probability, and are useful
for pinning down the thresholds in KS screening.

In the second fold, we propose to use IF-PCA for clustering and have
successfully applied it to gene microarray data. The method compares fa-
vorably with other methods, which suggests that both the IF step and the
post-selection PCA step are effective. We also establish a theoretical frame-
work where we investigate the clustering consistency carefully; see Section
2. The analysis it entails is sophisticated and involves delicate post-selection
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eigen-analysis (i.e., eigen-analysis on the post-selection data matrix). We
also gain useful insight that the success of feature selection depends on
the feature-wise weighted third moment of the samples, while the success
of PCA depends more on the feature-wise weighted second moment. Our
study is closely related to the SpectralGem approach by Lee, Luca and
Roeder (2010), but our focus is on KS screening, post-selection PCA, and
clustering with microarray data is different.

In the third fold, we propose to set the threshold by Higher Criticism.
We find an intimate relationship between the HC functional and the signal-
to-noise ratio associated with post-selection eigen-analysis. As mentioned in
Section 1.3, the full analysis on the HC threshold choice is difficult and long,
so for reasons of space, we do not include it in this paper.

Our findings support the philosophy by Donoho (2015), that for real data
analysis, we prefer to use simple models and methods that allow sophisti-
cated theoretical analysis than complicated and computationally intensive
methods (as an increasing trend in some other scientific communities).

1.8. Content and notations. Section 2 contains the main theoretical re-
sults, where we show IF-PCA is consistent in clustering under some regu-
larity conditions. Section 3 contains the numerical studies, and Section 4
discusses connection to other work and addresses some future research. Sec-
ondary theorems and lemmas are proved in the supplementary material of
the paper. In this paper, Lp denotes a generic multi-log(p) term (see Section
2.3). For a vector ξ, ‖ξ‖ denotes the `2-norm. For a real matrix A, ‖A‖ de-
notes the matrix spectral norm, ‖A‖F denotes the matrix Frobenius norm,
and smin(A) denotes the smallest nonzero singular value.

2. Main results. Section 2.1 introduces our asymptotic model, Section
2.2 discusses the main regularity conditions and related notations. Section
2.3 presents the main theorem, and Section 2.4 presents two corollaries,
together with a phase transition phenomenon. Section 2.5 discusses the tail
probability of the KS statistic, which is the key for the IF step. Section 2.6
studies post-selection eigen-analysis which is the key for the PCA step. The
main theorems and corollaries are proved in Section 2.7.

To be utterly clear, the IF-PCA procedure we study in this section is the
one presented in Table 7, where the threshold t > 0 is given.

2.1. The Asymptotic Clustering Model. The model we consider is (1.1),
(1.2), (1.3) and (1.5), where the data matrix is X = [X1, X2, . . . , Xn]′, with
Xi ∼ N(µ̄ + µk,Σ) if and only if i ∈ Class k, 1 ≤ k ≤ K, and Σ =
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Table 7
Pseudocode for IF-PCA (for a given threshold t > 0)

Input: data matrix X, number of classes K, threshold t > 0. Output: class label vector ŷIFt .

1. Rank features: Let ψn,j , 1 ≤ j ≤ p, be the KS-scores as in (1.6).

2. Post-selection PCA: Define post-selection data matrix W (t) (i.e, sub-matrix of W consists of all
column j with ψn,j > t). Let U ∈ Rn,K−1 be the matrix of the first (K − 1) left singular vectors

of W (t). Cluster by ŷIFt = kmeans(U,K).

diag(σ2
1, σ

2
2, . . . , σ

2
p); K is the number of classes, µ̄ is the overall mean vector,

µ1, µ2, . . . , µK are contrast mean vectors which satisfy (1.5).
We use p as the driving asymptotic parameter, and let other parameters

be tied to p through fixed parameters. Fixing θ ∈ (0, 1), we let

(2.1) n = np = pθ,

so that as p→∞, p� n� 1.6 Let M ∈ RK,p be the matrix

(2.2) M = [m1,m2, . . . ,mK ]′, where mk = Σ−1/2µk.

Denote the set of useful features by

(2.3) Sp = Sp(M) = {1 ≤ j ≤ p : mk(j) 6= 0 for some 1 ≤ k ≤ K},

and let sp = sp(M) = |Sp(M)| be the number of useful features. Fixing
ϑ ∈ (0, 1), we let

(2.4) sp = p1−ϑ.

Throughout this paper, the number of classes K is fixed, as p changes.

Definition 2.1. We call model (1.1), (1.2), (1.3), and (1.5) the Asymp-
totic Clustering Model if (2.1) and (2.4) hold, and denote it by ACM(ϑ, θ).

It is more convenient to work with the normalized data matrix W =
[W1,W2, . . . ,Wn]′, where, as before, Wi(j) = [Xi(j)− X̄(j)]/σ̂(j), and X̄(j)
and σ̂(j) are the empirical mean and standard deviation associated with the
feature j, 1 ≤ j ≤ p, 1 ≤ i ≤ n. Introduce Σ̂ = diag(σ̂2(1), σ̂2(2), . . . , σ̂2(p))
and Σ̃ = E[Σ̂]. Note that σ̂2(j) is an unbiased estimator for σ2(j) when
feature j is useless but is not necessarily so when feature j is useful. As a
result, Σ̂ is ‘closer’ to Σ̃ than to Σ; this causes (unavoidable) complications
in notations. Denote for short

(2.5) Λ = Σ1/2Σ̃−1/2.

6For simplicity, we drop the subscript of np as long as there is no confusion.
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This is a p × p diagonal matrix where most of the diagonals are 1, and
all other diagonals are close to 1 (under mild conditions). Let 1n be the
n× 1 vector of ones and ek ∈ RK be the k-th standard basis vector of RK ,
1 ≤ k ≤ K. Let L ∈ Rn,K be the matrix where the i-th row is e′k if and
only if Sample i ∈ Class k. Recall the definition of M in (2.2). With these
notations, we can write

(2.6) W = [LM + ZΣ−1/2]Λ +R, ZΣ−1/2 has iid N(0, 1) entries,

where R stands for the remainder term

(2.7) R = 1n(µ̄− X̄)′Σ̂−1/2 + [LMΣ1/2 + Z](Σ̂−1/2 − Σ̃−1/2).

Recall that rank(LM) = K − 1 and Λ is nearly the identity matrix.

2.2. Regularity conditions and related notations. We use C > 0 as a
generic constant, which may change from occurrence to occurrence, but does
not depend on p. Recall that δk is the fraction of samples in Class k, and
σ2(j) is the j-th diagonal of Σ. The following regularity conditions are mild:

(2.8) min
1≤k≤K

{δk} ≥ C, and max
1≤j≤p

{σ(j) + σ−1(j)} ≤ C.

Introduce the following two p × 1 vectors κ = (κ(1), κ(2), . . . , κ(p))′ and
τ = (τ(1), τ(2), . . . , τ(p))′ by

κ(j) = κ(j;M,p, n) =
( K∑
k=1

δkm
2
k(j)

)1/2
,(2.9)

τ(j) = τ(j;M,p, n) = (6
√

2π)−1 ·
√
n ·
∣∣ K∑
k=1

δkm
3
k(j)

∣∣.(2.10)

Note that κ(j) and τ(j) are related to the weighted second and third mo-
ments of the j-th column of M , respectively; τ and κ play a key role in the
success of feature selection and post-selection PCA, respectively. In the case
that τ(j)’s are all small, the success of our method relies on higher moments
of the columns of M ; see Section 2.5 for more discussions. Introduce

ε(M) = max
1≤k≤K,j∈Sp(M)

{|mk(j)|}, τmin = min
j∈Sp(M)

{τ(j)}.

We are primarily interested in the range where the feature strengths are rare
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and weak, so we assume as p→∞,

(2.11) ε(M)→ 0.7

In Section 2.5, we shall see that τ(j) can be viewed as the Signal-to-Noise
Ratio (SNR) associated with the j-th feature and τmin is the minimum
SNR of all useful features. The most interesting range for τ(j) is τ(j) ≥
O(
√

log(p)). In fact, if τ(j)s are of a much smaller order, then the useful
features and the useless features are merely inseparable. In light of this, we
fix a constant r > 0 and assume

(2.12) τmin ≥ a0 ·
√

2r log(p), where a0 =
√

(π − 2)/(4π).8

By the way τ(j) is defined, the interesting range for non-zero mk(j) is
|mk(j)| ≥ O

(
(log(p)/n)1/6

)
. We also need some technical conditions which

can be largely relaxed with more complicated analysis:9

(2.13)

max
j∈Sp(M)

{ √n
τ(j)

K∑
k=1

δkm
4
k(j)

}
≤ Cp−δ, min

{(j,k):mk(j)6=0]}
{|mk(j)|} ≥ C(

log(p)

n
)1/2,

for some δ > 0. As the most interesting range of |mk(j)| is O((log(p)/n)1/6),
these conditions are mild.

Similarly, for the threshold t in (1.8) we use for the KS-scores, the inter-
esting range is t = O(

√
log(p)). In light of this, we are primarily interested

in threshold of the form

(2.14) tp(q) = a0 ·
√

2q log(p), where q > 0 is a constant.

We now define a quantity errp, which is the clustering error rate of IF-
PCA in our main results. Define

ρ1(L,M) = ρ1(L,M ; p, n) =
sp‖κ‖2∞
‖κ‖2

.

7This condition is used in the post-selection eigen-analysis. Recall thatW (t) is the short-
hand notation for the post-selection normalized data matrix associated with threshold t.
As W (t) is the sum of a low-rank matrix and a noise matrix, (W (t))′(W (t)) equals to the
sum of four terms, two of them are “cross terms”. In eigen-analysis of (W (t))′(W (t)), we
need condition (2.11) to control the cross terms.

8Throughout this paper, a0 denotes the constant
√

(π − 2)/(4π). The constant comes
from the analysis of the tail behavior of the KS statistic; see Theorems 2.3-2.4.

9Condition (2.13) is only needed for Theorem 2.4 on the tail behavior of the KS statistic
associated with a useful feature. The conditions ensure singular cases will not happen so
the weighted third moment (captured by τ(j)) is the leading term in the Taylor expansion.
For more discussions, see the remark in Section 2.5.
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Introduce two K ×K matrices A and Ω (where A is diagonal) by

A(k, k) =
√
δk‖mk‖, Ω(k, `) = m′kΛ

2m`/(‖mk‖·‖m`‖), 1 ≤ k, ` ≤ K;

recall that Λ is ‘nearly’ the identity matrix. Note that ‖AΩA‖ ≤ ‖κ‖2, and
that when ‖m1‖, · · · , ‖mK‖ have comparable magnitudes, all the eigenvalues
of AΩA have the same magnitude. In light of this, let smin(AΩA) be the
minimum singular value of A and introduce the ratio

ρ2(L,M) = ρ2(L,M ; p, n) = ‖κ‖2/smin(AΩA).

Define

errp = ρ2(L,M)

[
1 +

√
p1−ϑ∧q

n

‖κ‖
+p−

(
√
r−√q)2+
2K +

√
pϑ−1 +

p(ϑ−q)+

n

√
ρ1(L,M)

]
.

This quantity errp combines the ‘bias’ term associated with the useful fea-
tures that we have missed in feature selection and the ‘variance’ term associ-
ated with retained features; see Lemmas 2.2 and 2.3 for details. Throughout
this paper, we assume that there is a constant C > 0 such that

(2.15) errp ≤ p−C .

Remark. Note that ρ1(L,M) ≥ 1 and ρ2(L,M) ≥ 1. A relatively small
ρ1(L,M) means that τ(j) are more or less in the same magnitude, and a
relatively small ρ2(L,M) means that the (K − 1) nonzero eigenvalues of
LMΛ2M ′L′ have comparable magnitudes. Our hope is that neither of these
two ratios is unduly large.

2.3. Main theorem: clustering consistency by IF-PCA. Recall ψn,j is the
KS statistic. For any threshold t > 0, denote the set of retained features by

Ŝp(t) = {1 ≤ j ≤ p : ψn,j ≥ t}.

For any n × p matrix W , let W Ŝp(t) be the matrix formed by replacing all
columns of W with the index j /∈ Ŝp(t) by the vector of zeros (note the
slight difference compared with W (t) in Section 1.1). Denote the n× (K−1)

matrix of the first (K − 1) left singular vectors of W Ŝp(tp(q)) by

Û (tp(q)) = Û(W Ŝp(tp(q))) = [η̂1, η̂2, · · · , η̂K−1], where η̂k = η̂k(W
Ŝp(tp(q))).

Recall that W = [LM+ZΣ−1/2]Λ+R and let LMΛ = UDV ′ be the Singular
Value Decomposition (SVD) of LMΛ such that D ∈ RK−1,K−1 is a diagonal
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matrix with the diagonals being singular values arranged descendingly, U ∈
Rn,K−1 satisfies U ′U = IK−1, and V ∈ Rp,K−1 satisfies V ′V = IK−1. Then
U is the non-stochastic counterpart of Û (tp(q)). We hope that the linear space
spanned by columns of Û (tp(q)) is “close” to that spanned by columns of U .

Definition 2.2. Lp > 0 denotes a multi-log(p) term that may vary from
occurrence to occurrence but satisfies Lpp

−δ → 0 and Lpp
δ →∞, ∀δ > 0.

For any K ≥ 1, let

(2.16) HK = {All K ×K orthogonal matrices}.

The following theorem is proved in Section 2.7, which shows that the singular
vectors IF-PCA obtains span a low-dimensional subspace that is “very close”
to its counterpart in the ideal case where there is no noise.

Theorem 2.1. Fix (ϑ, θ) ∈ (0, 1)2, and consider ACM(ϑ, θ). Suppose
the regularity conditions (2.8), (2.11), (2.12), (2.13) and (2.15) hold, and
the threshold in IF-PCA is set as t = tp(q) as in (2.14). Then there is a
matrix H in HK−1 such that as p→∞, with probability at least 1− o(p−2),
‖Û (tp(q)) − UH‖F ≤ Lperrp.

Recall that in IF-PCA, once Û (tp(q)) is obtained, we estimate the class
labels by truncating Û (tp(q)) entry-wise (see the PCA-1 step and the footnote
in Section 1.1) and then cluster by applying the classical k-means. Also, the
estimated class labels are denoted by ŷIFtp(q) = (ŷIFtp(q),1, ŷ

IF
tp(q),2, ŷ

IF
tp(q),n)′. We

measure the clustering errors by the Hamming distance

Hamm∗p(ŷ
IF
tp(q), y) = min

π

{ n∑
i=1

P (ŷIFtp(q),i 6= π(yi))
}
,

where π is any permutation in {1, 2, . . . ,K}. The following theorem is our
main result, which gives an upper bound for the Hamming errors of IF-PCA.

Theorem 2.2. Fix (ϑ, θ) ∈ (0, 1)2, and consider ACM(ϑ, θ). Suppose
the regularity conditions (2.8), (2.11), (2.12), (2.13) and (2.15) hold, and
let tp = tp(q) as in (2.14) and Tp = log(p)/

√
n in IF-PCA. As p→∞,

n−1Hamm∗p(ŷ
IF
tp(q), y) ≤ Lperrp.

The theorem can be proved by Theorem 2.1 and an adaption of (Jin, 2015,
Theorem 2.2). In fact, by Lemma 2.1 below, the absolute values of all entries
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of U are bounded by C/
√
n from above. By the choice of Tp and definitions,

the truncated matrix Û
(tp(q))
∗ satisfies ‖Û (tp(q))

∗ −UH‖F ≤ ‖Û (tp(q))−UH‖F .
Using this and Theorem 2.1, the proof of Theorem 2.2 is basically an exercise
of classical theory on k-means algorithm. For this reason, we skip the proof.

2.4. Two corollaries and a phase transition phenomenon. Corollary 2.1
can be viewed as a simplified version of Theorem 2.1, so we omit the proof;
recall that Lp denotes a generic multi-log(p) term.

Corollary 2.1. Suppose conditions of Theorem 2.1 hold, and suppose
max{ρ1(L,M), ρ2(L,M)} ≤ Lp as p → ∞. Then there is a matrix H in
HK−1 such that as p→∞, with probability at least 1− o(p−2),

‖Û (tp(q)) − UH‖F ≤ Lpp−[(
√
r−√q)+]2/(2K)

+ Lp(‖κ‖−1p(1−ϑ)/2 + 1)

{
p−θ/2+[(ϑ−q)+]/2, if (1− ϑ) > θ,

p−(1−ϑ)/2+[(1−θ−q)+]/2, if (1− ϑ) ≤ θ.

By assumption (2.12), the interesting range for a nonzeromk(j) is |mk(j)| �
Lpn

−1/6. It follows that ‖κ‖ � Lpp(1−ϑ)/2n−1/6 and ‖κ‖−1p(1−ϑ)/2 →∞. In
this range, we have the following corollary, which is proved in Section 2.7.

Corollary 2.2. Suppose conditions of Corollary 2.1 hold, and ‖κ‖ =
Lpp

(1−ϑ)/2n−1/6. Then as p→∞, the following holds:

(a) If (1−ϑ) < θ/3, for any r > 0, whatever q is chosen, the upper bound
of minH∈HK−1

‖Û (tp(q)) − UH‖F in Corollary 2.1 goes to infinity.
(b) If θ/3 < (1−ϑ) < 1−2θ/3, for any r > ϑ−2θ/3, there exists q ∈ (0, r)

such that minH∈HK−1
‖Û (tp(q)) − UH‖F → 0 with probability at least

1−o(p−2). In particular, if (1−ϑ) ≤ θ and r > (
√
K(1− ϑ)−Kθ/3+√

1− θ)2, by taking q = 1− θ,

min
H∈HK−1

‖Û (tp(q)) − UH‖F ≤ Lpn1/6s−1/2
p ;

if (1− ϑ) > θ and r > (
√

2Kθ/3 +
√
ϑ)2, by taking q = ϑ,

min
H∈HK−1

‖Û (tp(q)) − UH‖F ≤ Lpn−1/3.

(c) If (1−ϑ) > 1−2θ/3, for any r > 0, by taking q = 0, minH∈HK−1
‖Û (tp(q))−

UH‖F → 0 with probability at least 1− o(p−2).
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To interpret Corollary 2.2, we take a special case where K = 2, all diago-
nals of Σ are bounded from above and below by a constant, and all nonzero
features µk(j) have comparable magnitudes; that is, there is a positive num-
ber u0 that may depend on (n, p) and a constant C > 0 such that

(2.17) u0 ≤ |µk(j)| ≤ Cu0, for any (k, j) such that µk(j) 6= 0.

In our parametrization, sp = p1−ϑ, n = pθ, and u0 � τ1/3
min/n

1/6 � (log(p)/n)1/6

since K = 2. Cases (a)-(c) in Corollary 2.2 translate to (a) 1 � sp � n1/3,
(b) n1/3 � sp � p/n2/3, and (c) sp � p/n2/3, respectively.

The primary interest in this paper is Case (b). In this case, Corollary 2.2
says that both feature selection and post-selection PCA can be successful,
provided that u0 = c0(log(p)/n)1/6 for an appropriately large constant c0.
Case (a) addresses the case of very sparse signals, and Corollary 2.2 says
that we need stronger signals than that of u0 � (log(p)/n)1/6 for IF-PCA to
be successful. Case (c) addresses the case where signals are relatively dense,
and PCA is successful without feature selection (i.e., taking q = 0).

We have been focused on the case u0 = Lpn
−1/6 as our primary interest

is on clustering by IF-PCA. For a more complete picture, we model u0 by
u0 = Lpp

−α; we let the exponent α vary and investigate what is the critical
order for u0 for some different problems and different methods. In this case,
it is seen that u0 ∼ n−1/6 is the critical order for the success of feature
selection (see Section 2.5), u0 ∼

√
p/(ns) is the critical order for the success

of Classical PCA and u0 ∼ 1/
√
s is the critical order for IF-PCA in an

idealized situation where the Screen step finds exactly all the useful features.
These suggest an interesting phase transition phenomenon for IF-PCA.

• Feature selection is trivial but clustering is impossible. 1 � s � n1/3

and n−1/6 � u0 ≤ 1/
√
s. Individually, useful features are sufficiently

strong, so it is trivial to recover the support of MΣ1/2 (say, by thresh-
olding the KS-scores one by one); note that MΣ1/2 = [µ1, µ2, . . . , µK ]′.
However, useful features are so sparse that it is impossible for any
methods to have consistent clustering.
• Clustering and feature selection are possible but non-trivial. n1/3 �
s � p/n2/3 and u0 = (r log(p)/n)1/6, where r is a constant. In this
range, feature selection is indispensable and there is a region where
IF-PCA may yield a consistent clustering but Classical PCA may not.
A similar conclusion can be drawn if the purpose is to recover the
support of MΣ1/2 by thresholding the KS-scores.
• Clustering is trivial but feature selection is impossible. s� p/n2/3 and√

p/(ns) ≤ u0 � n−1/6. In this range, the sparsity level is low and
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Classical PCA is able to yield consistent clustering, but the useful
features are individually too weak that it is impossible to fully recover
the support of MΣ1/2 by using all p different KS-scores.

In Jin, Ke and Wang (2015b), we investigate the phase transition with much
more refined studies (in a slightly different setting).

2.5. Tail probability of KS statistic. IF-PCA consists of a screening step
(IF-step) and a PCA step. In the IF-step, the key is to study the tail behavior
of the KS statistic ψn,j , defined in (1.6). Fix 1 ≤ j ≤ p. Recall that in our
model, Xi ∼ N(µ̄ + µk,Σ) if i ∈ Class k, 1 ≤ i ≤ n, and that j is a useless
feature if and only if µ1(j) = µ2(j) = . . . = µK(j) = 0.

Recall that a0 =
√

(π − 2)/(4π). Theorem 2.3 addresses the tail behavior
of ψn,j when feature j is useless.

Theorem 2.3. Fix θ ∈ (0, 1) and let n = np = pθ. Fix 1 ≤ j ≤ p. If the
j-th feature is a useless feature, then as p → ∞, for any sequence tp such
that tp →∞ and tp/

√
n→ 0,

1 .
P (ψn,j ≥ tp)

(
√

2a0)−1exp
(
−t2p/(2a2

0)
) . 2.

We conjecture that P (ψn,j ≥ tp) ∼ 2 · 1√
2a0

exp(−t2p/(2a2
0)), with possibly

a more sophisticated proof than that in the paper.
Recall that τ is defined in (2.10). Theorem 2.4 addresses the tail behavior

of ψn,j when feature j is useful.

Theorem 2.4. Fix θ ∈ (0, 1). Let n = np = pθ, and τ(j) be as in (2.10),
where j is a useful feature. Suppose (2.12) and (2.13) hold, and the threshold
tp is such that tp →∞, that tp/

√
n→ 0, and that τ(j) ≥ (1 +C)tp for some

constant C > 0. Then as p→∞,

P (ψn,j ≤ tp) ≤ C
(
Kexp

(
− 1

2Ka2
0

(τ(j)− tp)2
)

+O(p−3)

)
.

Theorems 2.3-2.4 are proved in the supplementary material Jin and Wang
(2015). Combining two theorems, roughly saying, we have that

• if j is a useless feature, then the right tail of ψn,j behaves like that of
N(0, a2

0),
• if j is a useful feature, then the left tail of ψn,j is bounded by that of
N(τ(j),Ka2

0).
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These suggest that the feature selection using the KS statistic in the current
setting is very similar to feature selection with a Stein’s normal means model;
the latter is more or less well-understood (e.g., Abramovich et al. (2006)).

As a result, the most interesting range for τ(j) is τ(j) ≥ O(
√

log(p)). If
we threshold the KS-scores at tp(q) =

√
2q log(p), by similar argument as

in feature selection with a Stein’s normal means setting, we expect that

• All useful features are retained, except for a fraction≤ Cp−[(
√
r−√q)+]2/K ,

• No more than (1+o(1))·p1−q useless features are (mistakenly) retained,
• #{retained features} = |Ŝp(tp(q))| ≤ C[p1−ϑ + p1−q + log(p)].

These facts pave the way for the PCA step; see Sections below.
Remark. Theorem 2.4 hinges on τ(j), which is a quantity proportional

to the “third moment”
∑K

k=1 δkm
3
k(j) and can be viewed as the “effective

signal strength” of the KS statistic. In the symmetric case (say, K = 2 and
δ1 = δ2 = 1/2), the third moment (which equals to 0) is no longer the right
quantity for calibrating the effective signal strength of the KS statistic, and
we must use the fourth moment. In such cases, for 1 ≤ j ≤ p, let

ω(j) =
√
n sup
−∞<y<∞

[
1

8
y(1−3y2)φ(y)·

( K∑
k=1

δkm
2
k(j)

)2
+

1

24
φ(3)(y)·

K∑
k=1

δkm
4
k(j)

]
,

where φ(3)(y) is the third derivative of the standard normal density φ(y).
Theorem 2.4 continues to hold provided that (a) τ(j) is replaced by ω(j), (b)
the condition (2.12) of τmin ≥ a0

√
2r log(p) is replaced by that of ωmin ≥

a0

√
2r log(p), where ωmin = minj∈Sp(M){ω(j)}, and (c) the first part of

condition (2.13), max
j∈Sp(M)

{ √n
τ(j)

K∑
k=1

δkm
4
k(j)

}
≤ Cp−δ, is replaced by that of

max
j∈Sp(M)

{ √n
ω(j)

K∑
k=1

δk|mk(j)|5
}
≤ Cp−δ. This is consistent with that in Arias-

Castro and Verzelen (2014), which studies the clustering problem in a similar
setting (especially on the symmetric case) with great details.

In the literature, tight bounds of this kind are only available for the case
whereXi are iid samples from a known distribution (especially, parameters—
if any—are known). In this case, the bound is derived by Kolmogorov (1933);
also see Shorack and Wellner (1986). The setting considered here is more
complicated, and how to derive tight bounds is an interesting but rather
challenging problem. The main difficulty lies in that, any estimates of the
unknown parameters (µ̄(j), µ1(j), . . . , µk(j), σ(j)) have stochastic fluctua-
tions at the same order of that of the stochastic fluctuation of the empirical
CDF, but two types of fluctuations are correlated in a complicated way, so it
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is hard to derive the right constant a0 in the exponent. There are two exist-
ing approaches, one is due to Durbin (1985) which approaches the problem
by approximating the stochastic process by a Brownian bridge, the other is
due to Loader et al. (1992) (see also Siegmund (1982); Woodroofe (1978))
on the local Poisson approximation of the boundary crossing probability. It
is argued in Loader et al. (1992) that the second approach is more accurate.
Our proofs follow the idea in Siegmund (1982); Loader et al. (1992).

2.6. Post-selection eigen-analysis. For the PCA step, as in Section 2.3,

we let W Ŝp(tp(q)) be the n × p matrix where the j-th column is the same
as that of W if j ∈ Ŝp(tp(q)) and is the zero vector otherwise. With such
notations,

(2.18) W Ŝp(tp(q)) = LMΛ + L(M −M Ŝp(tp(q)))Λ + (ZΣ−1/2Λ +R)Ŝp(tp(q)).

We analyze the there terms on the right hand side separately.
Consider the first term LMΛ. Recall that L ∈ Rn,K with the i-th row

being e′k if and only if i ∈ Class k, 1 ≤ i ≤ n, 1 ≤ k ≤ K, and M ∈
RK,p with the k-th row being m′k = (Σ−1/2µk)

′, 1 ≤ k ≤ K. Also, re-
call that A = diag(

√
δ1‖m1‖, . . . ,

√
δK‖mK‖) and Ω ∈ RK,K with Ω(k, `) =

m′kΛ
2m`/(‖mk‖·‖m`‖), 1 ≤ k, ` ≤ K. Note that rank(AΩA) = rank(LM) =

K− 1. Assume all nonzero eigenvalues of AΩA are simple, and denote them
by λ1 > λ2 > . . . > λK−1. Write

(2.19) AΩA = Q · diag(λ1, λ2, . . . , λK−1) ·Q′, Q ∈ RK,K−1,

where the k-th column of Q is the k-th eigenvector of AΩA, and let

(2.20) LMΛ = UDV ′

be an SVD of LMΛ. Introduce

(2.21) G = diag(
√
δ1,
√
δ2, . . . ,

√
δK) ∈ RK,K .

The following lemma is proved in the supplementary material (Jin and
Wang, 2015, Section ??).

Lemma 2.1. The matrix LMΛ has (K−1) nonzero singular values which
are
√
nλ1, . . . ,

√
nλK−1. Also, there is a matrix H ∈ HK−1 (see (2.16)) such

that
U = n−1/2L[G−1QH] ∈ Rn,K−1.

For the matrix G−1QH, the `2-norm of the k-th row is (δ−1
k −1)1/2, and the

`2-distance between the k-th row and the `-th row is (δ−1
k + δ−1

` )1/2, which
is no less than 2, 1 ≤ k < ` ≤ K.
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By Lemma 2.1 and definitions, it follows that

• For any 1 ≤ i ≤ n and 1 ≤ k ≤ K − 1, the i-th row of U equals to the
k-th row of n−1/2G−1QH if and only if Sample i comes from Class k.
• The matrix U has K distinct rows, according to which the rows of
U partition into K different groups. This partition coincides with the
partition of the n samples into K different classes. Also, the `2-norm
between each pair of the K distinct rows is no less than 2/

√
n.

Consider the second term on the right hand side of (2.18). This is the
‘bias’ term caused by useful features which we may fail to select.

Lemma 2.2. Suppose the conditions of Theorem 2.1 hold. As p → ∞,
with probability at least 1− o(p−2),

‖L(M−M Ŝp(tp(q)))Λ‖ ≤ C‖κ‖
√
n·
[
p−(1−ϑ)/2

√
ρ1(L,M)·

√
log(p)+p−[(

√
r−√q)+]2/(2K)

]
.

Consider the last term on the right hand side of (2.18). This is the ‘vari-
ance’ term consisting of two parts, the part from original measurement noise
matrix Z and the remainder term due to normalization.

Lemma 2.3. Suppose the conditions of Theorem 2.1 hold. As p → ∞,
with probability at least 1− o(p−2),

‖(ZΣ−1/2Λ+R)Ŝp(tp(q))‖ ≤ C
[√

n+
(
p(1−ϑ∧q)/2+‖κ‖p(ϑ−q)+/2

√
ρ1(L,M)

)
·(
√

log(p))3
]
.

Combining Lemmas 2.2-2.3 and using the definition of errp,

(2.22) ‖W Ŝp(tp(q)) − LMΛ‖ ≤ Lperrp ·
√
n‖κ‖

ρ2(L,M)
.

2.7. Proofs of the main results. We now show Theorem 2.1 and Corollary
2.1. Proof of Theorem 2.2 is very similar to that of Theorem 2.2 in Jin (2015)
and proof of Corollary 2.2 is elementary, so we omit them.

Consider Theorem 2.1. Let

T = LMΛ2M ′L′, T̂ = W Ŝp(tp(q))(W Ŝp(tp(q)))′.

Recall that U and Û (tp(q)) contain the (K−1) leading eigenvectors of T and
T̂ , respectively. Using the sine-theta theorem (Davis and Kahan, 1970) (see
also Proposition 1 in Cai, Ma and Wu (2013)),

(2.23) ‖Û (tp(q))(Û (tp(q)))′ − UU ′‖ ≤ 2s−1
min(T )‖T̂ − T‖;
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in (2.23), we have used the fact that T has a rank of K − 1 so that the
gap between the (K − 1)-th and K-th largest eigenvalues is equal to the
minimum nonzero singular value smin(T ). The following lemma is proved in
the supplementary material (Jin and Wang, 2015, Section ??).

Lemma 2.4. For any integers 1 ≤ m ≤ p and two p×m matrices V1, V2

satisfying V ′1V1 = V ′2V2 = I, there exists an orthogonal matrix H ∈ Rm,m
such that ‖V1 − V2H‖F ≤ ‖V1V

′
1 − V2V

′
2‖F .

Combine (2.23) with Lemma 2.4 and note that Û (tp(q))(Û (tp(q)))′ − UU ′ has
a rank of 2K or smaller. It follows that there is an H ∈ HK−1 such that

(2.24) ‖Û (tp(q)) − UH‖F ≤ 2
√

2Ks−1
min(T )‖T̂ − T‖.

First, ‖T̂−T‖ ≤ 2‖LMΛ‖·‖W Ŝp(tp(q))−LMΛ‖+‖W Ŝp(tp(q))−LMΛ‖2. From

Lemmas 2.2-2.3 and (2.15), ‖LMΛ‖ � ‖W Ŝp(tp(q)) − LMΛ‖. Therefore,

‖T̂ − T‖ . 2‖LMΛ‖‖W Ŝp(tp(q)) − LMΛ‖ ≤ 2
√
n‖κ‖ · ‖W Ŝp(tp(q)) − LMΛ‖.

Second, by Lemma 2.1,

smin(T ) = n · smin(AΩA′) = n‖κ‖2/ρ2(L,M).

Plugging in these results into (2.24), we find that

(2.25) ‖Û (tp(q)) − UH‖F ≤ 4
√

2K
ρ2(L,M)√
n‖κ‖

‖W Ŝp(tp(q)) − LMΛ‖,

where by Lemmas 2.2-2.3, the right hand side equals to Lperrp . The claim
then follows by combining (2.25) and (2.22).

Consider Corollary 2.2. For each j ∈ Sp(M), it can be deduced that κ(j) ≥
ε(M), using especially (2.11). Therefore, ‖κ‖ ≥ Lpp

(1−ϑ)
2 n−1/6 = Lpp

1−ϑ
2
− θ

6 .
The error bound in Corollary 2.1 reduces to

(2.26) Lpp
−[(
√
r−√q)+]2/(2K) + Lp

{
p−θ/3+(ϑ−q)+/2, θ < 1− ϑ,
pθ/6−(1−ϑ)/2+(1−θ−q)+/2, θ ≥ 1− ϑ.

Note that (2.26) is lower bounded by Lpp
θ/6−(1−ϑ)/2 for any q ≥ 0; and it

is upper bounded by Lpp
−θ/3+ϑ/2 when taking q = 0. The first and third

claims then follow immediately. Below, we show the second claim.
First, consider the case θ < 1−ϑ. If r > ϑ, we can take any q ∈ (ϑ, r) and

the error bound is o(1). If r ≤ ϑ, noting that (ϑ − r)/2 < θ/3, there exists
q < r such that (ϑ− q)/2 < θ/3, and the corresponding error bound is o(1).
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In particular, if r > (
√

2Kθ/3 +
√
ϑ)2, we have (

√
r−
√
ϑ)2/(2K) > θ/3;

then for q ≥ ϑ, the error bound is Lpp
−θ/3+Lpp

−(
√
r−√q)2/(2K); for q < ϑ, the

error bound is Lpp
−θ/3+(ϑ−q)/2; so the optimal q∗ = ϑ and the corresponding

error bound is Lpp
−θ/3 = Lpn

−1/3.
Next, consider the case 1 − ϑ ≤ θ < 3(1 − ϑ). If r > 1 − θ, for any

q ∈ (1−θ, r), the error bound is o(1); note that θ/6 < (1−ϑ)/2. If r ≤ 1−θ,
noting that (1 − θ − r)/2 < (1 − ϑ)/2 − θ/6, there is a q < r such that
(1− θ− q)/2 < (1− ϑ)/2− θ/6, and the corresponding error bound is o(1).

In particular, if r > (
√
K(1− ϑ)−Kθ/3 +

√
1− θ)2, we have that (

√
r−√

1− θ)2/(2K) > (1 − ϑ)/2 − θ/6; then for q ≥ 1 − θ, the error bound
is Lpp

θ/6−(1−ϑ)/2 + Lpp
−(
√
r−√q)2/(2K); for q < 1 − θ, the error bound is

Lpp
θ/6−(1−ϑ)/2+(1−θ−q)/2; so the optimal q∗ = 1 − θ and the corresponding

error bound is Lpp
θ/6−(1−ϑ)/2 = Lpn

1/6s
−1/2
p .

3. Simulations. We conducted a small-scale simulation study to inves-
tigate the numerical performance of IF-PCA. We consider two variants of
IF-PCA, denoted by IF-PCA(1) and IF-PCA(2). In IF-PCA(1), the thresh-
old is chosen using HCT (so the choice is data-driven), and in IF-PCA(2),
the threshold t is given. In both variants, we skip the normalization step on
KS scores (that step is designed for microarray data only). The pseudocodes
of IF-PCA(2) and IF-PCA(1) are given in Table 7 (Section 2) and Table 8,
respectively. We compared IF-PCA(1) and IF-PCA(2) with 4 other differ-
ent methods: classical k-means (kmeans), k-means++ (kmeans+), classical
hierarchical clustering (Hier), and SpectralGem (SpecGem; same as classi-
cal PCA). In hierarchical clustering, we only consider the linkage type of
“complete”; other choices of linkage have very similar results.

Table 8
Pseudocode for IF-PCA(1) (for simulations; threshold set by Higher Criticism)

Input: data matrix X, number of classes K. Output: class label vector ŷIFHC .

1. Rank features: Let ψn,j be the KS-scores as in (1.6), and F0 be the CDF of ψn,j under null, 1 ≤ j ≤ p.
2. Threshold choice by HCT: Calculate P -values by πj = 1− F0(ψn,j), 1 ≤ j ≤ p and sort them by

π(1) < π(2) < . . . < π(p). Define HCp,j =
√
p(j/p− π(j))/

√
max{

√
n(j/p− π(j)), 0}+ j/p, and let

ĵ = argmax{j:π(j)>log(p)/p,j<p/2}{HCp,j}. HC threshold tHCp is the ĵ-largest KS-score.

3. Post-selection PCA: Define post-selection data matrix W (HC) (i.e., sub-matrix of W consists of all
column j of W with ψn,j > tHCp ). Let U ∈ Rn,K−1 be the matrix of the first (K − 1) left singular

vectors of W (HC). Cluster by ŷIFHC = kmeans(U,K).

In each experiment, we fix parameters (K, p, θ, ϑ, r, rep), two probability
mass vectors δ = (δ1, · · · , δK)′ and γ = (γ1, γ2, γ3)′, and three probability
densities gσ, gµ defined over (0,∞) and gµ̄ defined over (−∞,∞). With these
parameters, we let n = np = pθ and εp = p1−ϑ; n is the sample size, εp is



INFLUENTIAL FEATURES PCA 29

roughly the fraction of useful features, and rep is the number of repetitions.10

We generate the n× p data matrix X as follows.

• Generate the class labels y1, y2, . . . , yn iid from MN(K, δ)11, and let
L be the n×K matrix such that the i-th row of L equals to e′k if and
only if yi = k, 1 ≤ k ≤ K.

• Generate the overall mean vector µ̄ by µ̄(j)
iid∼ gµ̄, 1 ≤ j ≤ p.

• Generate the contrast mean vectors µ1, · · · , µK as follows. First, gen-
erate b1, b2, . . . , bp iid from Bernoulli(εp). Second, for each j such that
bj = 1, generate the iid signs {βk(j)}K−1

k=1 such that βk(j) = −1, 0, 1
with probability γ1, γ2, γ3, respectively, and generate the feature mag-
nitudes {hk(j)}K−1

k=1 iid from gµ. Last, for 1 ≤ k ≤ K − 1, set µk by
(the factor 72π is chosen to be consistent with (2.10))

µk(j) =
[
72π · (2r log(p)) · n−1 · hk(j)

]1/6 · bj · βk(j),
and let µK = − 1

δK

∑K−1
k=1 δkµk.

• Generate the noise matrix Z as follows. First, generate a p× 1 vector

σ by σ(j)
iid∼ gσ. Second, generate the n rows of Z iid from N(0,Σ),

where Σ = diag(σ2(1), σ2(2), · · · , σ2(p)).
• Let X = 1µ̄′ + L[µ1, · · · , µK ] + Z.

In the simulation settings, r can be viewed as the parameter of (average)
signal strength. The density gσ characterizes noise heteroscedasticity; when
gσ is a point mass at 1, the noise variance of all the features are equal.
The density gµ controls the strengths of useful features; when gµ is a point
mass at 1, all the useful features have the same strength. The signs of useful
features are captured in the probability vector γ; when K = 2, we always
set γ2 = 0 so that µk(j) 6= 0 for a useful feature j; when K ≥ 3, for a useful
feature j, we allow µk(j) = 0 for some k.

For IF-PCA(2), the theoretical threshold choice as in (2.14) is t =
√

2q̃ log(p)
for some 0 < q̃ < (π − 2)/(4π) ≈ .09. We often set q̃ ∈ {.03, .04, .05, .06},
depending on the signal strength parameter r.

The simulation study contains 5 experiments, which we now describe.
Experiment 1. In this experiment, we study the effect of signal strength

over clustering performance, and compare two cases: the classes have unequal
or equal number of samples. We set (K, p, θ, ϑ, rep) = (2, 4×104, .6, .7, 100),
and γ = (.5, 0, .5) (so that the useful features have equal probability to have

10For each parameter setting, we generate the X matrix for rep times, and at each time,
we apply all the six algorithms. The clustering errors are averaged over all the repetitions.

11We say X ∼MN(K, δ) if P (X = k) = δk, 1 ≤ k ≤ K; MN stands for multinomial.
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positive and negative signs). Denote by U(a, b) the uniform distribution over
(a− b, a+ b). We set gµ as U(.8, 1.2), gσ as U(1, 1.2), and gµ̄ as N(0, 1). We
investigate two choices of δ: (δ1, δ2) = (1/3, 2/3) and (δ1, δ2) = (1/2, 1/2);
we call them “asymmetric” and “symmetric” case, respectively. In the latter
case, the two classes roughly have equal number of samples. The threshold
in IF-PCA(2) is taken to be t =

√
2 · .06 · log(p).
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Fig 4. Comparison of clustering error rates (Experiment 1a). x-axis: signal strength pa-
rameter r. y-axis: error rates. Left: δ = (1/3, 2/3). Right: δ = (1/2, 1/2).

In Experiment 1a, we let the signal strength parameter r ∈ {.20, .35, .50, .65}
for the asymmetric case, and r ∈ {.06, .14, .22, .30} for the symmetric case.
The results are summarized in Figure 4. We find that two versions of IF-
PCA outperform the other methods in most settings, increasingly so when
the signal strength increases. Moreover, two versions of IF-PCA have similar
performance, with those of IF-PCA(1) being slightly better. This suggests
that our threshold choice by HCT is not only data-driven but also yields
satisfactory clustering results. On the other hand, it also suggests that IF-
PCA is relatively insensitive to different choices of the threshold, as long as
they are in a certain range.

In Experiment 1b, we make a more careful comparison between the asym-
metric and symmetric cases. Note that for the same parameter r, the actual
signal strength in the symmetric case is stronger because of normalization.
As a result, for δ = (1/3, 2/3), we still let r ∈ {0.20, 0.35, 0.50, 0.65}, but for
δ = (1/2, 1/2), we take r′ = c0 × {0.20, 0.35, 0.50, 0.65}, where c0 is a con-
stant chosen such that for any r > 0, r and c0r yield the same value of κ(j)
(see (2.9)) in the asymmetric and symmetric cases, respectively; we note
that κ(j) can be viewed as the effective signal-to-noise ratio of Kolmogorov-
Smirnov statistic. The results are summarized in Table 9. Both versions of
IF-PCA have better clustering results when δ = (1/3, 2/3), suggesting that
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the clustering task is more difficult in the symmetric case. This is consis-
tent with the theoretical results; see for example Arias-Castro and Verzelen
(2014); Jin, Ke and Wang (2015b).

Table 9
Comparison of average clustering error rates (Experiment 1). Number in the brackets are

standard deviations of the error rates.

(δ1, δ2) = (1/2, 1/2) (δ1, δ2) = (1/3, 2/3)

r IF-PCA(1) IF-PCA(2) IF-PCA(1) IF-PCA(2)

.20 .467(.04) .481(.01) .391(.11) .443(.08)

.35 .429(.08) .480(.02) .253(.15) .341(.16)

.50 .368(.13) .466(.05) .144(.14) .225(.18)

.65 .347(.13) .459(.07) .099(.12) .098(.11)

Experiment 2. In this experiment, we allow feature sparsity to vary (Ex-
periment 2a), and investigate the effect of unequal feature strength (Exper-
iment 2b). We set (K, p, θ, r, rep) = (2, 4 × 104, .6, .3, 100) (so n = 577),
γ = (.5, 0, .5) and (δ1, δ2) = (1/3, 2/3). The threshed for IF-PCA(2) is
t =

√
2 · .05 · log(p).

In Experiment 2a, we let ϑ range in {.68, .72, .76, .80}. Since the number
of useful features is roughly p1−ϑ, a larger ϑ corresponds to a higher sparsity
level. For any µ and a, b > 0, let T̃N(u, b2, a) be the conditional distribution
of (X|u−a ≤ X ≤ u+a) for X ∼ N(u, b2), where TN stands for “Truncated

Normal”. We take gµ̄ as N(0, 1), gµ as T̃N(1, .12, .2), and gσ as T̃N(1, .12, .1).
The results are summarized in the left panel of Figure 5, where for all sparsity
levels, two versions of IF-PCA have similar performance, and each of them
significantly outperforms the other methods.

In Experiment 2b, we use the same setting except that gµ is T̃N(1, .1, .7)
and gσ is the point mass at 1. Note that in Experiment 2a, the support of gµ
is (.8, 1.2), and in the current setting, the support is (.3, 1.7) which is wider.
As a result, the strengths of useful features in the current setting have more
variability. At the same time, we force the noise variance of all features to
be 1, for a fair comparison. The results are summarized in the right panel
of Figure 5. They are similar to those in Experiment 2a, suggesting that IF-
PCA continues to work well even when the feature strengths are unequal.

Experiment 3. In this experiment, we study how different threshold choices
affect the performance of IF-PCA. With the same as those in Experiment
2b, we investigate four threshold choices for IF-PCA(2): t =

√
2q̃ log(p) for

q̃ ∈ {.03, .04, .05, .06}, where we recall that the theoretical choice of threshold
(2.14) suggests 0 < q̃ < .09. The results are summarized in Table 10, which
suggest that IF-PCA(1) and IF-PCA(2) have comparable performances, and
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Fig 5. Comparison of average clustering error rates (Experiment 2). x-axis: sparsity pa-

rameter ϑ. y-axis: error rates. Left: gµ is T̃N(1, .12, .2) and gσ is T̃N(1, .12, .1). Right: gµ

is T̃N(1, .1, .7) and gσ is point mass at 1.

that IF-PCA(2) is relatively insensitive to different threshold choices, as
long as they fall in a certain range. However, the best threshold choice
does depend on ϑ. From a practical view point, since ϑ is unknown, it is
preferable to set the threshold in a data-driven fashion; this is what we use
in IF-PCA(1).

Table 10
Comparison of average clustering error rates (Experiment 3). Numbers in the brackets

are the standard deviations of the error rates.

Threshold (q̃) ϑ = .68 ϑ = .72 ϑ = .76 ϑ = .80

IF-PCA(1) HCT (stochastic) .053(.08) .157(.16) .337(.14) .433(.10)

IF-PCA(2)

.03 .038(.05) .152(.12) .345(.13) .449(.06)

.04 .045(.08) .122(.12) .312(.15) .427(.09)

.05 .068(.12) .154(.15) .303(.16) .413(.12)

.06 .118(.15) .237(.17) .339(.16) .423(.10)

Experiment 4. In this experiment, we investigate the effects of correlations
among the noise over the clustering results. We generate the data matrix X
the same as before, except for that the noise matrix Z is replaced by ZA, for
a matrix A ∈ Rp,p. Fixing a number d ∈ (−1, 1), we consider three choices of
A, (a)-(c). In (a), A(i, j) = 1{i = j}+d ·1{j = i+1}, 1 ≤ i, j ≤ p. In (b)-(c),
fixing an integer N > 1, for each j = 1, 2, . . . , p, we randomly generate a size
N subset of {1, 2, . . . , p}\{j}, denoted by IN (j). We then let A(i, j) = 1{i =
j}+d ·1{i ∈ IN (j)}. For (b), we take N = 5 and for (c), we take N = 20. We
set d = .1 in (a)-(c). We set (K, p, θ, ϑ, r, rep) = (4, 2× 104, .5, .6, .7, 100) (so
n = 141), and (δ1, δ2, δ3, δ4) = (1/4, 1/4, 1/4, 1/4), γ = (.3, .05, .65). For an
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exponential random variable X ∼ Exp(λ), denote the density of
[
b+X|a1 ≤

b+X ≤ a2

]
by T̃ SE(λ, b, a1, a2), where TSE stands for ‘Truncated Shifted

Exponential’. We take gµ̄ as N(0, 1), gµ as T̃ SE(.1, .9,−∞,∞) (so it has

a mean 1), and gσ as T̃ SE(.1, .9, .9, 1.2). The threshold for IF-PCA(2) is
t =

√
2 · .03 · log(p). The results are summarized in the left panel of Figure 6,

which suggest that IF-PCA continues to work in the presence of correlations
among the noise: IF-PCA significantly outperforms the other 4 methods,
especially for the randomly selected correlations.

Experiment 5. In this experiment, we study how different noise distri-
butions affect the clustering results. We generate the data matrix X the
same as before, except for the distribution of the noise matrix Z is different.
We consider three different settings for the noise matrix Z: (a) for a vector

a = (a1, a2, . . . , aK), generate row i of Z by Zi
iid∼ N(0, akIp) if Sample i

comes from Class k, 1 ≤ k ≤ K, 1 ≤ i ≤ n, (b) Z =
√

2/3Z̃, where all
entries of Z̃ are iid samples from t6(0), where t6(0) denotes the central t-
distribution with df = 6, (c) Z = [Z̃−6]/

√
12, where the entries of Z̃ are iid

samples from the chi-squared distribution with df = 6 (in (b)-(c), the con-
stants of

√
2/3 and

√
12 are chosen so that each entry of Z has zero mean

and unit variance). We set (K, p, θ, ϑ, r, rep) = (4, 2 × 104, .5, .55, 1, 100),
(δ1, δ2, δ3, δ4) = (1/4, 1/4, 1/3, 1/6), and γ = (.4, .1, .5). We take gµ̄ to be
N(0, 1). In case (a), we take (a1, a2, a3, a4) = (0.8, 1, 1.2, 1.4). The threshold
for IF-PCA(2) is set as t =

√
2 · .03 · log(p). The results are summarized in

the right panel of Figure 6, which suggest that IF-PCA continues to outper-
form the other 4 clustering methods.
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Fig 6. Comparison of average clustering error rates for Experiment 4 (left panel) and
Experiment 5 (right panel). y-axis: error rates
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4. Connections and extensions. We propose IF-PCA as a new spec-
tral clustering method, and we have successfully applied the method to clus-
tering using gene microarray data. IF-PCA is a two-stage method which con-
sists of a marginal screening step and a post-selection clustering step. The
methodology contains three important ingredients: using the KS statistic for
marginal screening, post-selection PCA, and threshold choice by HC.

The KS statistic can be viewed as an omnibus test or a goodness-of-fit
measure. The methods and theory we developed on the KS statistic can be
useful in many other settings, where it is of interest to find a powerful yet
robust test. For example, they can be used for nonGaussian detection of the
Cosmic Microwave Background (CMB) or can be used for detecting rare and
weak signals or small cliques in large graphs (e.g., Donoho and Jin (2015)).

The KS statistic can also be viewed as a marginal screening procedure.
Screening is a well-known approach in high dimensional analysis. For exam-
ple, in variable selection, we use marginal screening for dimension reduction
(Fan and Lv, 2008), and in cancer classification, we use screening to adapt
Fisher’s LDA and QDA to modern settings (Donoho and Jin, 2008; Efron,
2009; Fan et al., 2015). However, the setting here is very different.

Of course, another important reason that we choose to use the KS-based
marginal screening in IF-PCA is for simplicity and practical feasibility: with
such a screening method, we are able to (a) use Efron’s proposal of empirical
null to correct the null distribution, and (b) set the threshold by Higher
Criticism; (a)-(b) are especially important as we wish to have a tuning-free
and yet effective procedure for subject clustering with gene microarray data.
In more complicated situations, it is possible that marginal screening is sub-
optimal, and it is desirable to use a more sophisticated screening method.
We mention two possibilities below.

In the first possibility, we might use the recent approaches by Birnbaum
et al. (2013); Paul and Johnstone (2012), where the primary interest is sig-
nal recovery or feature estimation. The point here is that, while the two
problems—subject clustering and feature estimation—are very different, we
still hope that a better feature estimation method may improve the results of
subject clustering. In these papers, the authors proposed Augmented sparse
PCA (ASPCA) as a new approach to feature estimation and showed that
under certain sparse settings, ASPCA may have advantages over marginal
screening methods, and that ASPCA is asymptotically minimax. This sug-
gests an alternative to IF-PCA, where in the IF step, we replace the marginal
KS screening by some augmented feature screening approaches. However, the
open question is, how to develop such an approach that is tuning-free and
practically feasible. We leave this to the future work.
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Another possibility is to combine the KS statistic with the recent innova-
tion of Graphlet Screening (Jin, Zhang and Zhang (2014); Ke, Jin and Fan
(2014)) in variable selection. This is particularly appropriate if the columns
of the noise matrix Z are correlated, where it is desirable to exploit the
graphic structures of the correlations to improve the screening efficiency.
Graphic Screening is a graph-guided multivariate screening procedure and
has advantages over the better known method of marginal screening and the
lasso. At the heart of Graphlet Screening is a graph, which in our setting is
defined as follow: each feature j, 1 ≤ j ≤ p, is a node, and there is an edge
between nodes i and j if and only if row i and row j of the normalized data
matrix W are strongly correlated (note that for a useful feature, the means
of the corresponding row of W are nonzero; in our range of interest, these
nonzero means are at the order of n−1/6, and so have negligible effects over
the correlations). In this sense, adapting Graphlet Screening in the screening
step helps to solve highly correlated data. We leave this to the future work.

The post-selection PCA is a flexible idea that can be adapted to address
many other problems. Take model (1.1) for example. The method can be
adapted to address the problem of testing whether LM = 0 or LM 6= 0
(that is, whether the data matrix consists of a low-rank structure or not),
the problem of estimating M , or the problem of estimating LM . The latter
is connected to recent interest on sparse PCA and low-rank matrix recovery.
Intellectually, the PCA approach is connected to SCORE for community
detection on social networks (Jin, 2015), but is very different.

Threshold choice by HC is a recent innovation, and was first proposed in
(Donoho and Jin, 2008) (see also (Fan, Jin and Yao, 2013)) in the context of
classification. However, our focus here is on clustering, and the method and
theory we need are very different from those in (Donoho and Jin, 2008; Fan,
Jin and Yao, 2013). In particular, this paper requires sophisticated post-
selection Random Matrix Theory (RMT), which we do not need in (Donoho
and Jin, 2008; Fan, Jin and Yao, 2013). Our study on RMT is connected
to (Johnstone, 2001; Paul, 2007; Baik and Silverstein, 2006; Guionnet and
Zeitouni, 2000; Lee, Zou and Wright, 2010) but is very different.

In a high level, IF-PCA is connected to the approaches by (Azizyan, Singh
and Wasserman, 2013; Chan and Hall, 2010) in that all three approaches
are two-stage methods that consist of a screening step and a post-selection
clustering step. However, the screening step and the post-selection step in all
three approaches are significantly different from each other. Also, IF-PCA
is connected to the spectral graph partitioning algorithm by (Ng, Jordan
and Weiss, 2002), but it is very different, especially in feature selection and
threshold choice by HC.
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In this paper, we have assumed that the first (K − 1) contrast mean
vectors µ1, µ2, . . . , µK−1 are linearly independent (consequently, the rank of
the matrix M (see (2.6)) is (K − 1)), and that K is known (recall that K
is the number of classes). In the gene microarray examples we discuss in
this paper, a class is a patient group (normal, cancer, cancer sub-type) so
K is usually known to us as a priori. Moreover, it is believed that different
cancer sub-types can be distinguished from each other by one or more genes
(though we do not know which) so µ1, µ2, . . . , µK−1 are linearly independent.
Therefore, both assumptions are reasonable.

On the other hand, in a broader context, either of these two assumptions
could be violated. Fortunately, at least to some extent, the main ideas in this
paper can be extended. We consider two cases. In the first one, we assume
K is known but r = rank(M) < (K − 1). In this case, the main results in
this paper continue to hold, provided that some mild regularity conditions
hold. In detail, let U ∈ Rn,r be the matrix consisting the first r left singular
vectors of LMΛ as before; it can be shown that, as before, U has K distinct
rows. The additional regularity condition we need here is that, the `2-norm
between any pair of the K distinct rows has a reasonable lower bound. In
the second case, we assume K is unknown and has to be estimated. In the
literature, this is a well-known hard problem. To tackle this problem, one
might utilize the recent developments on rank detection (Kritchman and
Nadler, 2008) (see also (Cai, Ma and Wu, 2013; Birnbaum et al., 2013)),
where in a similar setting, the authors constructed a confident lower bound
for the number of classes K. A problem of interest is then to investigate how
to combine the methods in these papers with IF-PCA to deal with the more
challenging case of unknown K; we leave this for future study.
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SUPPLEMENTARY MATERIAL

Supplementary Material for “Influential Features PCA for high
dimensional clustering”
(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). Ow-
ing to space constraints, the technical proofs are relegated a supplementary
document Jin and Wang (2015). It contains three sections, Sections ??–??.
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