December 19, 2005 21:11

WSPC/Trim Size: 1lin x 8.5in for Proceedings

HC-Final-122005

HIGHER CRITICISM STATISTIC: THEORY AND APPLICATIONS IN NON-GAUSSIAN
DETECTION

J. JIN

Statistics Department, Purdue University, 150 N. University Street, West Lafayette, IN 47907, USA
E-mail: jinj@stat.purdue. edu

Higher Criticism is a statistic recently proposed by Donoho and Jin®. It has been shown to be effective in resolving a
very subtle testing problem: whether n normal means are all zero versus a small fraction is nonzero. Higher Criticism
is also useful for non-Gaussian detection in Cosmic Microwave Background (CMB) data. In this report, we review
the theory developed in Donoho and Jin® and discuss the use of Higher Criticism for two settings: detecting the
non-Gaussian component in a superposed image of CMB and cosmic strings (CS), and detecting non-Gaussianity in

the WMAP first year data.

1. Introduction

The Cosmic Microwave Background (CMB) is the
relic radiation emitted when the universe was about
380,000 years old.
body at a temperature of ~ 2.726 Kelvin. The
Standard Inflation model predicts that temperature
anisotropies of the CMB (i.e.
tuations of the temperature) are the imprint of the
initial density perturbations which gave rise to the
large scale galaxies we see today. The study of the
CMB is expected to improve our understanding of
the very early universe, and it is of great interest to
cosmologists.

The standard Inflationary model predicts that
temperature anisotropies in the CMB have a Gaus-
sian distribution. However, many other models (e.g.
multi-field inflation?, super string and topological
defects® ™ 10) as well as secondary effects (inverse
Compton scattering etc.)
a Gaussian distribution. The goal of non-Gaussian
detection is to disentangle different non-Gaussian
sources from one another.

It is an almost perfect black

small angular fluc-

predict deviations from

The wavelet transformation is a powerful ap-
proach for non-Gaussian detection,
wavelet-based methods have been investigated (see
page 3 in Jin® for references to these works). Partic-
ularly, it was shown in Aghanim et al and P. Viela

and many

et al'> '2 that the excess kurtosis of the wavelet co-
efficients outperformed all other methods.

However, the effectiveness of a detection tool de-
pends highly on the underlying non-Gaussianities: a
detection tool can be sensitive to some types of non-
Gaussianities, but totally immune to other types. It
is thus of interest to introduce more statistical tools

to this field, and to compare their strengths as well
as weaknesses. Higher Criticism is one of these new
tools.

2. Higher Criticism

Higher Criticism (HC) was first proposed in Donoho
and Jin® for a multiple comparison setting, where it
was shown to be effective in resolving a very subtle
testing problem: whether n normal means are all
zero versus a small fraction of them being nonzero.
Higher Criticism can also be viewed as a goodness-of-
fit measure, and a tool for non-Gaussian detection.

Consider a setting in which we have n obser-
vations {X;}7 ;. The problem of non-Gaussian de-
tection is to test the following hypothesis: Hy
X; N (0,1), where for simplicity we assumed that
the data are standardized. To implement Higher
Criticism® & 3, we first obtain individual p-values:
p; = P{N(0,1) > X,}, we then sort them in ascend-
ing order p(1) < p2)y < ... < P(n), and calculate the
normalized z-scores:

HCyp i = vn-[li/n—pi)ll/[\/poy (L — pey)l-

The Higher Criticism statistic is then defined as
HC}, = max(1<j<ny HC,, i

The rationale behind the normalization is that,
when the hypothesis Hy is indeed true, then for
almost all 7 (except when i is close to 1 or n),
HC, ; ~ N(0,1), and moreover HC} ~ /2loglogn.
Thus a large HC}: value implies non-Gaussianity.
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2.1. Sensitive to Unusually Large
Amount of Moderate Significances

In a data set, the extreme value refers to the data
point which is largest in absolute value. It is a well-
known result in statistics that out of n samples from
the standard Gaussian the extreme value ~ /2 log n.
In contrast, moderate significances refer to the tiny
portion of the data points that are slightly smaller
(in absolute values) than the extreme value, e.g. data
points ~ y/logn. The proportion of moderate sig-
nificances is very small, e.g. P{N(0,1) > /logn},
the proportion of samples > +/logn approximately
equals to n~1/2.

In Donoho and Jin®, the authors have considered
a sparse normal mean problem: we have n observa-
tions from X; ~ N(u;,1), with all pu; = 0 except a
possible tiny fraction €, of them satisfying u; = pn,
where €, and u,, depend on n but not on i. The goal
is to test whether the sparse mean effect is present
or not, or equivalently to test whether ¢, = 0 or
€, > 0. They considered a range of (e, i) which
concerns the situation of “very sparse signal with
moderate significant amplitude”: on one hand, ¢,
is too small so that the sparse mean effect can’t be
detected by statistics based on moments (cumulants,
kurtosis, etc.); on the other hand, as the signals are
only of moderately significant, the sparse mean effect
can’t be detected by merely looking at the extreme
values.

It was proved in Donoho and Jin® that the
Higher Criticism statistic is optimally adaptive in de-
tecting the sparse normal mean effect. Roughly put,
for fixed €,, whenever u, is large enough so that it
is possible to reliably tell that €, > 0, the Higher
Criticism statistic is able to do so.

We now take a heuristic approach for under-
standing the mechanism of Higher Criticism. The
sparse mean effect can be thought of as the situ-
ation in which one has n samples from the stan-
dard Gaussian, and now you want to sneak in a
bunch of u, by the following two steps: (a). ran-
domly select a tiny portion of the samples, leave
others untouched, and (b). add p, to each se-
lected samples. The problem is then to tell whether
such a process has occured or not. Higher Crit-
icism works by picking a sequence of significance
levels and asking whether there are too many sam-
ples found above each significance level. If the an-
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swers are all “no”, the Higher Criticism claims Gaus-
sian and nothing is found, but claims non-Gaussian
otherwise. Higher Criticism uses the normalized
z-score for deciding whether there are too many
samples found above each significance level or not:
HC, o = /n[{Fraction at Level a}—a]/\/a(l — «);
when all samples are truly from the standard Gaus-
sian, HCy o =~ N(0,1) and should be relatively
small, so a large HC), , implies non-Gaussianity.
Thus Higher Criticis works across the full range of
significance levels, looking for evidence against pos-
sible types of “sneak-in” we mentioned above.

We now come back to the sparse normal mean
problem. The most strong evidence for the presence
of the sparse mean effect is that when you look at
the portion of data points of moderate significance,
there are too many moderate significances than there
would be if the null hypothesis is true (i.e. all sam-
ples are truly from the standard Gaussian). Higher
Criticism immediately reports a very large normal-
ized z-score and rejects the null. This property of
Higher Criticism is sensitive to an unusually large
amount of moderate significances.

2.2. Useful for Locating nonGaussianity

The previous section pointed out that Higher Crit-
icism is useful for locating the non-Gaussianity. To
illustrate this point, suppose Higher Criticism picks
all levels from 0 to 1 with 1% increment. Suppose
the answers at levels o = 10% and o = 9% are “yes”,
while those at other levels are “no”. Then on the one
hand we are told that too many samples are observed
at Level 10%. On the other hand we are told that
not too many samples are observed at Level 8%. We
then conclude that there are too many samples that
fall between Level 8% and Level 10%, and this slice
of data is suspected of non-Gaussianity. Notice here
that the extreme values don’t have to be more “non-
Gaussian”.

3. Detecting Cosmic Strings

We have considered using the Higher Criticism statis-
tic for detecting cosmic strings (CS). Refer to Jin®
for detailed discussion of the following results.

We consider a setting in which we have a super-
posed image of a simulated map of CMB and CS:
Y = V1= ACMB++VXCS, and we are interested in
testing whether A = 0 or not. The simulated map of
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CS was kindly provided by F. Bouchet. Though the
real map of the CMB exists (from WMAP), we used
simulated CMB maps instead in order to ensure that
there is no non-Gaussianity in the maps.

Since the pixel values of the simulated CMB
are correlated, working in the frequency domain is
more convenient than in the space domain. Let
{X;}?_, be the wavelet coefficients of Y, then X; =
VI = Az + VAw;, where z i N(0,1) are the trans-
form coefficients of CMB and w; W are the co-
efficients of the CS map. The distribution of W
is unknown, but is symmetrical and has a heavy-
tail. Without loss of generality, both {z;} , and
{w; }?_, have been standardized with standard devi-
ations equal to 1. The testing problem is then equiv-
alent to testing a null hypothesis Hy under which
X; N (0,1) versus an alternative hypothesis Hl(n)
under which X; = v/1 — Az; + \Awi. We are inter-
ested in which pair (A, W) do the two hypotheses
asymptotically merge together so that no test can
separate them, versus which pair of (A, W) the two
hypotheses asymptotically separate from each other.
By saying asymptotically, we mean n tends to co.

Clearly, if we fix A > 0, then when n gets larger
and larger, the difference between the two hypothe-
ses becomes increasingly large, and eventually it is
trivial to tell one from another. Thus the interesting
range for A is that it tends to 0 as n tends to oo,
soweset A =X, =n"", 0 <r <1 At the same
time, motivated by the heavy-tailed behavior of W,
we assume that the tail probability of W decays al-
gebraically:

lim z*P{|W| >z} = C,,

where C\, is a constant.

Intuitively, as A, is algebraically small, we ex-
pect that the majority of relatively smaller samples
from W will not have much influence on testing. In-
stead, a tiny fraction of very large samples from W
would play the decisive role. This turns out to be
true, and there is a threshold effect for the testing
problem. We call the curve r = p*(«) in the a-
r plane the detection boundary: if (r,«) falls below
the detection boundary, then the null and the alter-
native hypothesis separate asymptotically; if (r, a)
falls above the detection boundary, the null and the
alternative merge asymptotically. It turns out that
p*(a) = 2/a when o < 8 and 1/4 otherwise.
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We now compare the asymptotical performance
of the excess kurtosis and Higher Criticism. If a > 8
or the 8-th moment of W exists, then the excess kur-
tosis is better than Higher Criticism. When (r, «)
falls into the region that {(r,a) : o > 82 <
r < 1/4}, then asymptotically the excess kurto-
sis has full power for detection, while the power of
Higher Criticism tends to 0. If on the other hand
a < 8, then Higher Criticism is better than the
excess kurtosis. When (r,«) falls into the region
{(ra) : a < 8,1/4 < r < %}, then asymptoti-
cally Higher Criticism will have full power, while the
power of the excess kurtosis tends to 0.

The phenomenon can be explained as follows.
Take a = 5 for example. When you look at the data,
before you notice any difference in the excess kurto-
sis, the largest sample from W is quite apparent, so
detectors concentrated on the tail are more sensitive.
However, when « ranges between 5 and oo, the tail
is gradually thinned out, and at some point, it will
not tell you anything by merely looking at the data
tail. You need to shift your attention to relatively
smaller samples, or the bulk of the data, for which
the excess kurtosis is more sensitive. It is interesting
to study the a parameter corresponding to the tail
behavior of W. Our study® supports the assumption
that W has a power law tail: implementing the Hill
estimator® gives o ~ 6.1, where the standard error
of this estimate approximately equals to 0.9.

Finally, the above result is highly asymptoti-
cal. It would be interesting to investigate the per-
formances for moderately large n. Reports in this
direction are included in Jin®.

4. WMAP First Year Data

We have implemented Higher Criticism to analyze
the WMAP first year data. The detailed study is in
Cayon et al®>. We work with the WMAP data from
the LAMBDA website (lambda.gsfe.nasa.gov). We
construct a weighted combination of released fore-
ground cleaned Intensity Maps at bands Q, V, and
W (refer to Cayon et al® for details). We then gener-
ated 5,000 Gaussian simulations of CMB maps (in-
cluding observational constraints imposed by noise
and beam profiles), and take the wavelet transforms
for each simulated map as well as the WMAP map.
Finally, we carry out the statistical analysis on the
wavelet coefficients.
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The wavelet basis we used is the Spherical Mex-
ican Hat. The wavelet coefficients we obtained do
not fit very well with itd Gaussian samples. One
reason is that the wavelet basis is not orthogonal.
Despite this, Higher Criticism can still be used as
a criterion for non-Gaussianity: it can be thought
that the larger the Higher Criticism value, the larger
the deviation from Gaussianity. We thus take the
approach in which we compare the Higher Criticism
values of the 5,000 simulated maps with that of the
WMAP data, and claim non-Gaussianity if 99% of
the simulated CMB maps have a smaller Higher Crit-
icism value than that corresponding to the WMAP.
It would be interesting to try the analysis with some
orthogonal basis; we leave this for future study.

In addition to Higher Criticism, we have also im-
plemented the excess kurtosis to the above setting.
The Higher Criticism reports non-Gaussian detec-
tion at 99.46%. In comparison, the excess kurtosis is
slightly better by reporting non-Gaussian detection
at 99.7%.

However, Higher Criticism has more to offer. We
pointed out earlier in the report that Higher Criti-
cism can be used to automatically identify a tiny
fraction of data as suspected of non-Gaussianity. We
isolated 490 wavelet coefficients, at the scale of 5
degrees of the WMAP data. In detail, we set a
threshold ¢y as the 1%-upper percentile of the 5,000
Higher Criticism values (HC};) based on simulated
CMB maps. Then out of all wavelet coefficients of
the WMAP, we select those with an associated nor-
malized z-score (HC,, ;) larger than to.

Last, we map these 490 wavelet coefficients back
to pixels in the WMAP. There are two ways to do the
mapping. In the first way, we map each coefficient
back to all pixels involving the coefficients, i.e. all
pixels convoluted with the wavelet basis when calcu-
lating this coeflicient. Notice that each of the coeffi-
cients naturally maps back to a cluster of pixels. It
is interesting to note that the 490 pixels, and those
correlated with them by the wavelet convolution, are
at the cold spot found by Vielva et al.'? and Cruz
et al.*. In the second way, we map each coefficient
back to only one pixel: the one at the center of the
pixel-cluster mentioned above. This way of mapping
has the advantage of visualization. By the second
way, the selected 490 coefficients map back to a ring
on the outer part of the cold spot. Interestingly, the
“coldest” wavelet coeflicient (i.e. largest in absolute
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value but is negative) maps back to a pixel in the cen-
ter part of the cold spot, which is not in the ring. We
clarify here that, both in this report and in Cayon et
al?, our result doesn’t attempt to conclude that there
is a ring structure in the WMAP map. Instead, the
ring visualizes the position of pixels corresponding
to the 490 moderately significant wavelet coefficients
we extracted.

5. Conclusions

We introduced the Higher Criticism statistic for non-
Gaussian detection. We have studied the application
of Higher Criticism to the detection of cosmic strings
and to the WMARP first year data. Higher Criticism
is useful in applications by adding discussions to the
field of non-Gaussian detection.
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