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Abstract

Consider an imaging situation with extremely high noise levels, hidden in the noise
there may or may not be a signal; the signal – when present – is so faint that it cannot be
reliably detected from a single frame of imagery. Suppose now multiple frames of imagery
are available. Within each frame, there is only one pixel possibly containing a signal while
all other pixels contain purely Gaussian noise; in addition, the position of the signal moves
around randomly from frame to frame. Our goal is to study how to reliably detect the
existence of the signal by combining all different frames together, or by “multiple looks”.

In other words, we are considering the following testing problem: test whether all normal
means are zeros versus the alternative that one normal mean per frame is non-zero. We
identified an interesting range of cases in which either the number of frames or the contrast
size of the signal is not large enough, so that the alternative hypothesis exhibits little
noticeable effect on the bulk of the tests or for the few most highly significant tests.

With careful calibration, we carried out detailed study of the log-likelihood ratio for
a precisely-specified alternative. We found that there is a threshold effect for the above
detection problem: for a given amplitude of the signal, there is a critical value for the
number of frames – the detection boundary – above which it is possible to detect the
presence of the signals, and below which it is impossible to reliably detect it. The detection
boundary is explicitly specified and graphed.

In addition, we show that above the detection boundary, the likelihood ratio test would
succeed by simply accepting the alternative when the log-likelihood ratio exceeds 0. We also
show that the newly proposed Higher Criticism statistic in [11] is successful throughout the
same region of number (of frames) vs. amplitude where the likelihood ratio test would suc-
ceed. Since Higher Criticism does not require a specification of the alternative, this implies
that Higher Criticism is in a sense optimally adaptive for the above detection problem.

The phenomenon found for the Gaussian setting above also exists for several non-
Gaussian settings.
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1 Introduction

Consider a situation in which many extremely noisy images are available. In each image frame,
there is only one pixel containing a signal with all other pixels containing purely Gaussian noise.
For any single frame, the signal is so faint that it is impossible to detect, and in addition, the
position of the signal moves around randomly from frame to frame. The goal is to study how
to detect a signal hidden in the extremely noisy background by combining all different frames
together; i.e. by “multiple looks”.

This is a mathematical caricature of situations faced in two applied problems.

1. Speckle Astronomy. In earth-based telescope imaging of astronomical objects, atmospheric
turbulence poses a fundamental obstacle. The image of the object is constantly moving
around in the field of view; with a regular exposure time, an image of what should be a
sharp point becomes highly blurred. A possible approach is to take many pictures with very
short exposure time for each picture; the exposure time is so short that during exposure the
position of the object hardly changes. However, this causes a new problem: the exposure
time being so short that few photons accumulate, therefore we are unable to clearly see the
object in any single frame. Technology nowadays enables us to easily collect hundreds or
thousands of frames of pictures; from one frame to another, the position of the galaxy/star
(if it exists) randomly moves around within the frame. The goal is to find out roughly at
what amplitude it becomes possible to tell, from m realizations, that there is something
present above usual background, see [2]. In this example, we are trying to detect, but not
to estimate.

2. Single Particle Electron Microscopy (SPEM). In traditional crystallography, the image
taken is actually the superposition of the scattering intensity across a huge number (1023)
of fundamental cells of the crystal, the superposed image lacks phase, and can only resolve
the modulus of the Fourier Transform (FT) of the image. However we need to see images
with phase correctly resolved. A possible solution to this is the single particle EM, see
[25]. This method enables us to see correctly phased image from a single surface patch
of frozen non-crystallized specimen; however this caused a new problem: the image is
extremely noisy, there is little chance to see the molecule from any single image. On the
other hand, technology nowadays can easily take large numbers (1010) of different frames
of image; however from one frame to the another, the position of the molecule randomly
moves around the whole frame. However, by combining these huge numbers of frames of
images, we hope we can reliably estimate the shape of the molecule. The question here is:
what are the fundamental limits of resolution? If we can’t “see” the molecule in any one
image, and the molecule is moving around, can we still recover the image? In this example,
the question is to estimate; however the first step for estimation is to make sure the things
you want to estimate are actually there, and so problem of detection is an essential first
step.

1.1 The Multiple-Looks Model

Motivated by the examples in the previous section, suppose that we have independent observa-
tions X(k)

j , 1 ≤ j ≤ n, 1 ≤ k ≤ m (we reserve i for
√
−1), here j is the index for different pixels

in each frame, and k is the index for different frames. As we have m frames and n pixels per
frame, we have in total N observations, where

N ≡ m · n. (1.1)

For simplicity, assume that the signal, if it exists, is contained in one pixel for each frame.
We want to tell which of the following two cases is true: whether each frame contains purely
Gaussian noise, or that exactly one pixel per frame contains a signal (of fixed amplitude) but
all other pixels are purely Gaussian noise and that the position of the signal randomly changes
from frame to frame.
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Formally, the observations obey:

X
(k)
j = µδj0(k)(j) + z

(k)
j , 1 ≤ j ≤ n, 1 ≤ k ≤ m, (1.2)

where
z
(k)
j

i.i.d∼ N(0, 1),

µ is the amplitude of the signal, and j0(k) is the position of the signal. Here for any fixed k,
j0(k) is random variable taking values in {1, 2, . . . , n} with equal probability, independent with
each other as well as z(k)

j , and where δj0(k)(·) is the Dirac sequence:

δj0(k)(j) =
{

1, j = j0(k),
0, j 6= j0(k).

(1.3)

The problem is to find out: given µ and n, what’s the minimum value of m = m∗ such that we
are able reliably to distinguish (1.2) from the pure noise model X(k)

j = z
(k)
j .

Translating our problem into precise terms, we are trying to hypothesis test the following:

H0 : X
(k)
j = z

(k)
j , 1 ≤ j ≤ n, 1 ≤ k ≤ m, (1.4)

H
(n,m)
1 : X(k)

j = µδj0(k)(j) + z
(k)
j , 1 ≤ j ≤ n, 1 ≤ k ≤ m, (1.5)

we call this testing model as multiple-looks model. Here, H0 denotes the global intersection null
hypothesis, and H

(n,m)
1 denotes a specific element in its complement. Under H(n,m)

1 , for each
fixed k, there is only one observation X(k)

j0(k)
among {X(k)

j }nj=1 containing a signal with amplitude
µ, and the index j0(k) is sampled from the set {1, 2, . . . , n} with equal probability, independently
with k as well as z(k)

j ; in total, we have N observations which are normally distributed with zero
mean, except m of them have a common nonzero mean µ.

Suppose we let m = nr for some exponent 0 < r < 1 (or equivalently m = Nr/(1+r)). For r
in this range, the number of nonzero means is too small to be noticeable in any sum which is in
expectation of order N , so it cannot noticeably affect the behavior of bulk of the distribution.
Let

µ = µn =
√

2s log n, 0 < s < 1; (1.6)

for s in this range, µn <
√

2 log n, the nonzero means are, in expectation, smaller than the largest
X

(k)
j from the true null component hypotheses, so the nonzero means cannot have a visible effect

on the upper extremes. For the calibrations we choose in this way, there is only a tiny fraction
of observations with elevated mean, and the elevated mean is only of moderate significances.

1.2 Log-likelihood Ratio and Limit Law

Obviously, with µ, n, and m fixed and known, the optimal procedure is the Neyman-Pearson
likelihood ratio test (LRT), [28]. The log-likelihood ratio statistic for problem (1.4) - (1.5) is:

LRn,m =
m∑
k=1

LR(k)
n ,

where for any 1 ≤ k ≤ m,

LR(k)
n = LR(k)

n (µ, n;X(k)
1 , . . . , X(k)

n ) ≡ log(
1
n

n∑
j=1

eµ·X
(k)
j −µ2/2).

Fixed 0 < s < 1 and n large, when r ≈ 0 is relatively small, as the overall evidence for the
existence of the signal is very weak, the null hypothesis and the alternative hypothesis merge
together, and it is not possible to separate them; but when r gets larger, say r ≈ 1, the evidence
for the existence of the signal will get strong enough so that the null and the alternative separate
from each other completely. Between the stage of “not separable” and “completely separable”,
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there is a critical stage of “partly separable”; a careful study of this critical stage is the key for
studying the problem of hypothesis testing (1.4) - (1.5).

In terms of log-likelihood ratio (LR), this particular critical stage of “partly separable” can
be interpreted as, for any fixed s and µn =

√
2s log n, there is a critical number m∗ = m∗(n, s)

such that as n→∞, LRn,m∗ converges weakly to non-degenerate distributions ν0 and ν1 under
the null and the alternative respectively; since typically ν0 and ν1 overlap, the null and the
alternative are partly separable.

This turns out to be true. In fact, we have the following theorem:

Theorem 1.1 For parameter 0 < s < 1, let µn = µn,s =
√

2s log n, and

m∗ = m∗(n, s) ≡
{
n1−2s, 0 < s ≤ 1/3,√

2π · µn,s · n−(1−s)2/(4s), 1/3 < s < 1,

then as n→∞:

1. When 0 < s < 1
3 ,

under H0 : LRn,m∗
w=⇒ N(−1/2, 1), under H(n,m∗)

1 : LRn,m∗
w=⇒ N(1/2, 1).

2. When s = 1
3 ,

under H0 : LRn,m∗
w=⇒ N(−1/4, 1/2), under H(n,m∗)

1 : LRn,m∗
w=⇒ N(1/4, 1/2).

3. When 1
3 < s < 1,

under H0 : LRn,m∗
w=⇒ ν0

s , under H(n,m∗)
1 : LRn,m∗

w=⇒ ν1
s ,

where ν0
s and ν1

s are distributions with characteristic functions eψ
0
s and eψ

1
s respectively,

and

ψ0
s(t) =

∫ ∞

−∞
[eit log(1+ez) − 1− itez]e−

1+s
2s zdz, (1.7)

ψ1
s(t) = ψ0

s(t) +
∫ ∞

−∞
[eit log(1+ez) − 1]e−

1−s
2s zdz. (1.8)

In fact, the difference between LRn,m∗ under Hn,m∗

1 and LRn,m∗ under H0 weakly converges
to 1, 1/2, and ν∗s according to s < 1/3, s = 1/3 and s > 1/3, here ν∗s is the distribution with
characteristic function e[ψ

1
s−ψ

0
s ].

It was shown in [26, Chapter 2] that the laws ν0
s and ν1

s in Theorem 1.1 are in fact infinitely
divisible. In Section 6.3, we discuss several other issues about ν0

s and ν1
s , where we view ν0

s as a
special example of ν0

s,γ , and ν1
s as a special example of ν1

s,γ , with γ = 2. In short, both ν0
s and

ν1
s have a bounded continuous density function, and a finite first moment as well a finite second

moment. The mean value of ν0
s is negative, and the mean value of ν1

s is positive; in comparison,
ν0
s has a smaller variance than ν1

s . In Figure 1, we plot the characteristic functions and density
functions for ν0

s and ν1
s respectively with s = 1/2.

In [8], adapting to our notations, Burnashev and Begmatov studied the limiting behavior of
LRn,m with m = 1, see more discussion in Section 7.3, as well as Section 4. In addition, the
LRT and its optimality has been widely studied, see [6], [14], etc., and have also been discussed
for various settings of detection of signals in a Gaussian noise setting, see [3], [4], [13], and also
[29] for example.
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Figure 1: Left panel: Characteristic functions for ν0
.5 (top) and ν1

.5 (bottom). Left column:
real parts, right column: imaginary parts. Right panel: Density functions for ν0

.5 (left) and ν1
.5

(right). The mean values of them are approximately −2.09 and 4.19, and variance of them are
approximately 2.57 and 20 respectively.

1.3 Detection Boundary

Theorem 1.1 implies that there is a threshold effect for the detection problem of (1.4)-(1.5).
Dropping some lower order terms when necessary, (namely

√
2π · µn,s in the case 1/3 < s < 1),

m∗ would be reduced into a clean form: m∗ = nρ
∗(s), where

ρ∗(s) =

{
1− 2s, 0 < s ≤ 1/3,
(1−s)2

4s , 1/3 < s < 1.
(1.9)

Consider the curve r = ρ∗(s) in the s-r plane. The curve separates the square {(s, r) : 0 < s < 1,
0 < r < 1} into two regions: the region above the curve or the detectable region, and the region
below the curve or the undetectable region; we call r = ρ∗(s) the detection boundary. See the left
panel of Figure 4 for illustrations, also see the left panel of Figure 5, where the curve corresponds
to γ = 2 is r = ρ∗(s).

Theorem 1.1 implies that, roughly say, LRn,m∗ weakly converges to different non-degenerate
distributions when (s, r) falls exactly on the detection boundary. We now study what will happen
when (s, r) moves away from the detection boundary.

On one hand, when (s, r) moves towards the interior of the detectable region, in comparison,
we will have a lot more available observations while at the same time the amplitude is the
same; so intuitively, LRn,m will put almost all mass at −∞ under the null, and at ∞ under the
alternative; this implies that the null and alternative separate from each other completely.

On the other hand, when (s, r) moves towards the interior of the undetectable region, con-
versely, we have much fewer observations than we need, so the null and the alternative would
both concentrate their mass around 0; more subtle analysis in Section 4 gives a much stronger
claim: by appropriate normalization, LRn,m weakly converges to the same non-degenerated dis-
tribution, under H0 as well as under H(n,m)

1 , and this non-degenerate distribution has a bounded
continuous density function; thus the null and the alternative do completely merge together and
are not separable.

Precisely, we have the following Theorem. Recall that the Kolmogorov-Smirnov distance
‖ · ‖KS between any two cdf’s G and G′ is defined as:

‖G−G′‖KS = sup
t
|G(t)−G′(t)|;

back to our notation m = nr, here m depends only on n and r, which is not the critical
m∗ = m∗(n, s) as in Theorem 1.1.

Theorem 1.2 Let µn = µn,s =
√

2s log n and m = nr.
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1. When r > ρ∗(s), consider the likelihood ratio test (LRT) that rejects H0 when LRn,m > 0,
the sum of Type I and Type II errors tends to 0:

PH0{Reject H0}+ P
H

(n,m)
1

{Accept H0} → 0, n→∞.

2. When r < ρ∗(s),
lim
n→∞

‖F (n,m)
0 − F

(n,m)
1 ‖KS = 0,

where F (n,m)
0 and F (n,m)

1 are the cdf’s of LRn,m under H0 and H(n,m)
1 respectively. As a

result, for any test procedure, the sum of Type I and Type II errors tends to 1:

PH0{Reject H0}+ P
H

(n,m)
1

{Accept H0} → 1, n→∞.

1.4 Higher Criticism and Optimal Adaptivity

If we think of the s - r plane, 0 < s < 1, 0 < r < 1, we are saying that throughout the
region r > ρ∗(s), the alternative can be detected reliably using the likelihood ratio test (LRT).
Unfortunately, as discussed in [11], the usual (Neyman-Pearson) likelihood ratio requires a precise
specification of s and r, and misspecification of (s, r) may lead to failure of the LRT. Naturally,
in any practical situation we would like to have a procedure which does well throughout this
whole region without knowledge of (s, r). Hartigan [18] and Bickel and Chernoff [7] have shown
that the usual generalized likelihood ratio test maxε,µ{[dP (n)

1 (ε, µ)/dP (n)
0 ](X)} has nonstandard

behavior in this setting; in fact the maximized ratio tends to ∞ under H0. It is not clear that
this test can be relied on to detect subtle departures from H0. Ingster [21] has proposed an
alternative method of adaptive detection which maximizes the likelihood ratio over a finite but
growing list of simple alternative hypotheses. By careful asymptotic analysis, he has in principle
completely solved the problem of adaptive detection in the Gaussian mixture model (2.2)- (2.3)
which we will introduce in Section 2; however, this is a relatively complex and delicate procedure
which is tightly tied to the narrowly-specified Gaussian mixture model (2.2)- (2.3). It would be
nice to have an easily-implemented and intuitive method of detection which is able to work
effectively throughout the whole region 0 < s < 1, r > ρ∗(s), which is not tied to the narrow
model (2.2)- (2.3), and which is in some sense easily adapted to other (nonGaussian) mixture
models. Motivated by these, we have developed a new statistic Higher Criticism in [11], where
we have shown that the Higher Criticism statistic is optimally adaptive for detecting sparse
Gaussian heterogeneous mixtures, as well as many other non-Gaussian settings.

To apply the Higher Criticism in our situation, let us convert the observations into the p-
values. Let p(k)

j = P{N(0, 1) > X
(k)
j } be the p-value for observation X(k)

j , and let the p(`) denote
the p-values sorted in increasing order, (recall N = n ·m):

p(1) < p(2) < . . . < p(N),

so that under the intersection null hypothesis the p(`) behave like order statistics from a uniform
distribution. With this notation, the Higher Criticism is:

HC∗N = max
1≤`≤α0·N

√
N [`/N − p(`)]/

√
p(`)(1− p(`)),

where 0 < α0 < 1 is any constant.
Under the null hypothesis H0, HC∗N is related to the normalized uniform empirical process.

Intuitively, under H0, the p-values p(k)
j can be viewed as independent samples from U(0, 1).

Adapting to the notations of [11], let FN (t) = 1
N

∑N
`=1 1{p(`)≤t}, then the uniform empirical

process is denoted by:
UN (t) =

√
N [FN (t)− t], 0 < t < 1,

and the normalized uniform empirical process by

WN (t) = UN (t)/
√
t(1− t).
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Under H0, for each fixed t, WN (t) is asymptotically N(0, 1), and

HC∗N = max0<t<α0WN (t).

See [11] for more discussion. The following theorem is proved in [11]:

Theorem 1.3 Under the null hypothesis H0, as N →∞,

HC∗N√
2 log logN

→p 1.

It then follows if we threshold HC∗N at
√

4 log logN , the Type I error would equal to 0 asymp-
totically; moreover, thresholding at

√
4 log logN also gives a Type II error which equals to 0

asymptotically:

Theorem 1.4 Consider the Higher Criticism test that rejects H0 when

HC∗N >
√

4 log logN. (1.10)

For every alternative H(n,m)
1 defined in (1.4) - (1.5) above where r exceeds the detection boundary

ρ∗(s) – so that the likelihood ratio test rejects H0 at 0 would have negligible sum of Type I and
Type II errors – the test based on Higher Criticism in (1.10) also has negligible sum of Type I
and Type II errors:

[PH0{Reject H0}+ P
H

(n,m)
1

{Accept H0}] → 0, n→∞.

Roughly speaking, everywhere in the s - r plane where the likelihood ratio test would com-
pletely separate the two hypotheses asymptotically – the Higher Criticism will also completely
separate the two hypotheses asymptotically; since it doesn’t require any specification of param-
eters s and r, the Higher Criticism statistic is in some sense optimally adaptive. Of course, in
the cases where the s-r relation falls below the detection boundary, all methods fail.

It is interesting to notice here the phenomena that the detection boundary r = ρ∗(s) is
partly linear (s < 1/3) and partly curved (s > 1/3); the curve only has up to the first order
continuous derivatives at s = 1/3. As discussed in [11] or [26, Chapter 2-5], this phenomena
implies that the detection problem of (1.4) - (1.5) is essentially different for the cases 0 < s ≤ 1/3
and 1/3 < s < 1. Intuitively, when (s, r) is close to the curved part, statistics based on those
a few largest observations would be able to effectively detect, while when (s, r) is close to the
linear part, statistics based on a few largest observations (such as Max, Bonferroni, FDR) will
fail, and only the newly proposed statistic Higher Criticism, or the Berk-Jones statistic which
is asymptotically equivalent to the Higher Criticism in some sense [5], [11], is able to efficiently
detect. As the study is similar to that in [11], we skip further discussion. However, in Section
2.2, we will explain this phenomenon from the angle of analysis.

1.5 Summary

We have considered a setting in which we have multiple frames of extremely noisy images, in
each frame, hidden in the noise there may or may not be some signals, and the signal – when
present – is too faint to be reliably detected from a single frame, and the position of the signal
moves randomly across the whole frame. For fixed contrast size of the signal and the number
of pixels in each frame, there is a critical number of frames – the detection boundary – above
which combining all frames together gives a full power detection for the existence of the signal,
and below which it is impossible to detect.

Above the detection boundary, the Neyman-Pearson LRT gives a full power detection. How-
ever, to implement LRT requires a specification of the parameters, and misspecification of the
parameters may lead to the failure of the LRT. Motivated by this, we proposed a non-parametric
statistic Higher Criticism in [11], which doesn’t require such a specification of parameters; the
Higher Criticism statistic gives asymptotically equal detection power to that of LRT. The Higher
Criticism statistic only depends on p-values and can be used in many other settings.
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Moreover, the detection boundary is partly linear and partly curved; compare the case when
parameters are near the curved part and the case that the parameters are near the linear part,
the detection problem is essentially different. Asymptotically, for the first case, statistics based
on the largest a few observations are able to efficient to detect; however, for the second case,
such statistics will totally fail, but the Higher Criticism statistic is still able to efficiently detect.

Below the detection boundary, asymptotically, all tests will completely fail for detection, even
when all parameters are known.

The approach developed here seems applicable to a wide range of settings of non-Gaussian
noise. In Section 6, we extend the Gaussian noise setting to the Generalized Gaussian noise
setting.

1.6 Organization

The remaing part of the paper is organized as follows.
Section 2 – 3 are for the proof of Theorem 1.1. In Secton 2, we introduce a Gaussian mixture

model, which we expect to be an “approximation” of the multiple-looks model, or Model 1.4 -
1.5; in comparison, this Gaussian mixture model is easier to study, and thus provides a bridge for
studying the multiple-looks model. We then validate this expectation in Section 3 by showing
that, with carefully chosen parameters, the difference between the log-likelihood ratios of these
two models are indeed negligible; Theorem 1.1 is the direct result of those studies in Section 2 -
3.

Second, we prove Theorem 1.2 in Section 4, and Theorem 1.4 in Section 5.
Next, in Section 6, we extend the study in Section 2 on the Gaussian mixture to non-Gaussian

settings.
Finally, in Section 7, we briefly discuss several issues related to this paper. Section 8 is a

technical Appendix.

2 Gaussian Mixture Model, and its Connection to Multi-
ple Looks Model

Model (1.4) - (1.5) can be approximately translated into a Gaussian mixture model by “random
shuffling”. In fact, recall that the observations {X(k)

j } are collected frame by frame; suppose we

arrange the X(k)
j ’s in a row according to the natural ordering:

X
(1)
1 , X

(1)
2 , . . . , X(1)

n , . . . , X
(m)
1 , X

(m)
2 , . . . , X(m)

n ,

we then randomly shuffle them and rearrange back into frames, according to the ordering after
the shuffling; we denote the resulting observations by {X̃(k)

j : 1 ≤ j ≤ n, 1 ≤ k ≤ m}.
Of course under H0, the above random shuffling won’t have any effect and the joint distri-

bution of X(k)
j is the same as that of {X̃(k)

j }. However, if H(n,m)
1 is true, then X̃

(k)
j will have a

slightly different distribution than that of X(k)
j , which, approximately, can be viewed as sampled

from a Gaussian mixture:

X̄
(k)
j

iid∼ (1− ε)N(0, 1) + εN(µ, 1), 1 ≤ j ≤ n, 1 ≤ k ≤ m, (2.1)

with
ε = εn = n−1, µ = µn = µn,s =

√
2s log n.

The difference between {X(k)
j } and {X̄(k)

j } is that under Hn,m
1 , {X(k)

j } has exactly a fraction

1/n of nonzero means in each frame while the {X̄(k)
j } has such a fraction only in expectation.

Moreover, the problem of hypothesis testing the multiple looks model (1.4) - (1.5) is approx-
imately equivalent to hypothesis testing:

H0 : X̄
(k)
j

i.i.d∼ N(0, 1), 1 ≤ j ≤ n, 1 ≤ k ≤ m, (2.2)

H(n,m)
1 : X̄(k)

j
i.i.d∼ (1− 1/n)N(0, 1) + (1/n)N(µn, 1), 1 ≤ j ≤ n, 1 ≤ k ≤ m. (2.3)
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In this paper, we refer this model as the Gaussian mixture model, in contrast to the multiple-
looks model. Since the random shuffling has no effect on the null hypothesis, we still use H0

to denote the null hypothesis; however, we use Hn,m
1 to denote the new alternative hypothesis.

Moreover, we denote the likelihood ratio statistic of Model (2.2) - (2.3) by LRn,m, in contrast
to LRn,m of Model (1.4) - (1.5). Notice here:

LRn,m = LRn,m(µn, n; X̄(1)
1 , . . . , X̄(1)

n , . . . , X̄
(m)
1 , . . . , X̄(m)

n ) =
m∑
k=1

n∑
j=1

LR(k)
j ,

where
LR(k)

j = LR(µn, n; X̄(k)
j ) ≡ log(1− 1

n
+

1
n
eµnX̄

(k)
j −µ2

n/2).

There are two important reasons for introducing the Gaussian mixture model above. First,
as the multiple-looks model can be converted into the Gaussian mixture model by random
shuffling, we expect that these two models are closely related. In fact, compare the two log-
likelihood ratios: LRn,m and LRn,m: on one hand, as we will see in Section 3, with particularly
chosen parameters (s, r), the difference between LRn,m and LRn,m is in fact negligible; on the
other hand, clearly, LRn,m has a much simpler form than that of LRn,m, and thus it is much
easier to analyze LRn,m than LRn,m. In short, the study of the Gaussian mixture model will
provide an important bridge for studying the multiple-looks model.

The second important reason is that, the Gaussian mixture model itself is of importance
and has many interesting applications. In [11], we mentioned three application areas where
situations as in Model (2.2) - (2.3) might arise: early detection of bio-weapons use, detection of
covert communications, and meta-analysis with heterogeneity. There are many other potential
applications in signal processing e.g. [22, 23, 24].

The main result on the problem of hypothesis testing the Gaussian mixture model, or Model
(2.2) - (2.3) is the following.

Theorem 2.1 For parameter 0 < s < 1, let µn = µn,s =
√

2s log n and

m∗ = m∗(n, s) =
{
n1−2s, 0 < s ≤ 1/3,√

2π · µn,s · n−(1−s)2/(4s), 1/3 < s < 1,

then as n→∞,

1. When 0 < s < 1/3,

LRn,m∗
w=⇒ N(−1/2, 1), under H0, LRn,m∗

w=⇒ N(1/2, 1), under Hn,m∗

1 .

2. When s = 1/3,

LRn,m∗
w=⇒ N(−1/4, 1/2), under H0, LRn,m∗

w=⇒ N(1/4, 1/2), under Hn,m∗

1 .

3. When 1/3 < s < 1,

LRn,m∗
w=⇒ ν0

s , under H0, LRn,m∗
w=⇒ ν1

s , under Hn,m∗

1 ,

where ν0
s and ν1

s are the same as in Theorem 1.1

Similarly, there is a threshold effect for the hypothesis testing of the Gaussian mixture model,
and so the detection boundary. In the s-r plane, the detection boundary of the Gaussian mixture
model is:

r = ρ∗(s),

which is exactly the same as that of the multiple-looks model; see more discussion on the Gaussian
mixture model in [11].

Ingster [20] studied a similar problem and noticed similar threshold phenomena, see more
discussions in Section 7.3. There are many other studies on the detection of Gaussian mixtures
using LRT, see [9], [16], and [17] for example.
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2.1 Proof of Theorem 2.1

For the proof of Theorem 2.1, the approach below is developed independently and is different
from that in [20]; the approach below is also generalized to the settings of non-Gaussian mixture
which we will discuss in Section 6.

Denote the density function of N(0, 1) by

φ(z) =
1√
2π
e−z

2/2. (2.4)

To prove Theorem 2.1, we start with the following key lemma:

Lemma 2.1 With µn = µn,s as defined in Theorem 2.1,

∫ ∞

−∞
[eit log(1+ez) − 1− itez]e−

1+s
2s zφ(

z

µn
)dz =


− it+t2+o(1)

2 · µn · n
(1−3s)2

4s , 0 < s < 1/3,
− it+t2+o(1)

4 · µn, s = 1/3,
1√
2π
ψ0
s(t) + o(1), 1/3 < s < 1,

(2.5)
and

∫ ∞

−∞
[eit log(1+ez) − 1]e−

1−s
2s zφ(

z

µn
)dz =


(it+ o(1)) · µn · n

(1−3s)2

4s , 0 < s < 1/3,
it+o(1)

2 · µn, s = 1/3,
1√
2π

[ψ1
s(t)− ψ0

s(t)] + o(1), 1/3 < s < 1,
(2.6)

where ψ0
s(t) and ψ1

s(t) are defined in Theorem 1.1.

Let N∗ = N∗(n, s) = n ·m∗(n, s), to prove Theorem 2.1, it is sufficient to show that:

under H0: EeitLR
(k)
j =

 1− (it+ t2 + o(1))/(2N∗), 0 < s < 1
3 ,

1− (it+ t2 + o(1))/(4N∗), s = 1
3 ,

1 + (ψ0
s(t) + o(1))/N∗, 1

3 < s < 1,
(2.7)

and

under H(n,m∗)
1 : EeitLR

(k)
j =

 1 + (it− t2 + o(1))/(2N∗), 0 < s < 1
3 ,

1 + (it− t2 + o(1))/(4N∗), s = 1
3 ,

1 + (ψ1
s(t) + o(1))/N∗, 1

3 < s < 1;
(2.8)

in fact, by EeitLRn,m∗ = (EeitLR
(k)
j )N

∗
, a direct result of (2.7) - (2.8) is that as n→∞, we have

the following point-wise convergences:

under H0: EeitLRn,m∗ →


e−(it+t2)/2, 0 < s < 1/3,
e−(it+t2)/4, s = 1/3,
eψ

0
s , 1/3 < s < 1,

and

under H(n,m∗)
1 : EeitLRn,m∗ →


e(it−t

2)/2, 0 < s < 1/3,
e(it−t

2)/4, s = 1/3,
eψ

1
s , 1/3 < s < 1,

and Theorem 2.1 follows.
We now show (2.7). Under H0, notice that:

EeitLR
(k)
j =

∫ ∞

−∞
eit log(1−1/n+(1/n)eµnz−µ2

n/2)φ(z)dz (2.9)

= eit log(1−1/n) ·
∫ ∞

−∞
eit log(1+ 1

n−1 e
µnz−µ2

n/2)φ(z)dz; (2.10)
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rewrite:∫ ∞

−∞
eit log(1+ 1

n−1 e
µnz−µ2

n/2)φ(z)dz (2.11)

= 1 +
it

n
+

∫ ∞

−∞
[eit log(1+(1/n)eµnz−µ2

n/2) − 1− it · (1/n)eµnz−µ2
n/2]φ(z)dz +O(1/n2); (2.12)

the key of the analysis is using the substitution ez
′
= (1/n)eµnz−µ2

n/2:∫ ∞

−∞
[eit log(1+(1/n)eµnz−µ2

n/2) − 1− it · (1/n)eµnz−µ2
n/2]φ(z)dz (2.13)

=
1
µn
e−

(1+s)2

8s2
µ2

n

∫ ∞

−∞
e−

1+s
2s z[eit log(1+ez) − 1− itez]φ(

z

µn
)dz; (2.14)

combining (2.9) - (2.14) with Lemma 2.1 gives (2.7).
The proof of (2.8) is similar. Under Hn,m∗

1 ,

EeitLR
(k)
j = (1− 1/n) ·

∫ ∞

−∞
eit log(1−1/n+(1/n)eµnz−µ2

n/2)φ(z)dz (2.15)

+ (1/n) ·
∫ ∞

−∞
eit log(1−1/n+(1/n)eµnz−µ2

n/2)φ(z − µn)dz, (2.16)

the first term can be analyzed similarly as in the case under H0, as for the second term, similarly
we have: ∫ ∞

−∞
eit log(1−1/n+(1/n)eµnz−µ2

n )φ(z − µn)dz (2.17)

= 1 +
∫ ∞

−∞
[eit log(1+(1/n)eµnz+µ2

n/2) − 1]φ(z)dz +O(1/n) (2.18)

= 1 +
1
µn
e−

(1−s)2

8s2
µ2

n

∫ ∞

−∞
[eit log(1+ez) − 1]e−

1−s
2s zφ(

z

µn
)dz +O(1/n), (2.19)

combining (2.15) - (2.19) with (2.9) and Lemma 2.1 gives (2.10).
This concludes the proof of Theorem 2.1. �

2.2 Proof of Lemma 2.1

As we mentioned before, an interesting phenomenon for the detection of the multiple-looks model
is that, the detection boundary is partly linear and partly curved; the whole curve only has up
to the first order continuous derivatives. As the intuition for why this phenomenon happens had
been developed in [11], here we try to understand the phenomenon from the angle of analysis.

In fact, take (2.5) for example, as µn →∞, the integration∫ ∞

−∞
[eit log(1+ez) − 1− itez]e−

1+s
2s zφ(

z

µn
)dz (2.20)

behaves totally different for the cases 0 < s < 1/3 and 1/3 < s < 1. The reason is that,
by dropping the term φ(z/µn), the integrand in (2.20) is absolute integrable if and only if
(1 + s)/(2s) < 2, or equivalently 1/3 < s < 1; to see this, notice that the only possible place
could make the integration to diverge is z = −∞, observe that when z < 0 and |z| very large:

eit log(1+ez) − 1− itez ∼ e2z, (2.21)

it immediately follows that the integration diverges if and only if (1+ s)/2s < 2, or 1/3 < s < 1.
As a result, when 1/3 < s < 1, (2.5) follows easily by Dominated Convergence Theorem. In

fact, recall the definition of ψ0
s and by noticing the point-wise convergence of φ(z/µn) to 1/

√
2π,

we have: ∫ ∞

−∞
e−

1+s
2s z[eit log(1+ez) − 1− itez]φ(

z

µn
) =

1√
2π
ψ0
s(t) + o(1).

11



However, when 0 < s ≤ 1/3, the integration goes to to ∞ as µn → ∞, so we need to analyze
differently. In fact, using (2.21), we have:∫ ∞

−∞
[eit log(1+ez) − 1− itez]e−

1+s
2s zφ(

z

µn
)dz =

∫ 0

−∞
[eit log(1+ez) − 1− itez]e−

1+s
2s zφ(

z

µn
)dz +O(1)

= −1
2
(it+ t2)[

∫ 0

−∞
e2z · e−

1+s
2s z · φ(

z

µn
)dz](1 + o(1)) +O(1)

= −1
2
(it+ t2)µne

(1−3s)2

8s2
µ2

n(1 + o(1)).

The remaining part of the proof is similar, so we skip it. See [26, Chapter 2] for a more
detailed proof. �

3 Proof of Theorem 1.1

As we mentioned in Section 2, the multiple-looks model (1.4) – (1.5) can be converted into the
Gaussian mixture model (2.2) - (2.3) by random shuffling, we thus expect the difference between
the log-likelihood ratios LRn,m∗ and LRn,m∗ to be negligible, or

LRn,m∗ = LRn,m∗ + op(1). (3.1)

As a result, the limiting behavior of LRn,m∗ would be asymptotically the same as that of LRn,m∗

in Theorem 2.1.
Motivated by these, our approach for proving Theorem 1.1 is to, first validate (3.1), and then,

combine (3.1) with Theorem 2.1.
We now show the cases under H0 and under Hn,m∗

1 separately.
First, under H0. For z(k)

j
iid∼ N(0, 1), 1 ≤ j ≤ n, 1 ≤ k ≤ m, let:

v(k) = v(k)(µn, n; z(k)
1 , z

(k)
2 , . . . , z(k)

n )
4
=

1
n

[
n∑
j=1

eµn·z(k)
j −µ2

n/2], (3.2)

u(k) = u(k)(µn, n; z(k)
1 , z

(k)
2 , . . . , z(k)

n )
4
=

( n∏
j=1

[1− 1
n

+
1
n
eµn·z(k)

j −µ2
n/2]

)
− v(k), (3.3)

then under H0, by symmetry:

LRn,m∗ =
m∗∑
k=1

log(v(k)), LRn,m∗ =
m∗∑
k=1

log(u(k) + v(k));

intuitively, since for a sequence of small numbers aj ,
∏n
j=1(1 + aj) ≈ 1 +

∑n
1 aj , so:

u(k) + v(k) ≈ 1 +
n∑
j=1

[− 1
n

+
1
n
eµnz

(k)
j −µ2

n/2] = v(k);

we thus expect that the difference between LRn,m∗ and LRn,m∗ is indeed negligible. Let

w(k) 4=
u(k)

v(k)
, (3.4)

then:

LRn,m∗ − LRn,m∗ =
m∗∑
k=1

log(1 + w(k)),

the following Lemma validates the heurism, or (3.1), under the null hypothesis H0:
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Lemma 3.1 If z(k)
j

i.i.d∼ N(0, 1), 1 ≤ j ≤ n, 1 ≤ k ≤ m, then for µn =
√

2s log(n) and

m∗ =

{
n(1−2s), 0 < s ≤ 1

3 ,√
2π · µn · n

(1−s)2

4s , 1
3 < s < 1,

we have:
m∗∑
k=1

log(1 + w(k)) →p 0.

Combining Lemma 3.1 with Theorem 2.1 gives Theorem 1.1 under H0.
Now underHn,m∗

1 ,X(k)
j = µδj0(k)(j)+z

(k)
j , where j0(k) uniformly distributed over {1, 2, . . . , n};

so by symmetry:

LRn,m∗ =D

m∗∑
k=1

[
log

( 1
n

[eµnz
(j)
1 +µ2

n/2 +
n∑
j=2

eµnz
(k)
j −µ2

n/2]
)]
,

and we can rewrite:

LRn,m∗ =
[m∗∑
k=1

log
( 1
n

n∑
j=2

eµnz
(k)
j −µ2

n/2
)]

+
[m∗∑
k=1

log
(
1 +

1

[
∑n
j=2 e

µnz
(k)
j −µ2

n/2]/n
· 1
n
eµnz

(k)
1 +µ2

n/2
)]
.

(3.5)
By the study for the case under H0, the first term on the right hand side above weakly converges
to:

m∗∑
k=1

log
( 1
n

n∑
j=2

eµnz
(k)
j −µ2

n/2
) w=⇒

 N(−1/2, 1), 0 < s < 1/3,
N(−1/4, 1/2), s = 1/3,
ν0
s , 1/3 < s < 1,

(3.6)

with ν0
s defined in Theorem 1.1, so all we need to study is the second term. The following Lemma

is proved in [26, Chapter 4].

Lemma 3.2 Fixed 0 < a < 1
2 , with µn = µn,s =

√
2s log n, then for z(k)

j
iid∼ N(0, 1), 1 ≤ j ≤ n,

P
{
v(k) ≤ a

}
≤ 2e−[

(2a−1)2

8 µn·n(1−s)(1+o(1))], n→∞, for any k ≥ 1.

With some elementary analysis, Lemma 3.2 implies:

1
v(k)

→ 1, in probability and in Lp, ∀p > 0. (3.7)

Now back to the second term on the right hand side of (3.5), or:

[m∗∑
k=1

log
(
1 +

1

[
∑n
j=2 e

µnz
(k)
j −µ2

n/2]/n
· 1
n
eµnz

(k)
1 +µ2

n/2
)]

;

inspired by(3.7), we expect that there will be only a negligible change if we replace the messy

term [(1/n)
∑n
j=2 e

µnz
(k)
j −µ2

n/2] by 1 for all k; this turns out to be true, and we have the following
lemma:

Lemma 3.3 For µn = µn,s and m∗ = m∗(n, s) defined in Theorem 1.1, if z(k)
j

i.i.d∼ N(0, 1),
1 ≤ j ≤ n, 1 ≤ k ≤ m∗, then:

m∗∑
k=1

[
log(1 +

1
n
eµn·z(k)

1 +µ2
n/2)− log(1 +

1
1
n

∑n
j=2 e

µn·z(k)
j −µ2

n/2
· 1
n
eµn·z(k)

1 +µ2
n/2)

]
→p 0.
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Applying Lemma 3.3 directly to (3.5) gives:

LRn,m∗ =D

[m∗∑
k=1

log
( 1
n

n∑
j=2

eµnz
(k)
j −µ2

n/2
)]

+
[m∗∑
k=1

log
(
1 +

1
n
eµnz

(k)
1 +µ2

n/2
)]

+ op(1). (3.8)

But for the second term in (3.8), observe that for any t, by substitution ez
′
= eµnz

(1)
1 +µ2

n/2,

E[eit log(1+ 1
n e

µnz
(1)
1 +µ2

n/2)] = 1 +
1
µn
e−

(1−s)2

8s2
µ2

n ·
∫

[eit log(1+ez) − 1]e−
1−s
2s zφ(z/µn)dz,

by independency:

E[eit·
Pm∗

k=1 log(1+ 1
n e

µnz
(k)
1 +µ2

n/2)] =
(
E[eit log(1+ 1

n e
µnz

(1)
1 +µ2

n/2)]
)m∗

,

we then derive:

m∗∑
k=1

log(1 +
1
n
eµn·z(k)

1 +µ2
n/2) w=⇒

 1, 0 < s < 1/3,
1/2, s = 1/3,
ν∗s , 1/3 < s < 1,

(3.9)

where ν∗s is the distribution with characteristic function e[ψ
1
s(t)−ψ0

s(t)]; inserting (3.6) and (3.9)
into (3.8) gives the proof of Theorem 1.1 under Hn,m∗

1 . �

3.1 Proof of Lemma 3.1

A detailed proof of Lemma 3.1 is available in [26, Chapter 4]. In this section, we will only
illustrate the main ideas for the proof, while skipping the technical details.

Direct calculations show that:

1 + w(k) ≥ (1− 1/n)n ·
∏n
j=1[1 + (1/n)eµn·z(k)

j −µ2
n/2]

1
n

∑n
j=1[e

µn·z(k)
j −µ2

n/2]
≥ (1− 1/n)n,

so when n ≥ 2, there is a constant C > 0, such that:

| log(1 + w(k))− w(k)| ≤ C · (w(k))2,

and to show Lemma 3.1, it is sufficient to show:

m∗∑
k=1

w(k) →p 0,
m∗∑
k=1

[w(k)]2 →p 0. (3.10)

Split:

w(k) = u(k) + u(k) · ( 1
v(k)

− 1) · 1{v(k)≥1/3} + u(k) · ( 1
v(k)

− 1) · 1{v(k)<1/3},

and
[w(k)]2 = [w(k)]2 · 1{v(k)<1/3} + [w(k)]2 · 1{v(k)≥1/3};

using Lemma 3.2, the remaining part of the proof is careful analysis, see [26, Chapter 4] for
details. �

3.2 Proof of Lemma 3.3

It is sufficient to show:

m∗∑
k=1

[
log(1 +

1
n
eµn·z(k)+µ2

n/2)− log(1 +
1
v(k)

· 1
n
eµn·z(k)+µ2

n/2)
]
→p 0,
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where z(k) iid∼ N(0, 1) and are independent of {v(k)}m∗

k=1. But since for any x, y ≥ 0, log(1 + x)−
log(1 + y) = (x − y)/(1 + x) + r(x, y), where the reminder term |r(x, y)| ≤ C(x − y)2 for some
constant C, so all we need to show is as n→∞:

m∗∑
k=1

[
(1/n)eµn·z(k)+µ2

n/2

1 + (1/n)eµn·z(k)+µ2
n/2

(
1
v(k)

− 1)
]
→p 0, (3.11)

and
m∗∑
k=1

[
(

1
v(k)

− 1) · (1/n)eµn·z(k)+µ2
n/2

]2

→p 0; (3.12)

or equivalently, for any fixed t:

Ee
it[

(1/n)e
µn·z(k)+µ2

n/2

1+(1/n)e
µn·z(k)+µ2

n/2
( 1

v(k)−1)]

= 1 + o(
1
m∗ ), Ee

it[ 1
n e

µn·z(k)+
µ2

n
2 ·( 1

v(k)−1)]2 = 1 + o(
1
m∗ ).

(3.13)
Similar to the proof of Theorem 2.1, using substitution ez

′
= 1

ne
µn·z+µ2

n/2, we then rewrite:

E(e
it
[

(1/n)e
µn·z(k)+µ2

n/2

1+ 1
n

e
µn·z(k)+µ2

n/2
( 1

v(k)−1)
]
− 1) =

1
µn
µ
− (1−s)2

8s2
µ2

n
n

∫ ∞

−∞
E[eit(v

(k)−1) ez

1+ez − 1]e−
1−s
2s z ·φ(

z

µn
)dz,

(3.14)
and

E(eit
[
( 1

v(k)−1)·(1/n)eµn·z(k)+µ2
n/2

]2

−1) =
1
µn
µ
− (1−s)2

8s2
µ2

n
n

∫ ∞

−∞
E[eit[(v

(k)−1)ez ]2−1]e−
1−s
2s z ·φ(

z

µn
)dz,

(3.15)
where on the right hand side, the expectation inside the integral sign is with respect to the law of
v(k). Again by Lemma 3.2, the remaining part of the proof is careful analysis. See [26, Chapter
4] for the technical details. This concludes the proof of Lemma 3.3. �

4 Proof of Theorem 1.2

We prove Theorem 1.2 for the cases r > ρ∗(s) and 0 < r < ρ∗(s) separately.
For the case r > ρ∗(s), by the definition of m∗ and m, for (s, r) in this range, m/m∗ → ∞

as n→∞. First we consider the case under H0, let:

an =


√
m/m∗, 0 < s < 1/3,√
m/(2m∗), s = 1/3,√
m/m∗ ·

√
−(ψ0

s)′′(0), 1/3 < s < 1,
bn = −

 m/(2m∗), 0 < s < 1/3,
m/(4m∗), s = 1/3,
(m/m∗)(−ψ0

s)
′(0), 1/3 < s < 1;

(4.1)
roughly say, bn is the mean value of LRn,m, and an is the standard deviation of LRn,m. By
Theorem 1.1 and elementary analysis, it follows that [LRn,m − bn]/an

w=⇒ N(0, 1), and thus
LRn,m/

√
m/m∗ →p −∞ under H0. Similar argument shows LRn,m/

√
m/m∗ →p ∞ under

H
(n,m)
1 , this concludes the proof of Theorem 1.2 in this case.

We now consider the case r > ρ∗(s). First, we briefly explain why the proof is non-trivial.
Recall that, LRn,m converges to 0 in probability, under the null as well as under the alternative
– which is a direct result of the studies of Section 2 – 3; however, this claim alone is not sufficient
for proving Theorem 1.2 in this case: the Kolmogorov-Smirnov distance between two random
sequences could tend to 1 even when both of them tend to 0 in probability, the culprit is the
discontinuity of the cdf function of ν0 (here ν0 denote the point mass with all mass at 0).

However, recall that given a cdf F which is a continuous function, then for any sequence of
cdf’s such that Fn

w=⇒ F , we have:

lim
n→∞

‖Fn − F‖KS = 0, (4.2)
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see for example [12]. Motivated by this, we need a stronger claim of the limiting behavior
of LRn,m. Namely, for any fixed (s, r) in this range, we hope to find a sequence of numbers
{`n = `n,s,r}∞n=1 such that:

`n · LRn,m
w=⇒ F, (4.3)

both under the H0 and H(n,m)
1 , where F is some continuous cdf function.

This turns out to be true. Consider the following sub-regions of the undetectable region
{(s, r) : 0 < s < 1, 0 < r < ρ∗(s)}:

Ωa. 0 < s ≤ 1/4 and 0 < r < ρ∗(s), or 1/4 < s < 1/3 and 4s− 1 < r < ρ∗(s).

Ωb. 1/4 < s < 1/3 and r = 4s− 1.

Ωc. 1/3 < s < 1 and 0 < r < ρ∗(s), or 1/4 < s ≤ 1/3 and r < 4s− 1,

the following theorem is proved in the Appendix:

Theorem 4.1 For µn = µn,s =
√

2s log n, and

m =
{
nr, (s, r) ∈ Ωa ∪ Ωb,√

2π · µn · nr, (s, r) ∈ Ωc,

let `n = `n,τ = nτ/2, where

τ = τ(s, r) =
{

1− 2s− r, (s, r) ∈ Ωa ∪ Ωb,
2(1 + s− 2

√
s(1 + r)), (s, r) ∈ Ωc,

then under H0 as well under H(n,m)
1 ,

`n · LRn,m
w=⇒


N(0, 1), (s, r) ∈ Ωa,
N(0, 1/2), (s, r) ∈ Ωb,

1√
2π
ν̃0
s,τ , (s, r) ∈ Ωc,

where ν̃0
s,τ is the distribution with characteristic function eψ̃

0
s,τ , and ψ̃0

s,τ (t) =
∫∞
−∞(eite

z − 1 −
itez)e−

1+s−τ/2
2s zdz.

Adapting to our notations, Burnashev and Begmatov [8] has studied the limiting behavior of
LRn,m, with m = 1.

We remark here that in Theorem 4.1, the log term in the calibration of m is chosen for
convenience. A similar result will be true if we take m = nr without any log term, and at the
same time adding some log term to `n.

We now finish the proof of Theorem 1.2 in this case. To do so, we first check that ν̃0
s,τ indeed

has a bounded continuous density function. In fact, by substitution x = tez, we can rewrite:

ψ̃0
s,τ (t) = −|t|(1+s−τ/2)/(2s) · e±iπ·ξ/2, (4.4)

where in ± the upper sign prevails for t > 0, and ξ is a complex number determined by:

eiπ·ξ/2 = −
∫

[eix − 1− ix] · |x|−(1+3s−τ/2)/(2s)dx;

with τ defined above and (s, r) ∈ Ωc, by elementary analysis, 1 < (1 + s − τ/2)/(2s) < 2, and
that ν̃0

s,τ has a bounded density function.
Now let Fs,r be the cdf of N(0, 1), N(0, 1/2), and ν̃0

s,τ according to (s, r) ∈ Ωa, Ωb, and Ωc,
notice that Fs,r is a continuous function; now for any fixed (r, s) in the undetectable region,
combining (4.3) with Theorem 4.1 gives:

lim
n→∞

‖F (n,m)
0 − F

(n,m)
1 ‖KS ≤ lim

n→∞

[
‖F (n,m)

0 − Fs,r‖KS + ‖F (n,m)
1 − Fs,r‖KS

]
= 0; (4.5)
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it then follows that, for any sequence of thresholds {tn}∞n=1, the thresholding procedure that
reject H0 when LRn,m ≥ tn has an asymptotically equal to 1 of sum of Type I and Type II
errors, uniformly for all sequences {tn}∞n=1:

lim
n→∞

[
PH0{LRn,m ≥ tn}+ PHn,m

1
{LRn,m < tn}

]
= 1.

Last, since for fixed r,s, and n, among all tests, the Neyman-Pearson likelihood ratio test
with a specific threshold has the smallest sum of Type I and Type II errors, see for example [28],
it then follows that the sum of Type I and Type II errors for any test tends 1. This concludes
the proof of Theorem 1.2 in this case. �

Remark. We now give a short remark about the distribution of ν̃0
s,τ . First, it was pointed out

in [15] that, for a characteristic function eψ with ψ in the form as that in (4.4), its corresponding
distribution has a finite p-th moment if and only if p < (1 + s − τ)/(2s); thus ν̃0

s,τ has a finite
first moment, but not a finite second or higher moment. Second, it would be interesting to
study whether (or when) ν̃0

s,τ is a stable law; ν̃0
s,τ is a stable law if and only if that in (4.4),

|ξ| ≤ 2− (1 + s− τ)/(2s), see for example [15]; we skip further discussion.

5 Proof of Theorem 1.4

To prove Theorem 1.2, we note that it is sufficient to show

lim
n→∞

P
H

(n,m)
1

{HC∗N ≤
√

4 log logN} = 0. (5.1)

The key for proving (5.1) is to argue that the distribution of HC∗N under H(n,m)
1 will keep the

unchanged if we replace the original sampling procedure by the following simple procedure: draw
independently a total of N samples, with the first m from N(µn, 1) and the remaining N −m
from N(0, 1); we refer the latter as the simplified sampling.

In fact, if we use HC∗N to denote the Higher Criticism statistic based such samples obtained
by simplified sampling. Compare HC∗N with HC∗N , for any set of integers 1 ≤ j1, j2, . . . , jm ≤ n,
let E{j1,j2,...,jm} be the event:

E{j1,j2,...,jm} = {j0(1) = j1, j0(2) = j2, . . . , j0(m) = jm};

by symmetry, conditional on E{j1,j2,...,jm}, HCN∗ equals to HC∗N in distribution:

[HC∗N |E{j1,j2,...,jm}] =D HC∗N ,

we thus conclude:
HC∗N =D HC∗N .

By the above analysis, it is clear that to show (5.1), it is sufficient to show:

lim
n→∞

P{HC∗N ≤
√

4 log logN} = 0; (5.2)

where the probability is evaluated for samples obtained by the simplified sampling. The proof
of (5.2) is similar to the proof of Theorem 1.2 in [11], and we skip the technical detail. �

6 Extension

In this section, we extend our studies to certain non-Gaussian settings, or the Generalized-
Gaussian settings.

The Generalized Gaussian (Subbotin) distribution GNγ(µ) has density function φγ(x − µ)
where

φγ(x) =
1
Cγ

exp(−|x|
γ

γ
), Cγ = 2Γ(

1
γ

)γ
1
γ−1. (6.1)
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Figure 2: Illustration of ws,γ as a function of s for fixed γ. From left to right, three curves
correspond to ws,γ over intervals [s0(γ), 1] for γ = 3, 2 and 1.5.

This class of distributions was introduced by M. T. Subbotin 1923 ([31]) and has been discussed in
[27, Page 195]. The Gaussian is one member of this family: namely, the one with γ = 2. The case
γ = 1 corresponds to the Double Exponential (Laplace) distribution, which is a well-understood
and widely-used distribution. The case γ < 1 is of interest in image analysis of natural scenes,
where it has been found that wavelet coefficients at a single scale can be modelled as following
a Subbotin distribution with γ ≈ 0.7. This suggests that various problems of image detection,
such as in watermarking and steganography, could reasonably use the model above.

A direct extension of the Gaussian mixture model (2.2) – (2.3) is the following:

H0 : X̄
(k)
j

i.i.d∼ GNγ(0), 1 ≤ j ≤ n, 1 ≤ k ≤ m (6.2)

H(n,m)
1 : X̄(k)

j
i.i.d∼ (1− 1/n)GNγ(0) + (1/n)GNγ(µ), 1 ≤ j ≤ n, 1 ≤ k ≤ m, (6.3)

where we choose the calibrations in a similar way to that in the Gaussian setting:

µ = µn,γ,s = (γs log(n))1/γ , m = nr, 0 < s < 1, 0 < r < 1. (6.4)

Similar to the Gaussian case, for r and s in this range, this is again a very subtle problem.
Recall that we mentioned in Section 1, the Gaussian Mixture model provides an important

bridge for studying the (Gaussian) multiple-looks model, and which is also easier to study. For
this reason, in this section, we will focus on the extension of Gaussian mixture model only.
It would be interesting to work on a direct extension of Model (1.4) - (1.5), or non-Gaussian
multiple-looks model; heuristically, based on Theorem 6.1 and 6.2 below, parallel results for
Theorem 1.2 and 1.4 should still hold if we replace the Gaussian noise setting by the Generalized-
Gaussian noise setting.

In this section, we will drop the subscript γ whenever there is no confusion.

6.1 Log-likelihood Ratio and Limit Law

In this section, parallely to the Gaussian case, we discuss the limit law of the log-likelihood ratio
statistic. Let g(z|µ) = g(z|µ, γ) ≡ e(|z|

γ−|z−µ|γ)/γ , then the log-likelihood ratio of testing Model
(6.2) - (6.3) is LRn,m = LRn,m,s,γ =

∑m
k=1

∑n
j=1 LR

(k)
j , where

LR(k)
j = LR(k)

j,s,γ = log(1− 1/n+ (1/n)g(X̄(k)
j |µ, γ)); (6.5)

We now discuss the cases γ > 1 and 0 < γ ≤ 1 separately.
First for the case γ > 1. This case includes the Gaussian (γ = 2) as a special case. Adapting
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to the notations in [26, Chapter3], let

s0(γ) = (2
1

γ−1 − 1)γ/(2
γ

γ−1 − 1),

a1(γ) = [1− (1/2)1/(γ−1)]1−γ ,

b1(γ) = [1− 2
1

γ−1 ]/[(1− 2
1

1−γ ]
1

γ−2 ,

and xs = xs(γ) be the unique solution of the equation

xγ − (x− 1)γ =
1
s
, x > 1;

notice here γ = 2 corresponds to the Gaussian case: a1(2) = 1, b1(2) = −1, s0(2) = 1/3, and
xs(2) = (1 + s)/(2s), which are the same as we derived before.

The main result for the case γ > 1 is the following theorem:

Theorem 6.1 For parameter 0 < s < 1, let µn = µn,s,γ ≡ (γ · s · log n)1/γ ,

m∗ = m∗(n, s, γ) ≡
{

(1/Cγ) · [2π/((1− γ)b1(γ))]1/2 · µ1−γ/2
n · n1−a1(γ)·s, 0 ≤ s ≤ s0(γ),

Cγ · µγ−1
n · ns·(xs(γ))γ

, s0(γ) < s < 1,

and LRn,m∗ ≡ LRn,m∗,s,γ , then as n→∞:

1. When 0 < s < s0(γ),

LRn,m∗
w=⇒ N(−1

2
, 1), under H0, LRn,m∗

w=⇒ N(
1
2
, 1), under Hn,m∗

1 .

2. When s = s0(γ),

LRn,m∗
w=⇒ N(−1/4, 1/2), under H0, LRn,m∗

w=⇒ N(1/4, 1/2), under Hn,m∗

1 .

3. When s0(γ) < s < 1,

LRn,m∗
w=⇒ ν0

s,γ , under H0, LRn,m∗
w=⇒ ν1

s,γ , under H(n,m∗)
1 .

where ν0
s,γ and ν1

s,γ are distributions with characteristic functions eψ
0
s,γ and eψ

1
s,γ respec-

tively, and with ws,γ = xs(γ)/
[

1
s·(xs(γ)−1)γ−1 − 1

]
,

ψ0
s,γ(t) =

∫ ∞

−∞
[eit log(1+ez) − 1− itez]e−[1+ws,γ ]·zdz, (6.6)

ψ1
s,γ(t) = ψ0

s,γ(t) +
∫ ∞

−∞
[eit log(1+ez) − 1]e−ws,γ ·zdz. (6.7)

In Section 6.3, we will discuss several issues about the laws ν0
s,γ and ν1

s,γ ; it was validated in [26,
Chapter 2] that both ν0

s,γ and ν1
s,γ are in fact infinitely divisible.

We now discuss the case 0 < γ ≤ 1, this case include Laplace (γ = 1) as a special case; the
main result for this case is the following theorem:

Theorem 6.2 For 0 < γ ≤ 1 and 0 < s < 1, let

µn = µn,s,γ ≡ (γs log n)
1
γ , m∗ = m∗(n, s, γ) ≡

{
21/γ · n1−s, γ < 1,
(3/2) · n1−s, γ = 1,

(6.8)

and LRn,m∗ ≡ LRn,m∗,s,γ , then as n→∞:

LRn,m∗
w=⇒ N(−1

2
, 1), under H0, LRn,m∗

w=⇒ N(
1
2
, 1), under Hn,m∗

1 .

Theorem 6.1 and Theorem 6.2 are proved in [26, Chapter 3]. As γ = 2 corresponds to the
Gaussian case, the study in Section 2 is a special case of Theorem 6.1; however, in comparison,
technically we need much more subtle analysis to prove Theorem 6.1 than Theorem 2.1. In this
paper, we skip the proof for Theorem 6.1 and Theorem 6.2.
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Figure 3: Density functions for ν0
s,γ and ν1

s,γ . The distributions of ν0
s,γ and ν1

s,γ only depends on
ws,γ . Left: from top to bottom, density functions for ν0

s,γ with ws,γ = 0.4, 0.5, 0.6. Right: from
bottom to top, density functions for ν1

s,γ with ws,γ = 0.4, 0.5, 0.6.

6.2 Detection Boundary

Similar to the Gaussian case, Theorem 6.1 implies that there is a threshold effect for the detection
problem of (6.2)-(6.3). Dropping some lower order term when necessary, m∗ would be reduced
into a clean form: m∗ = nρ

∗
γ(s), where

ρ∗γ(s) = 1− s, 0 < γ ≤ 1,

ρ∗γ(s) =
{

1− a1(γ) · s, 0 < s ≤ s0(γ),
s · xγs (γ), s0(γ) < s < 1, γ > 1.

Similarly, in the s-r plane, the curve r = ρ∗γ(s) separates the square {(s, r) : 0 < s < 1,
0 < r < 1} into two regions: a detectable region above the curve, and an undetectable region
below the curve; we called r = ρ∗γ(s) the detection boundary.

Theorem 6.3 For γ > 0, let µn = µn,s,γ = (γ · s log(n))1/γ , m = nr, and LRn,m ≡ LRn,m,s,γ .

1. When r > ρ∗γ(s), consider the likelihood ratio test (LRT) that rejects H0 when LRn,m > 0,
then the sum of Type I and Type II errors tends to 0:

PH0{Reject H0}+ PH(n,m)
1

{Accept H0} → 0, n→∞.

2. When r < ρ∗γ(s),

lim
n→∞

‖F (n,m)
0 − F

(n,m)
1 ‖KS = 0,

where F (n,m)
0 and F (n,m)

1 are the cdf’s of LRn,m under H0 and H(n,m)
1 respectively. As a

result, the sum of Type I and Type II errors for any test tends to 1:

PH0{Reject H0}+ PH(n,m)
1

{Accept H0} → 1, n→∞.

The proof of Theorem 6.3 is similar to that of Theorem 1.2, and we skip it.
In [11], we have studied in detail the performance of Higher Criticism statistic for Model 6.2)

– 6.3), and showed the Higher Criticism is also optimal adaptive for Model (6.2) – 6.3) with any
fixed γ > 0.

It is interesting to notice that for any fixed γ > 1, the detection boundary is a partly linear
(0 < s < s0(γ)) and partly curved (s0(γ) < s < 1). Again, this implies that the detection
problem is essentially different for those parameters (s, r) near the linear part and those near
the curved part. Asymptotically, when (s, r) is close to the curved part, statistics based on
those a few largest observations would be able to effectively detect, while when (s, r) is close to
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the linear part, statistics based on a few largest observations will completely fail, and only the
newly proposed statistic Higher Criticism, or the Berk-Jones statistic, which is asymptotically
equivalent to the Higher Criticism in some sense [5], [11], is still able to efficiently detect. See
[11] for more discussion.

Moreover, notice that when γ > 1 approaches 1, the curved part of the detection boundary
continues to shrink and eventually vanishes, leaves only the linear part. So when 0 < γ ≤ 1,
statistics based on the largest a few observations would completely fail for all 0 < s < 1. However,
Higher Criticism and Berk-Jones statistics would still be efficient.

In Figure 5, we plot r = ρ∗γ(s) for γ = 3, 2, 1.5, and γ ≤ 1. Notice that γ = 2 corresponds to
the Gaussian case and ρ∗2 ≡ ρ∗.

6.3 Remarks on the Infinitely Divisible Laws

In this section, we addressed several issues about the infinitely divisible laws ν0
s,γ and ν1

s,γ .
The distribution of ν0

s,γ or ν1
s,γ is uniquely determined by the value of wγ,s. By elementary

analysis, for fixed γ, when s ranges between s0(γ) and 1, ws,γ strictly decreases from 1 to 0. In
Figure 2, we graph ws,γ as a function of s with γ = 1.5, 2, 3. Notice that γ = 2 corresponds to
the Gaussian case, and

ws,2 = (1− s)/(2s).

As 0 < ws,γ < 1, it is easy to check that eψ
0
s,γ and eψ

1
s,γ are absolute integrable; thus by

the inversion formula ([12] for example), both ν0
s,γ and ν1

s,γ have a bounded continuous density
function. In Figure 3, we graph the density functions for ν0

s,γ or ν1
s,γ , with ws,γ = 0.4, 0.5, 0.6

separately; recall that the density function is uniquely determined by ws,γ . Figure 3 suggests
that, heuristically, the smaller the ws,γ , the better separation between ν0

s,γ and ν1
s,γ , it would

be interesting to validate this, but we skip further discussion. Notice here that the density
functions correspond to ws,γ = 0.5 are the same as those in Figure 1, where ws,γ = 0.5 since we
take s = 1/2, γ = 2.

Last, we claim that ν0
s,γ has a finite first moment as well as a finite second moment, and

so does ν1
s,γ . In fact, elementary analysis shows that the second derivatives of both eψ

0
s,γ and

eψ
1
s,γ exist, so the claim follows directly from the well-known Theorem, that the existence of the

second derivatives of characteristic functions implies the existence of the second moments, see
([12, Page 104]). Moreover, the first moment of ν0

s,γ and ν1
s,γ are:∫

[log(1 + ez)− ez]e−(1+ws,γ)zdz,

∫
[(1 + ez) · log(1 + ez)− ez]e−(1+ws,γ)zdz,

and are negative and positive respectively; the second moment of them are:∫
[log2(1 + ez)e−(1+ws,γ)zdz,

∫
[(1 + ez) · log2(1 + ez)e−(1+ws,γ)zdz.

It would be interesting to study that, whether higher order moments exist for ν0
s,γ or ν1

s,γ .
Here we skip further discussion.

7 Discussions

7.1 Re-parametrization and Detection Boundary

In Section 6, we calibrated the amplitude of the signal µ and the number of frames m through
parameters s and r by:

µn,s,γ = (γ · s · log n)1/γ , m = nr, 0 < s < 1, 0 < r < 1.

This particular calibration is very convenient for discussing the limit law of the log-likelihood
ratio: in order to make the log-likelihood ratio converge to non-degenerate distribution, the
critical value of m = m∗ may contain a log term, namely in the case s > s0(γ). When we
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Figure 4: Left Panel: detection regions for the Model (1.4) - (1.5) as well as Gaussian mixture
model (2.2) - (2.3), the detection boundary separates the detectable region ( above) from the
undetectable region (bottom). Right panel: detection regions in the β - α plane by the re-
parametrization in Section 7.1. The detection boundary separates the detectable region from
the undetectable region. The mapping of the re-parametrization maps the line segment {(s, r) :
s = 1, 0 < r < 1} in the left panel to the line segment {α = β : 1/2 < β < 1}, which separates
the estimable region (top) from the non-estimable region. When (α, β) falls into the estimable
region, it is possible not only to detect the presence of nonzero means, but also to estimate those
means.

attempt to develop a different (but equivalent) calibration, this log term may complicate the
notation system quite a bit.

However, the above calibration is not convenient for the discussion of the detection boundary.
Recall that the detection boundary for the Generalized-Gaussian Mixture model (6.2) - (6.2) in
the s-r plane is r = ρ∗γ(s), where:

ρ∗γ(s) = 1− s, 0 < γ ≤ 1,

ρ∗γ(s) =
{

1− a1(γ) · s, 0 < s ≤ s0(γ),
s · xγs (γ), s0(γ) < s < 1, γ > 1;

unfortunately, here xs(γ) is the solution of xγ − xγ−1 = 1/s, which doesn’t have an explicit
formula.

In addition to providing a completely explicit formula for the detection boundary, the follow-
ing calibration we will introduce might also be more familiar. As before, let N = n ·m be the
total number of observations, and εN denote the fraction of observations containing a signal, so
m = N · εN , and n = 1/εN ; we now introduce parameters (β, α) and let:

εN = N−β , µN = µN,α = (γα log n)1/γ ;

this re-parametrization is equivalent to a simple transformation:

β = 1/(1 + r), α = s/(1 + r), 1/2 < β < 1, 0 < α < 1; (7.1)

elementary algebra enables us to rewrite the detection boundary r = ρ∗γ(s) as:

α = ρ̄∗γ(β) ≡
{

[21/(γ−1) − 1]γ−1 · (β − 1/2), 1/2 < β ≤ 1− 2−γ/(γ−1),
(1− (1− β)1/γ)γ , 1− 2−γ/(γ−1) < β < 1.

Figure 4 can help to understand the re-parametrization. In fact, the above transform is a one-
to-one mapping, which maps the squared region in the s - r plane {(s, r) : 0 < s < 1, 0 < r < 1}
(left panel) to the region in the β-α plane which formed by cutting the triangular region on the
top off the square {(β, α) : 0 < α < 1, 0 < β < 1} (right panel). Moreover, the new sub-regions
above/below the curve α = ρ̄∗γ(β) is the image of the detectable/undetectable regions. See Figure
4 for more illustration.
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For Model (1.4)- 1.5), a problem closely related to the detection problem we have discussed
in this paper is the estimation problem: with the same calibration, what is the critical value of
m such that the signals can be reliably estimated? Surprisingly, though multiple-looks is helpful
for the detection, it is not at all helpful for estimation; and in order that the signal be estimable,
we have to set the parameter s > 1, or µ ≥

√
2 log n; this range of s is not showed in the left

panel of Figure 4. But by (7.1), s > 1 ⇐⇒ α > β, so in other words, in order that the signal
be estimable, we need to pick (α, β) from the triangular region on the top of the right panel in
Figure 4; we call this triangular region the estimable region. A similar problem was discussed in
[1], with Model (2.2)-(2.3) instead of Model (1.4)- 1.5).

7.2 Discussions on Model (1.4)-(1.5)

We now address several issues about the multiple-looks model, Model (1.4) - (1.5).
First, in astronomy, there is a Poisson version of the multiple-looks model. As it is of interests

to study directly the Poisson model rather than the Gaussian model in this paper, the Gaussian
model is more convenient to study, and reveals insights about the Poisson model.

Second, in Model (1.4) - (1.5), we have assumed that each X
(k)
j has equal variance either it

contains a signal or not. It is interesting to consider a more general case, in which we assume
that, the pixels containing signals have equal variances σ2 > 1, while all other pixels have equal
variance 1. Our study in this paper can be generalized to this case easily, and the parameter σ
should have some scaling effect on the detection boundary r = ρ∗(s).

Last, it is interesting to study what happens if we relax some assumptions of Model (1.4)-(1.5).
For example, instead of assuming that exactly one pixel per frame possibly contains a signal,
we could consider a harder problem that, in each frame, there is more than one pixel possibly
containing a signal with equal mean, while the position of such pixels are (independently or not)
sampled from {1, 2, . . . , n}, but independently from frame to frame. Heuristically, if the number
of those pixels containing a signal are relatively small, we should be able to show that, this model
also can be converted approximately into a Gaussian mixture model by random shuffling; notice
that the study of the resulting Gaussian mixture model should be similar to that in Section 2.

7.3 Relation to Other Work

There are two points of contact with earlier literature. The first one is with Burnashev and
Begmatov [8], who studied the limit law of log-likelihood ratio with a setting which can be
translated into ours with large n but m = 1. They showed that, for n iid sample zi ∼ N(0, 1),
with approximate normalization, Avej{eµnzj−µ2

n/2} weakly converges to a stable distribution as
n → ∞. It is interesting to notice here that, the non-Gaussian weak limits in Theorem 2.1
and 6.1 are infinitely divisible, but not stable. It would be interesting to study whether the
non-Gaussian limit in Theorem 4.1 is stable or not.

The second point of contact is with the beautiful series of papers by Ingster [19], [20], and
[21]. Ingster studied extensively the Gaussian mixture model (2.2) - (2.3), ranging from the limit
law of the log-likelihood ratio as well as the minimax estimation of signals lying in an `pn ball.
These papers revealed the same limiting behavior of log-likelihood ratio (and so the threshold
effect) as discussed in Section 2. Our approach in Section 2 was developed independently.

In this paper, our starting point was the multiple-looks model (1.4) -(1.5), which is different
than the model studied by Ingster. We found that we could treat the multiple-looks model by
proving that, after a re-expression of the problem, we obtained convergence in variation norm to
the Gaussian mixture model (2.2) - (2.3), which we then analyzed. Hence, although we obtained
eventually the same results as Ingster, our application and motivation were different. We think
the alternative viewpoint adds something to the discussion. Moreover, the extension to the
studies on generalized-Gaussian mixtures in Section 6 has not been studied before, and various
effects of the parameter γ are interesting.
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Figure 5: Left panel: Detection boundaries in the s-r plane for Model (6.2) – (6.3), with γ ≤ 1,
and γ = 1.5, 2, 3 from top to bottom. A small dot separates each curve into two parts, the
solid part of the curves are line segments. Right panel: The same detection Boundaries in the
β-α plane after the re-parametrization defined in (7.1).

8 Appendix

In this section, we will prove Theorem 4.1. Consider the following three sub-regions of the square
{(s, τ} : 0 < s < 1, 0 < τ < 1}.

ωa: 0 < s ≤ 1/4 and 0 < τ < ρ∗(s), or 1/4 < s ≤ 1/3 and 0 < τ < 2− 6s,

ωb: 1/4 < s < 1/3 and τ = 2− 6s,

ωc: 1/3 < s < 1 and 0 < τ < 2(1−
√
s)2, or 1/4 < s < 1/3 and τ > 2− 6s;

recall LR(k)
j = log(1− (1/n) + (1/n) · eµnX̄

(k)
j −µ2

n/2), we have the following lemma:

Lemma 8.1 If µn = µn,s =
√

2s log n, `n = `n,τ = nτ/2, and with τ = τ(s, r) defined in
Theorem 4.1, then when n→∞,

E0[eit·`n·LR
(k)
j ] =


1− n−(2−2s)+τ · (t2+o(1))

2 , (s, τ) ∈ ωa,
1− n−(2−2s)+τ (t2+o(1))

4 , (s, τ) ∈ ωb,
1 + 1

µn·
√

2π
· n[

1−τ/4
4s τ− (1+s)2

4s ]+τ/4 · (ψ̃0
s,τ (t) + o(1)), (s, τ) ∈ ωc,

and

E1[eit·`n·LR
(k)
j ] =


1− n−(1−2s)+τ/2 · (t2+o(1))

2 , (s, τ) ∈ ωa,
1− n−(1−2s)+τ/2 · (t2+o(1))

4 , (s, τ) ∈ ωb,
1 + 1

µn·
√

2π
n[

1−τ/4
4s τ− (1−s)2

4s ]−τ/4 · (ψ̃∗s,τ (t) + o(1)), (s, τ) ∈ ωc,

with E0 and E1 denote the expectation with respect to the law of z ∼ N(0, 1) and z ∼ N(µn, 1) re-
spectively; here ψ̃0

s,τ (t) is defined in Theorem 4.1, and ψ̃∗s,τ (t) = 1√
2π

∫∞
−∞(eite

z −1)e−
1−s−τ/2

2s zdz.

Proof. As the proof for two equations are similar, we only prove the first one. Similar to that
in Section 2.1, namely (2.9)-(2.14):

E0[eit·`n·LR
(k)
j ] = 1+

1
µn
e−

(1+s)2

8s2
µ2

n

∫
[eit·`n·log(1+ez)−1− it ·`n ·ez]φ(z/µn)dz+O(`2n/n

2); (8.1)

by substitution ez
′
= `n · ez, we rewrite∫

[eit·`n·log(1+ez) − it · `n · ez − 1]e−
1+s
2s zφ(

z

µn
)dz (8.2)

= n
1+s−τ/4

4s τ

∫
[eit·`n·log(1+ez/`n) − it · ez − 1]e−

1+s−τ/2
2s z · φ(

z

µn
)dz. (8.3)

24



Observe that (1 + s− τ/2)/(2s) > 1 for (s, τ) ∈ ωa ∪ ωb ∪ ωc, and moreover, according to (s, τ)
in ωa, ωb, and ωc, (1 + s− τ/2)/(2s) > 2, = 2 and < 2; by similar arguments as in the proof of
Lemma 2.1, we derive:∫

[ei·`n·t log(1+ez/`n) − itez − 1]e−
1+s−τ/2

2s zφ( z
µn

)dz

=


−[(t2 + o(1))/2] · µn · n−(1−3s−τ/2)2/(4s), (s, τ) ∈ ωa,
−[(t2 + o(1))/4] · µn, (s, τ) ∈ ωb,

1√
2π

(ψ̃0
s,τ (t) + o(1)), (s, τ) ∈ ωc;

inserting this back into (8.3), Lemma 8.1 follows. �
We now proceed to prove Theorem 4.1. With τ = τ(s, r) as defined in Theorem 4.1, observe

by the calibrations in Theorem 4.1, (s, τ) ∈ ωa ⇔ (s, r) ∈ Ωa, (s, τ) ∈ ωb ⇔ (s, r) ∈ Ωb, and
(s, τ) ∈ ωc ⇔ (s, r) ∈ Ωc, so by Lemma 8.1 and elementary analysis,

`n · LRn,m =
m∑
k=1

[
n∑
j=1

(`n · LR(k)
j )] w=⇒


N(0, 1), (s, r) ∈ Ωa,
N(0, 1/2), (s, r) ∈ Ωb,
ν̃0
s,τ , (s, r) ∈ Ωc,

under the H0 as well as under H(n,m)
1 ; moreover, with (s, r, τ) in such range, we argue in a

similar way as the study in Section 3 that, there is only negligible difference between LRn,m and
LRn,m; combining these gives Theorem 4.1. �
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