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Abstract

For high dimensional statistical models, researchers have begun to focus on situ-

ations which can be described as having relatively few moderately large coefficients.

Such situations lead to some very subtle statistical problems. In particular, Ingster

and Donoho and Jin have considered a sparse normal means testing problem, in which

they described the precise demarcation or detection boundary. Meinshausen and Rice

have shown that it is even possible to estimate consistently the fraction of nonzero

coordinates on a subset of the detectable region, but leave unanswered the question of

exactly which parts of the detectable region consistent estimation is possible.

In the present paper we develop a new approach for estimating the fraction of

nonzero means for problems where the nonzero means are moderately large. We show

that the detection region described by Ingster and Donoho and Jin turns out to be

the region where it is possible to consistently estimate the expected fraction of nonzero

coordinates. This theory is developed further and minimax rates of convergence are

derived. A procedure is constructed which attains the optimal rate of convergence in this

setting. Furthermore, the procedure also provides an honest lower bound for confidence
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intervals while minimizing the expected length of such an interval. Simulations are used

to enable comparison with the work of Meinshausen and Rice, where a procedure is given

but where rates of convergence have not been discussed. Extensions to more general

Gaussian mixture models are also given.
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1 Introduction

In many statistical applications such as analysis of microarray data, signal recovery, and

functional magnetic resonance imaging (fMRI), the focus is often on identifying and es-

timating a relatively few significant components from a high dimensional vector. In such

applications, models which allow a parsimonious representation have important advantages,

since effective procedures can often be developed based on relatively simple testing and es-

timation principles. For example, in signal and image recovery, wavelet thresholding is an

effective approach for recovering noisy signals since wavelet expansions of common func-

tions often lead to a sparse representation; the quality of the recovery depends only on the

large coefficients, the “small” coefficients have relatively little effect on the quality of the

reconstruction, and thresholding rules are effective in identifying and estimating the large

coefficients. Likewise, in problems of multiple comparison where only a very small fraction

of hypotheses are false, the false discovery rate (FDR) approach introduced by Benjamini

and Hochberg [1] is an effective tool for identifying those false hypotheses.

In these problems, the focus is on discovering large components. However, recently there

has been a shift of attention towards problems which involve identifying or estimating

“moderately” large components. Such terms cannot be isolated or detected with high
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probability individually. However it is possible to detect the presence of a collection of such

“moderate” terms. For multiple comparison problems where there are a large number of

tests to be performed, it may not be possible to identify the particular false hypotheses,

although it is possible to discover the fraction of the false null hypotheses. For example,

Meinshausen and Rice [14] discuss the Taiwanese-American Occultation Survey, where it is

difficult to tell whether an occultation has occurred for a particular star at a particular time,

but it is possible to estimate the fraction of occultations that have occurred over a period

of time. In this setting, it is not possible to perform individual tests with high precision,

but it is possible to estimate the fraction of false nulls. Other examples include the analysis

of Comparative Genomic Hybridization (CGH) lung cancer data [11], microarray breast

cancer data [6, 10], and Single Nucleotide Polymorphism (SNP) data on Parkinson disease

[13].

For such applications where there are relatively few nonzero components, it is natural

to develop the theory with a random effects model, see for example Efron [6], Meinshausen

and Rice [14] and Genovese and Wasserman [7]. Consider n independent observations from

a Gaussian mixture model:

Xi = µi + zi, zi
iid∼ N(0, 1), 1 ≤ i ≤ n, (1.1)

where µi are the random effects with P (µi = 0) = 1 − εn, and given µi 6= 0, µi ∼ H for

some distribution H. Equivalently we may write:

Xi
iid∼ (1− εn)N(0, 1) + εnG, 1 ≤ i ≤ n, (1.2)

where G is the convolution between H and a standard Gaussian distribution. In these

models, the problem of estimating the fraction of nonzero terms corresponds to estimating

the parameter εn, and we are particularly interested in the case where the signal is sparse

and the nonzero terms µi are “moderately” large (i.e. εn is small and |µi| <
√

2 log n). This
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general problem appears to be of fundamental importance.

The development of useful estimates of εn along with the corresponding statistical anal-

ysis appears to pose many challenges. In fact this theory is already quite involved even in

the apparently simple special case where H is concentrated at a single point µn; here µn

depends on n but not on i. In this case (1.2) becomes a two-point mixture model:

Xi
iid∼ (1− εn)N(0, 1) + εnN(µn, 1), 1 ≤ i ≤ n. (1.3)

In such a setting, the problem of testing the null hypothesis H0 : εn = 0 against the

alternative Ha : εn > 0 was first studied in detail in Ingster [8], where (εn, µn) are assumed

to be known (see also [9]). Ingster showed that this apparently simple testing problem

contained a surprisingly rich theory even though the optimal test is clearly the likelihood

ratio test. Donoho and Jin [5] extended this work to the case of unknown (εn, µn). It

was shown that the interesting range for (εn, µn) corresponds to a relatively “small” εn

and a “moderately” large µn. A detection boundary was developed which separates the

possible pairs (εn, µn) into two regions, the detectable region and the undetectable region.

When (εn, µn) belongs to the interior of the undetectable region, the null and alternative

hypotheses merge asymptotically and no test could successfully separate them. When

(εn, µn) belongs to the interior of the detectable region, the null and alternative hypotheses

separate asymptotically.

Although the theory of testing the above null hypothesis is closely related to the esti-

mation problem we are considering, it does not automatically yield estimates of εn. In fact,

the problem of estimating εn appears to contain further challenges which are not present in

the above testing problem. Even the theory for consistent estimation of εn recently studied

in Meinshausen and Rice [14] is quite complicated. Meinshausen and Rice [14] gave an

estimate of εn and showed it to be consistent on a subset of the detectable region. They

pointed out that “it is clear that it is somewhat easier to test for the global null hypothesis
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than to estimate the proportion”, leaving the following question unanswered: what is the

precise region over which consistent estimation of εn is possible?

There are two primary goals of the present paper. The first is to develop in detail the

theory for estimating εn in the two-point Gaussian mixture model. The theory given in

the present paper goes beyond consistent estimation, and focuses on the development of

procedures which have good mean squared error performance. Minimax rates of convergence

are shown to depend on the magnitude of both µn and εn; upper and lower bounds for the

minimax mean squared error are given, which differ only by logarithmic factors; estimates

of εn which adapt to the unknown µn and εn are also given. These results make precise how

accurately εn can be estimated in such a model. In particular, we show that it is possible

to estimate εn consistently whenever (εn, µn) is in the detectable region; and although the

estimation problem is in some sense technically more challenging than the testing problem,

the estimable region and detectable region actually coincide.

The other major goal of the present paper is to show that, the theory developed for

the two-point mixture model leads to a one-sided confidence interval for εn, which have

guaranteed coverage probability not only for the two-point mixture model, but also over

the mixture model (1.1) assuming only that H > 0. In this general one-sided Gaussian

mixture model, as noted in a similar context by Meinshausen and Rice [14], the upper

bound for εn must always be equal to 1: the possibility that εn = 1 can never be ruled out

because the nonzero µi can be arbitrarily close to zero. For example asymptotically it is

impossible to tell whether all the µi are zero or all of them are equal to, say, 10−n. On

the other hand if many “large” values of Xi are observed it is possible to give useful lower

bounds on the value of εn. This is therefore an example of a situation where only one-sided

inference is possible; a nontrivial lower bound for εn can be given but not a useful upper

bound. See Donoho [4] for other examples and a general discussion of problems of one-sided
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inference. In such a setting, a natural goal is to provide a one-sided confidence interval for

the parameter of interest, which both has a guaranteed coverage probability and is also

“close” to the unknown parameter. We show that such a one-sided confidence interval can

be built by using the theory developed for the two-point model.

The paper is organized as follows. We start in Section 2 with the two-point mixture

model. As mentioned earlier, this model has been the focus of recent attention both for

testing the null hypothesis that εn = 0 and for consistent estimation of εn. These results

are briefly reviewed and then a new family of estimators for εn is introduced. A detailed

analysis of these estimators requires precise bounds on the probability of over-estimating

εn, which can be given in terms of the probability that a particular confidence band covers

the true distribution function. Section 3 is devoted to giving accurate upper bounds of this

probability. In Section 4, we consider the implication of these results for estimating εn under

mean squared error. Section 5 is devoted to the theory of one-sided confidence intervals

over all one-sided mixture models. Section 6 connects the results of the previous sections

to that of consistent estimation of εn, where comparisons to the work of Meinshausen and

Rice [14] are also made. While the above theory is asymptotic, the discussion is continued

in Section 7, where simulations show that the procedure performs well in settings similar

to those considered by Meinshausen and Rice. Proofs are given in Section 8.

2 Estimation of εn in the Two-point Mixture Model

In this section we focus on estimating the fraction εn under the two-point mixture model,

Xi
iid∼ (1− εn)N(0, 1) + εnN(µn, 1), 1 ≤ i ≤ n. (2.4)

As mentioned in the introduction, the problems of testing the null hypothesis that εn = 0

and estimating εn consistently in the sense that P{| ε̂n
εn
− 1| > δ} → 0 for all δ > 0 have
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been considered. These results are briefly reviewed in Section 2.1 so as to help clarify the

goal of the present work. A new family of estimators is then introduced in Section 2.2.

Later sections show how to select from this family of estimators those which have good

mean squared error performance, and those which provide a lower end point for a one-sided

confidence interval with a given guaranteed coverage probability.

2.1 Review of Testing and Consistency Results

Ingster [8] and Donoho and Jin [5] studied the problem of testing the null hypothesis that

εn = 0. It was shown that the interesting cases correspond to choices of εn and µn where

(εn, µn) are calibrated with a pair of parameters (r, β): εn = n−β and µn =
√

2r log n,

where 1/2 < β < 1 and 0 < r < 1. Under this calibration it was shown that there is a

detection boundary which separates the testing problem into two regions. Set

ρ∗(β) =


β − 1

2 , 1/2 < β ≤ 3/4,

(1−
√

1− β)2, 3/4 < β < 1.

(2.5)

In the β-r plane, we call the curve r = ρ∗(β) the detection boundary [8, 9, 5] associated

with this hypothesis testing problem. The detection boundary separates the β-r plane into

two regions: the detectable region and the undetectable region. When (β, r) belongs to the

interior of the undetectable region, the sum of Type I and Type II errors for testing the null

hypothesis that εn = 0 against the alternative (εn = n−β , µn =
√

2r log n) must tend to 1.

Hence no test can asymptotically distinguish the two hypotheses. On the other hand when

(β, r) belongs to the interior of the detectable region, there are tests for which both Type I

and Type II errors tend to zero and thus the hypotheses can be separated asymptotically.

These two regions are illustrated in Figure 2, where a third region – the classifiable region

– is also displayed. When (β, r) belongs to the interior of the classifiable region, it is not

only possible to reliably tell that εn > 0, but also to separate the observations into signal
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and noise.

It should be stressed that, this testing theory does not yield an effective strategy for

estimating εn, though it does provide a benchmark for a theory of consistent estimation.

Important progress in this direction has recently been made in Meinshausen and Rice

[14], where an estimator of εn was constructed and shown to be consistent if r > 2β − 1.

This estimator is however inconsistent when r < 2β − 1. Note here that the separating

line r = 2β − 1 always falls above the detection boundary. See Figure 2. The work of

Meinshausen and Rice leaves unclear the question of whether consistent estimation of εn is

possible over the entire detectable region. Of course, in the undetectable region no estimator

can be consistent, as any consistent estimator immediately gives a reliable way for testing

εn = 0.

2.2 A Family of Estimators

The previous section outlined the theory developed to date for estimating εn in the two-

point Gaussian mixture model (1.3). The goal of the present paper is to develop a much

more precise estimation theory both for one-sided confidence intervals as well as for mean

squared error. A large part of this theory relies on the construction of a family of easily

implementable procedures along with an analysis of particular estimators chosen from this

family of estimators. The present section focuses on providing a detailed description of the

construction of this family of estimators. Later in Sections 4 and 5, we will show how to

choose particular members of this family to yield near optimal mean squared error estimates

and one-sided confidence intervals.

The basic idea underlying the general construction given here relies on the following

representation for εn. Throughout the paper we shall denote by φ and Φ respectively

the density and cumulative distribution function (cdf) of a standard normal distribution.
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Suppose that instead of observing the data (2.4), one can observe directly the underlying

cdf F (t) ≡ (1− εn)Φ(t)+ εnΦ(t−µn) at just two points, say τ and τ ′ with 0 ≤ τ < τ
′
, then

the values of εn and µn can be determined precisely as follows. Set

D(µ; τ, τ
′
) = [Φ(τ)− Φ(τ − µ)]/[Φ(τ

′
)− Φ(τ

′ − µ)]. (2.6)

Lemma 8.1 in [2] shows that D(·; τ, τ ′
) is strictly decreasing in µ > 0 for any τ < τ

′
. The

parameters εn and µn are then uniquely determined by:

εn =
Φ(τ)− F (τ)

Φ(τ)− Φ(τ − µn)
and D(µn; τ, τ

′
) =

Φ(τ)− F (τ)
Φ(τ ′)− F (τ ′)

. (2.7)

It is easy to check that for τ < τ ′,

inf
µ>0

D(µ; τ, τ ′) ≡ Φ(τ)
Φ(τ ′)

<
Φ(τ)− F (τ)
Φ(τ ′)− F (τ ′)

< sup
µ>0

D(µ; τ, τ ′) ≡ φ(τ)
φ(τ ′)

,

so by the monotonicity of D(·; τ, τ ′), we can first solve for µn from the right hand equation

in (2.7), and then plug in this µn into the left hand equation in (2.7) for εn.

In principle estimates of µn and εn can be given by replacing F (τ) and F (τ
′
) by their

usual empirical estimates. Unfortunately, this simple approach does not work well since

the performance of the resulting estimate depends critically on the choice of τ and τ ′. For

most choices of τ and τ ′ the resulting estimate is not a good estimate of εn in terms of mean

squared error, although it is often consistent. Moreover although there are particular pairs

for which the resulting estimator does perform well, it is difficult to select the optimal pair

of τ and τ
′
since the optimal choice depends critically on the unknown parameters εn and

µn. It is however worth noting that for the situations considered here the optimal choices

of τ and τ
′
always satisfy 0 ≤ τ < τ

′ ≤
√

2 log n.

The key to the construction given below is that, instead of using the usual empirical

cdf as estimates of F (τ) and F (τ
′
), we use slightly biased estimates of these quantities to

yield an estimate of εn which is with high probability smaller than the true εn. It is in
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fact important to do this over a large collection of τ and τ
′
so that the entire collection of

estimates is simultaneously smaller than εn with large probability. It then follows that the

maximum of these estimates is also smaller than εn with this same high probability. This

resulting estimate is just one member of our final family of estimates, other members of

this family are found by adjusting the probability that the initial collection of estimators

underestimates εn. The details of this construction are given below.

First note that underestimates of εn can be obtained by over-estimating F (τ) and under-

estimating F (τ
′
). More specifically suppose that F+(τ) ≥ F (τ) and F−(τ

′
) ≤ F (τ

′
), then

there are two cases depending on whether or not the following holds:

Φ(τ)
Φ(τ ′)

≤ Φ(τ)− F+(τ)
Φ(τ ′)− F−(τ ′)

≤ φ(τ)
φ(τ ′)

.

If it does not hold, then the equation does not give a good estimate for µn and we take 0

to be an estimate for εn. If it does hold, then we can use (2.7) to estimate µn by simply

replacing F (τ) and F (τ
′
) by F+(τ) and F−(τ

′
) respectively. Call this estimate µ̂n and

note that µ̂n ≥ µn. It then immediately follows that the solution to the first equation in

(2.7) with µ̂n replacing µn yields an estimate ε̂n of εn for which ε̂n ≤ εn. A final estimator

is then created by taking the maximum of these estimators.

Of course in practice we do not create estimators which always over-estimate F (τ) and

under-estimate F (τ
′
), as there is also another goal namely that these estimates are also close

to F (τ) and F (τ
′
). To reconcile these goals it is convenient to first construct a confidence

envelope for F (t). First fix a value an and solve for F (t):
√

n |Fn(t)−F (t)|√
F (t)(1−F (t))

= an, where Fn

is the usual empirical cdf. The result is a pair of functions F±
an

(t):

F±
an

(t) =
2Fn(t) + a2

n/n±
√

a2
n/n + (4Fn(t)− 4F 2

n(t)) · (an/
√

n)
2(1 + a2

n/n)
. (2.8)

Note F−
n (t) ≤ F (t) ≤ F+

n (t) if and only if
√

n |Fn(t)−F (t)|√
F (t)(1−F (t))

≤ an. So for any Sn ⊆ (−∞,∞)

if we take an to be the α-upper percentile of supt∈Sn
{
√

n |Fn(t)−F (t)|√
F (t)(1−F (t))

}, then F±
n (t) together
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give a simultaneous confidence envelope for F (t) for all t ∈ Sn. For each an the confidence

envelope can then be used to construct a collection of estimators as follows. Pick equally

spaced grid points over the interval [0,
√

2 log n]: tj = (j−1)/
√

2 log n, 1 ≤ j ≤ 2 log(n)+1.

For a pair of adjacent points tj and tj+1 in the grid let µ̂
(j)
an = µ̂

(j)
an (tj , tj+1;n, Φ, F+, F−) be

the solution of the equation:

D(µ; tj , tj+1) =
Φ(tj)− F+

an
(tj)

Φ(tj+1)− F−
an(tj+1)

, (2.9)

when such a solution exists. If there is no solution set ε̂j = 0. Note that if a solution exists

and F lies in the confidence envelope (2.8), then F+
an

(tj) ≥ F (tj) and F−
an

(tj+1) ≤ F (tj+1)

and hence µ̂
(j)
an ≥ µn. It then also follows that:

ε̂(j)an
=

Φ(tj)− F+
an

(tj)
Φ(tj)− Φ(tj − µ̂j)

, (2.10)

satisfies ε̂
(j)
an ≤ ε. The final estimator ε̂∗an

is defined by taking the maximum of {ε(j)an }:

ε̂∗an
≡ max

1≤j≤2 log n
ε̂(j)an

. (2.11)

3 Evaluating The Probability of Underestimation

A family of estimators depending on an was introduced in Section 2 in terms of a confidence

envelope. A detailed analysis of these estimators depends critically on upper bounding the

probability of overestimating εn. Note that ε̂∗an
underestimates εn whenever F lies inside

the confidence envelope given in (2.8), hence upper bounds on overestimating εn can be

given in terms of the coverage probability of the confidence envelope. In this section, we

collect a few results that are useful throughout the remainder of this paper. Readers less

interested in technical ideas may prefer to skip this section and to refer back to it as needed.

A particularly easy way to analyze the confidence band given in (2.8) is through the
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distribution W ∗
n given by

W ∗
n =d sup

t

{√
n
|Fn(t)− F (t)|√
F (t)(1− F (t))

}
,

especially once we recall that the distribution of W ∗
n does not depend on F . More specifi-

cally, consider n independent samples Ui from a uniform distribution U(0, 1). The empirical

distribution corresponding to these observations is then given by Vn(t) = 1
n

∑n
i=1 1{Ui≤t}.

Set Un(t) =
√

n[Vn(t) − t], 0 < t < 1, and write the normalized uniform empirical process

as Wn(t) = |Un(t)|√
t(1−t)

. The distribution of W ∗
n can then be written as W ∗

n ≡ supt Wn(t). A

following well-known result [15] can be used to construct asymptotic fixed level one-sided

confidence intervals for εn:

lim
n→∞

W ∗
n√

2 log log n
→p 1. (3.12)

Such an analysis underlies some of the theory in Meinshausen and Rice [14] but for the

results given in our paper this approach does not suffice for reasons that we now explain.

We are interested in estimators which underestimate εn with high probability. These

estimators correspond to choosing large an and are used to construct estimators with good

mean squared error performance. Unfortunately W ∗
n has an extremely heavy tail [5]:

lim
w→∞

w2P{W ∗
n ≥ w} = C,

so using W ∗
n to bound such tail probabilities only yields bounds on the chance that ε̂∗an

exceeds εn which decrease slowly in an. Such bounds are insufficient in our analysis of the

mean squared error. The reason for this is that the heavy-tailed behavior exhibited by W ∗
n

is caused by the tails in the empirical process and in our analysis we only consider values

of t between 0 and
√

2 log n. Hence instead of looking at W ∗
n we may instead analyze the

following modified version of W ∗
n :

Yn =d max{0≤t≤
√

2 log n}

{√
n
|Fn(t)− F (t)|√
F (t)(1− F (t))

}
, (3.13)
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which can be equivalently written as Yn =d max{F (0)≤t≤F (
√

2 log n)}
{ |Un(t)|√

t(1−t)

}
.

The problem here is that F (0) and F (
√

2 log n) are unknown and depend on F , so we

need a different way to estimate the tail probability of Yn. We suggest two possible ap-

proaches. The first one is clean but conservative and is particularly valuable for theoretical

development. The second one has a more complicated form but is sharp and allows for

greater precision in the construction of confidence intervals. In the first approach, write

W+
n for the distribution of Yn where F corresponds to N(0, 1) and Fn is the empirical cdf

formed from n i.i.d. N(0, 1) observations. Then W+
n can be written as

W+
n =d max{ 1

2
≤t≤Φ(

√
2 log n)}

{ |Un(t)|√
t(1− t)

}
.

The following lemma shows the tail probability of any Yn associated with an F is at most

twice as large as that of W+
n , uniformly for all Gaussian mixtures F of the form F (t) =∫

Φ(t− µ)dH with P{0 ≤ H ≤
√

2 log n} = 1.

Lemma 3.1 Suppose that Yn is the distribution given in (3.13) where F is a Gaussian

mixture F (t) =
∫

Φ(t − µ)dH with P{0 ≤ H ≤
√

2 log n} = 1. Then for any constant c,

P{Yn ≥ c} ≤ 2 · P{W+
n ≥ c}.

The following tail bound for W+
n can be used to bound P (ε∗an

> εn).

Lemma 3.2 For any constant c0 > 0, for sufficiently large n, there is a constant C > 0

such that P{W+
n ≥ c0 log3/2(n)} ≤ C · n−1.5c0/

√
8π.

It should now be clear why in our setting it is preferable to use such bounds since the

corresponding tail behavior of W ∗
n satisfies P{W ∗

n ≥ c0 log3/2(n)} � C · (log n)−3, which are

not sufficient for our analysis of mean squared error given in the next section.

In the second approach, note that F (
√

2 log n) ≤ Φ(
√

2 log n), and with overwhelming
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probability F (0) ≥ Fn(0)−
√

c0 log(n)/
√

n. Now, for any constant c0 > 0, define

W++
n ≡ W++

n (c0) = max{(Fn(0)−
√

c0 log(n)/
√

n)≤t≤Φ(
√

2 log n)}
{ |Un(t)|√

t(1− t)

}
,

the following lemma shows that the tail probability of Yn is almost bounded by that of

W++
n , uniformly for all one-sided mixture even without the constraint that H ≤

√
2 log n:

Lemma 3.3 Suppose that Yn is the distribution given in (3.13) where F is a Gaussian

mixture F (t) =
∫

Φ(t − µ)dH with P{H ≥ 0} = 1. Then for any constant c0 > 0 and c,

P{Yn ≥ c} ≤ P{W++
n ≥ c}+ 2n−c0 · (1 + o(1)).

This lemma is particularly useful in the construction of accurate confidence intervals where

we take c0 = 3 so that the difference between the two probabilities is O(n−3). Without

further notice, we refer W++
n to the one with c0 = 3. Lemma 3.1 - 3.3 are proved in [2,

Section 8.2-8.4].

3.1 Choice of an in Later Sections

Different choices of an lead to different estimators of εn. We shall choose an depending on

the purpose. In Section 4 the focus is on optimal rates of convergence for mean squared

error. For this purpose it is convenient to choose a relatively large an (i.e. 4
√

2π log3/2(n)).

In Section 6 where the focus is on consistency a much smaller an is also sufficient and might

be preferred. Finally, the interest of Section 5 is on one-sided confidence intervals, and here

we wish to choose an an with level α = P{Yn ≥ an} being fixed. The difficulty here is that,

different from the above two cases, the an depends on the unknown F (0) and F (
√

2 log n).

Fortunately, the level α is fixed and specified before hand, so one can use simulated values

of W++
n to approximate an without much computational complexity.
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4 Mean Squared Error

In this section, we focus on choosing a member of the family of estimators constructed in

Section 2.2 which has near optimal mean squared error properties. More discussion is given

in Section 7 where a simulation study provides further insight into the mean squared error

performance of these estimators. Our analysis begins with the bound

E(
ε̂∗an

εn
− 1)2 ≤ (

1
εn

)2P (ε̂∗an
> εn) + E[(

ε̂∗an

εn
− 1)2 · 1{ε̂∗an≤εn}].

There is a tradeoff depending on the choice of an. As an increases P (ε̂∗an
> εn) decreases but

when ε̂∗an
underestimates εn it does so by a greater amount. It is thus desirable to choose

the smallest an so that the first term is negligible and this in fact leads to an estimator with

near optimal performance. It should be stressed that in the construction of the smallest

such an the precise bounds given in Lemma 3.2 are important and the tail bounds for W ∗
n

do not suffice. In particular Lemma 3.2 shows that an = 4
√

2π log3/2(n) suffices to make

this first term negligible. For such a choice the following theorem gives upper bounds on

the minimax risk.

Theorem 4.1 Suppose F (t) = (1− εn)Φ(t) + εnΦ(t− µn) with εn = n−β, µn =
√

2r log n,

where 0 < r < 1, 1
2 < β < 1, and r > ρ∗(β) so that (β, r) falls into the interior part of the

detectable region. Set an = 4
√

2π log3/2(n), the estimator ε̂∗an
defined in (2.11) satisfies:

E

[
ε̂∗an

εn
− 1
]2

≤


C(r, β)(log n)5.5n−1−2r+2β when β ≥ 3r,

C(β, r)(log n)5.5n−1+
(β+r)2

4r when r < β < 3r,

C(r, β)(log n)4n−1+β when β ≤ r,

(4.14)

where C(β, r) is a generic constant depending on (β, r).

Theorem 4.1 gives an upper bound for the rate of convergence of ε̂∗an
. Although this

estimator usually underestimates εn, the lower bounds for the mean squared error given

below show that the performance of the estimator cannot be significantly improved.
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Although the lower bounds given below are based on a two point testing argument we

should stress that they do not follow from the testing theory developed in Ingster [8]. In

particular the detection boundary mentioned in Section 1 is derived by testing the simple

hypothesis that εn = 0 against a particular alternative hypothesis. Here we need to study a

more complicated hypothesis testing problem where both the null and alternative hypothesis

correspond to Gaussian mixtures. More specifically let X1, ..., Xn
iid∼ P and consider the

following problem of testing between the two Gaussian mixtures:

H0 : P = P0 = (1− ε0,n)N(0, 1) + ε0,nN(µ0,n, 1),

and

H1 : P = P1 = (1− ε1,n)N(0, 1) + ε1,nN(µ1,n, 1).

Minimax lower bounds for estimating εn can then be given based on carefully selected

values of ε0,n, ε1,n, µ0,n and µ1,n along with good bounds on the Hellinger affinity between

n i.i.d. observations with distributions P0 an P1. As is shown in the proof of the following

theorem these bounds require somewhat delicate arguments. We should mention that our

attempts using bounds on the chi-square distance, a common approach to such problems,

did not yield the present results. The lower bounds are summarized as follows.

Theorem 4.2 Let X1, ..., Xn
iid∼ (1 − εn)N(0, 1) + εnN(µn, 1). For 0 < r < 1, 1

2 < β < 1,

a1, a2 > 0 and b2 > b1 > 0, set Ωn = {(εn, µn) : b1n
−β ≤ εn ≤ b2n

−β,
√

2r log n − a1
log n ≤

µn ≤
√

2r log n + a2
log n}. Then

inf
ε̂n

sup
(εn,µn)∈Ωn

E(
ε̂n

εn
− 1)2 ≥


C(log n)n−1−2r+2β when β ≥ 3r,

C(log n)
5
2 n−1+

(β+r)2

4r when r < β < 3r,

Cn−1+β when β ≤ r.

A comparison between the upper bounds given in Theorem 4.1 and the lower bounds

given in Theorem 4.2 shows that the procedure ε̂∗an
has mean squared error within a loga-
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rithmic factor of the minimax risk. Additional insight into the performance of this estimator

is given in Section 6 where comparisons to an estimator introduced by Meinshausen and

Rice [14] are made and in Section 7 where we report some simulations results.

5 One-Sided Confidence Intervals

In the previous section we showed how to choose an so that the estimator ε̂∗an
has good

mean squared error properties. In the present section we consider in more detail one-

sided confidence intervals. For such intervals there are two conflicting goals. We want to

maintain coverage probability over a large class of models while minimizing the amount that

our estimator underestimates εn. More specifically the goal can be formulated in terms of

the following optimization problem

Minimize E(εn − ε̂n)+ subject to sup
F

P (ε̂n > εn) ≤ α

where F is a collection of Gaussian mixtures. A similar formulation for the construction of

optimal nonparametric confidence intervals is given in Cai and Low (2004).

In the present section we focus on this optimization problem for the class of all two-

point Gaussian mixtures showing that the estimator ε̂∗an
with an appropriately chosen an

provides an almost optimal lower end point for a one-sided confidence interval with a given

coverage probability. Perhaps equally interesting is that this one-sided confidence interval

maintains coverage probability over a much larger collection of Gaussian mixture models

namely the set of all one-sided Gaussian mixtures with H > 0. See also Section 6.3 where

we briefly discuss how the condition H > 0 can be dropped.
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5.1 Coverage Over One-sided Gaussian Mixtures

In this section we show how one-sided confidence intervals with a given coverage probability

can be constructed for the collection of all one-sided Gaussian mixtures (1.1) with H > 0.

Let F be the collection of all one-sided Gaussian mixture cdf of the form (1− ε)Φ(t) + εG

where G(t) =
∫

Φ(t− µ)dH is the convolution of Φ and a cdf H supported on the positive

half-line. For arbitrary constants 0 < a < b < 1 and 0 < τ < τ ′, out of all cdf F ∈ F

passing through points (τ, a) and (τ ′, b), the most “sparse” one (i.e. smallest ε) is a two-

point Gaussian mixture F ∗(t) = (1− ε∗)Φ(t) + ε∗Φ(t− µ∗), where (ε∗, µ∗) are chosen such

that F ∗(τ) = a and F ∗(τ ′) = b. That is

µ∗ : solution of D(µ; τ, τ ′) =
Φ(τ)− a

Φ(τ ′)− b
, and ε∗ =

Φ(τ)− a

Φ(τ)− Φ(τ − µ∗)
, (5.15)

where the function D is given in (2.6). The following lemma is proved in [2, Section 8.7].

Lemma 5.1 Fix 0 < a < b < 1, 0 < τ < τ ′, and 0 < ε ≤ 1. For any F = (1−ε)Φ(t)+εG ∈

F such that F (τ) = a and F (τ ′) = b, define ε∗ by (5.15). Then ε∗ ≤ ε.

We now turn to the coverage probability of the grid procedure ε̂∗an
over the class F . Fix

an F ∈ F . Then for each pair of adjacent points (tj , tj+1) in the grid, the above lemma

shows that there is a two-point Gaussian mixture F ∗(t) = (1− ε∗j )Φ(t)+ ε∗jΦ(t−µ∗j ), where

(ε∗j , µ
∗
j ) are chosen such that F ∗(tj) = F (tj) and F ∗(tj+1) = F (tj+1). It is clear that ε∗j

depends on the points tj and tj+1, but Lemma 5.1 shows that in each case ε∗j ≤ ε. Now

suppose that F lies inside the confidence envelope defined by (2.8). In this case it follows

that ε̂
(j)
an define by (2.10) satisfies ε̂

(j)
an ≤ ε∗j and hence also ε̂

(j)
an ≤ εn. Since this holds

for all j it then immediately follows that ε̂∗an
≤ εn whenever F lies inside the confidence

interval defined by (2.8). A given level confidence interval can then be given by based on

the distributions of W+
n and W++

n . This result is summarized in the following Theorem.
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Figure 1: In the cdf plane, among the family of all one-sided Gaussian location mixtures

which passes through two given points (τ, a) and (τ ′, b), the most sparse mixture is a two-

point mixture (the solid curve) which bounded all other cdf from above over the whole

interval [τ, τ ′].

Theorem 5.1 Fixed 0 < α < 1, let an be chosen so that P (W+
n ≥ an) ≤ α/2. Then

uniformly for n and all one-sided Gaussian location mixtures defined in (1.2) with P (0 <

H ≤
√

2 log n) = 1, P{ε̂∗an
≤ εn} ≥ (1− α). Moreover, let an be chosen so that P (W++

n ≥

an) ≤ α, then as n →∞, uniformly for all one-sided Gaussian location mixtures defined in

(1.2) with P{H > 0} = 1, P{ε̂∗an
≤ εn} ≥ (1− α)(1 + o(1)).

5.2 Optimality under 2-Point Gaussian Mixture Model

In the previous section we focused on the coverage property of the one-sided confidence

interval over the general class of one-sided Gaussian mixtures. In this section we return

to the class of two-point Gaussian mixtures and study how “close” the lower confidence

limit ε̂n is to the true but unknown εn. In particular we compare the performance of our

procedure with the following lower bound.

Theorem 5.2 Let X1, ..., Xn
iid∼ (1 − εn)N(0, 1) + εnN(µn, 1). For 0 < r < 1, 1

2 < β < 1,

a1, a2 > 0 and b2 > b1 > 0, set Ωn = {(εn, µn) : b1n
−β ≤ εn ≤ b2n

−β,
√

2r log n − a1
log n ≤

µn ≤
√

2r log n + a2
log n}. For 0 < α < 1

2 , let ε̂n be a (1− α) level lower confidence limit for
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εn over Ωn, namely infΩn P{εn ≥ ε̂n} ≥ 1− α. Then

inf
ε̂n

sup
(εn,µn)∈Ωn

E(1− ε̂n

εn
)+ ≥


C(log n)

1
2 n−

1
2
−r+β when β ≥ 3r,

C(log n)
5
4 n−

1
2
+

(β+r)2

8r when r < β < 3r,

Cn−
1
2
+β

2 when β ≤ r.

Theorem 5.2 shows that even if the goal is to create an honest confidence interval over

the class of two-point Gaussian mixture models the resulting estimator must underestimate

the true εn by a given amount. The following theorem shows that the estimator given in

the previous section which has guaranteed coverage over the class of all one-sided Gaussian

mixture models is almost optimal for two-point Gaussian mixtures.

Theorem 5.3 Suppose F is a two-point mixture F (t) = (1 − εn)Φ(t) + εnΦ(t − µn) with

εn = n−β, µn =
√

2r log n, where 0 < r < 1, 1
2 < β < 1, and r > ρ∗(β) so (β, r) falls into

the interior part of the detectable region. Fixed 0 < α < 1, let an be chosen so that either

P (W+
n ≥ an) ≤ α

2 or such that P{W++
n ≥ an} ≤ α and for this value of an let ε̂∗an

be the

estimator defined in (2.11). Then there is a constant C = C(β, r) > 0:

E(1−
ε̂∗an

εn
)+ ≤


C ·
√

log log(n) · (log n)
5
4 · n−

1
2
−r+β, when β > 3r,

C ·
√

log log(n) · (log n)
5
4 · n−

1
2
+

(β+r)2

8r
, when r < β ≤ 3r,

C ·
√

log log(n) · n−
1
2
+β

2 , when β ≤ r.

6 Discussion

In this section we compare and contrast the methodology developed in the present paper to

the approach taken by Meinshausen and Rice [14]. The goal is to explain intuitively some

of the theory developed in these two papers. Both methods have a root based on the idea

of “thresholding”, and how well each method works can partially be explained in terms of

the concept of most informative threshold.
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We shall start with a general comparison of the two estimators. It is useful to note that

the stochastic fluctuations of these estimators are not larger in order of magnitude than

the bias. It is thus instructive for a heuristic analysis to replace each of these estimators

by non random approximations. The approach taken in Meinshausen and Rice [14] starts

with a more general mixture model which after a transformation can be written as

Yi
iid∼ (1− εn)N(0, 1) + εnF, 1 ≤ i ≤ n

where F is an arbitrary distribution. In that context one-sided bounds are given for εn which

hold no matter the distribution of F . The lower bound can be thought of first picking an

arbitrary threshold t, then comparing the fraction of samples ≥ t with the expected fraction

≥ t when all samples are truly from N(0, 1); the difference between two fractions either

comes from stochastic fluctuations or from the signal, which thus naturally provides a lower

bound if the stochastic fluctuations are controlled.

Using the notation of the present paper, Meinshausen and Rice’s lower bound can be

written as ε̂MR
a∗n

≡ sup{−∞<t<∞} ε̂MR
a∗n

(t;Fn), where

ε̂MR
a∗n

(t;Fn) =
[Φ(t)− Fn(t)− (a∗n/

√
n) ·

√
Φ(t)(1− Φ(t))

Φ(t)
]
. (6.16)

Here a∗n > 0 is a constant which plays a similar role as an in our estimator, and without loss

of generality, we chose 1/
√

t(1− t) as the bounding function [14]. A useful approximation

to this estimator is given by neglecting the stochastic fluctuation where we replace Fn by

F . The result is the approximation ε̂MR
a∗n

(t;F )

ε̂MR
a∗n

(t;Fn) ≈ ε̂MR
a∗n

(t;F ) ≡
[Φ(t)− F (t)− (a∗n/

√
n) ·

√
Φ(t)(1− Φ(t))

Φ(t)
]
. (6.17)

It is instructive to compare this approximation with the following slightly modified

version of our estimator where we neglect the stochastic difference by replacing µ̂j by µn

and where we approximate F+ by F + an√
n

√
F (1− F ). Then the estimator ε̂∗an

can be
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approximated by ε̂∗an
≈ sup{0≤t≤

√
2 log n} ε̂∗an

(t, F ), where

ε̂∗an
(t, F ) =

Φ(t)− F (t)− (an/
√

n) ·
√

F (t)(1− F (t))
Φ(t)− Φ(t− µn)

. (6.18)

It is now easy to compare (6.17) with (6.18). There are three differences: (a). we

use Φ(t) − Φ(t − µn) as the denominator instead of Φ(t), (b). we use
√

F (t)(1− F (t))

rather than
√

Φ(t)(1− Φ(t)) for controlling stochastic fluctuation, (c). we take maximum

over (0,
√

2 log n) instead of (−∞,∞). In fact only the first difference is important in the

analysis of the two-point mixture model.

6.1 Consistent Estimation

In this section we compare the approximations for the two-point mixture models starting

with the Meinshausen and Rice procedure [14]. We have

1− ε̂MR
a∗n

(t, F )/εn =
[Φ(t− µn)

Φ(t)
+ a∗n · nβ−1/2 ·

√
(1− Φ(t))/Φ(t)

]
, (6.19)

and in order for ε̂MR
a∗n

to be consistent, we need a t such that:

Φ(t− µn)
Φ(t)

≈ 0 and a∗nnβ−1/2 ·
√

(1− Φ(t))/Φ(t) ≈ 0. (6.20)

It is easy to check that both these conditions hold only if
√

2(2β − 1) log n ≤ t < µn and

that this is only possible when r > 2β − 1. Hence the Meinshausen and Rice procedure is

only consistent on a subset of the detectable regions. Note here that consistency requires a

constraint on t, namely that t should not exceed µn regardless of the value of β.

A similar analysis can be provided for the approximation of our estimator. Since we use

the term Φ(t)−Φ(t−µn) as the denominator in (6.18) instead of Φ(t), the above restriction

on the choice of t for Meinshausen and Rice’s lower bound does not apply to our estimator.

In fact we should always choose t to be greater than µn, not smaller; see Table 1 for the

most informative t. This extra freedom in choosing t yields the consistency over a larger
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range of (β, r). In fact for the two-point Gaussian mixture model the following theorem

shows that our estimator is consistent for εn over the entire detectable region and in this

sense the estimator is optimally adaptive.

Theorem 6.1 If Ω be any closed set contained in the interior of the detectable region of

the β-r plane: {(β, r) : ρ∗(β) < r < 1, 1
2 < β < 1}. For any sequence of an such that

an/
√

2 log log n → 1 and P{W+
n ≥ an} tends to 0, then for all δ > 0,

lim
n→∞

sup
{(β,r)∈Ω}

P{|
ε̂∗an

εn
− 1| ≥ δ} = 0.

Figure 2 plots on the β-r plane the detection boundary which separates the detectable

and undetectable regions, and the classification boundary which separates classifiable and

unclassifiable regions. When (β, r) belongs to the classifiable region, it is also able to

reliably tell individually which are signal and which are not. The dashed line in red is the

separating line of consistency of the Meinshausen and Rice’s lower bound: above which the

lower bound is consistent to εn, below which is not; see Meinshausen and Rice [14]. The

right panel of Figure 2 shows 7 sub-regions in the detectable region as in Table 1 given in

Section 6.2 below.

6.2 Most informative Threshold

In this section we turn to an intuitive understanding of the mean squared error property

which is driven by the value of t that minimizes (6.18). More specifically if we ignore the

log-factor, the mean squared error of the estimator given by the approximation in (6.18)

for a fixed t satisfies

(1− ε̂∗an
(t, F )/εn)2 = n2β−1 · F (t)(1− F (t))

[Φ(t)− Φ(t− µn)]2
.

Minimizing this expression over t yields the optimal rate of convergence as given in Theorem

4.1. We call the minimizing value of t the most informative threshold and these values are
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Figure 2: Left Panel: The detection boundary and the classification boundary together with

the separating line of consistency of Meinshausen and Rice (dashed line). Right Panel: 7

sub-regions in the detectable region as in Table 1.

tabulated in Table 1. Although the mean squared error performance of the Meinshausen

and Rice procedure has not been computed it appears likely that a similar phenomena

holds. In this case,

(1− ε̂MR
a∗n

(t, F )/εn)2 =
[Φ(t− µn)

Φ(t)
+ nβ−1/2 ·

√
(1− Φ(t))/Φ(t)

]2
,

and the value of t which minimizes these expressions ∼ (2 − [2 − 2β−1
r ]1/2)µn. Here we

assumed r > 2β − 1 as otherwise the estimator is not consistent and the most informative

t is not of interest, see Table 1. This shows that

(1− ε̂MR
a∗n

(t, F )/εn)2 ∼ n−(
√

2r−2β+1−
√

r)2 ,

which should give the correct convergence rate for the mean squared error. Here we have

also omitted a log-factor. Since this convergence rate is always slower than the optimal rate

of convergence given in Theorem 4.1, it appears at least according to this heuristic analysis

that the optimal rate is never achieved by Meinshausen and Rice’s estimator. One possible

reason for the slow convergence rate is that in the analysis of the Meinshausen and Rice
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procedure the most informative t∗ never exceeds µn whereas for our procedure the most

informative t∗ is never less than µn. The most informative thresholds are summarized in the

following table. Note that when r ≤ 2β−1, the Meinshausen and Rice’s lower bound is not

consistent, so the most informative threshold is not of interest (NOI). Detailed discussion

on Higher Criticism can be found in [5].

Regions in (β, r) Plane Meinshausen and Rice CJL Higher Criticism

1a (2− [2− 2β−1
r ]

1
2 ) · µn 2µn 2µn

1b NOI 2µn 2µn

2a (2− [2− 2β−1
r ]

1
2 ) · µn

β+r
2r · µn 2µn

2b NOI β+r
2r · µn 2µn

3a (2− [2− 2β−1
r ]

1
2 ) · µn

β+r
2r · µn

√
2 log n

3b NOI β+r
2r · µn

√
2 log n

4 (2− [2− 2β−1
r ]

1
2 ) · µn µn

√
2 log n

Table 1: Most informative threshold for Meinshausen and Rice’s procedure and the newly

proposed procedure and Higher Criticism of Donoho and Jin [5]. The labels of region are

illustrated in the right panel in Figure 2.

6.3 Extensions and Generalizations

We should stress that although the procedure presented in the present paper has better

mean squared error performance than that of Meinshausen and Rice, the advantage of

Meinshausen and Rice’s lower bound is that, it doesn’t assume any distribution of non-null

cases. In this section, we address some possible extension of the Gaussian model which may

also shed further light on the approach taken in the present paper.

Let {f(x;µ) : µ ≥ 0} be a family of density functions and let X1, ..., Xn be a random
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sample from a general one-sided mixture:

X1, ..., Xn
iid∼ (1− εn)f(x; 0) + εn

∫
f(x;µ)dH(µ), P (H > 0) = 1.

Two key components for the theory we developed in previous sections are: (A) among all

cumulative distribution functions passing through a given pair of points (τ, a) and (τ ′, b),

the most sparse one is a two-point mixture, and (B) the proposed estimator is optimally

adaptive in estimating εn for the family of two-point mixtures. We expect that our theory

can be extended to a broad class of families where (A) and (B) hold.

We have shown in an unpublished manuscript that two conditions that suffice for (A)

to hold are: (A1) the family of density functions is a strictly monotone increasing family:

f(x;µ)/f(x) is increasing in x for all µ > 0, and (A2) D(µ; τ, τ ′) is strictly decreasing

in µ > 0 for any τ ′ > τ > 0 where D(µ; τ, τ ′) = F (τ ;0)−F (τ ;µ)
F (τ ′;0)−F (τ ′;µ) , and F (·;µ) is the cdf

corresponding to f(·;µ).

It is interesting to note that the two-sided Gaussian mixture satisfies the above men-

tioned conditions. In fact, for X from a two-sided Gaussian mixture, |X| can be viewed as

a one-sided mixture from the family of densities where f(x;µ) = φ(x− µ) + φ(x + µ)− 1.

It appears that (B) also holds in this case although we leave a more detailed analysis for

future study.

7 Simulations

We have carried out a small-scale empirical study of the performance of our lower bound

along with a comparison to Meinshausen and Rice’s lower bound for sample sizes similar

to those studied by Meinshausen and Rice. The purpose of the present section is only to

highlight a few points that occurred consistently in our simulations. One of the points

chosen in our study corresponded to (β, r) = (4/7, 1/2). This parameter is in a region
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that both Meinshausen and Rice’s lower bound and our lower bound are consistent. In our

experiment, we simulated n samples from a cdf F (t) = (1 − εn)Φ(t) + Φ(t − µn), where

n = 107, εn = 10−4, and µn =
√

2× 0.5× log n ≈ 4. The reason we chose such a large n is

that the signal is highly sparse. In fact, with the current β and n, the number of signals is

about 1000.

The experiments started by calculating αn-percentiles by simulation for W ∗
n needed for

the Meinshausen and Rice procedure and for Yn for our procedure. Denote the percentiles

by a∗n and an respectively so that P (W ∗
n ≥ a∗n) = αn, and P (Yn ≥ an) = αn. Since

Yn depends on the unknown parameter F (0), we replace Yn by W++
n as in Lemma 3.3.

The simulated data indicate that the difference between W+
n and W++

n is negligible and

P (W+
n ≥ an) ≈ αn so a convenient way to calculate an is through W+

n instead of Yn. We

then generated 5, 000 simulated values of W ∗
n and W+

n , and calculated the values of a∗n and

an corresponding to 7 chosen levels αn = 0.5%, 1%, 2.5%, 5%, 7.5%, 10%, and 25%. The

values are tabulated in Table 2.

Next, we laid out grid points for calculating the lower bound ε̂∗an
. Since 2 log n = 32.24,

we chose 33 equally spaced grid points: tj = (j − 1)/
√

2 log n, 1 ≤ j ≤ 33. We then ran

3, 500 cycles of simulation.

• In each cycle we drew n·(1−εn) samples from N(0, 1) and n·εn samples from N(µn, 1)

to approximate n samples from the 2 point mixture (1− εn)N(0, 1) + εnN(µn, 1).

• For each an, we used the above simulated data and the grid points to calculate ε̂∗an
.

• For each a∗n, we used the simulated data to calculate ε̂MR
a∗n

.

The results are summarized in Table 2, as well as Figure 3.
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αn 0.005 0.01 0.025 0.05 0.075 0.10 0.25 0.50

ε̂∗an
/εn

an√
2 log log n

2.126 1.956 1.699 1.545 1.467 1.370 1.158 0.940

P (ε̂n ≥ εn) 0 0 0.0014 0.0026 0.0043 0.0077 0.026 0.114

Maximum 0.654 0.787 1.063 1.907 2.485 3.215 4.794 6.418

Mean 0.456 0.477 0.516 0.544 0.560 0.583 0.651 0.776

Median 0.450 0.471 0.508 0.531 0.546 0.562 0.608 0.677

Deviation 0.045 0.049 0.062 0.085 0.1015 0.127 0.211 0.373

E[ ε̂n

εn
− 1]2 0.299 0.276 0.238 0.215 0.204 0.190 0.167 0.189

E(1− ε̂n

εn
)+ 0.545 0.523 0.485 0.458 0.442 0.421 0.364 0.285

ε̂MR
a∗n

/εn
a∗n√

2 log log n
6.830 3.731 2.382 1.826 1.657 1.557 1.285 1.087

P (ε̂n ≥ εn) 0 0 0 0.002 0.007 0.013 0.101 0.290

Maximum 0.309 0.473 0.643 1.337 31.46 321.9 1113 1781

Mean 0.252 0.374 0.477 0.5457 0.6017 0.836 5.644 26.158

Median 0.251 0.373 0.472 0.537 0.562 0.579 0.639 0.739

Deviation 0.018 0.027 0.041 0.065 0.795 7.765 43.04 123.2

E[ ε̂n

εn
− 1]2 0.560 0.393 0.276 0.211 0.791 60.31 1873 15814

E(1− ε̂n

εn
)+ 0.748 0.626 0.523 0.455 0.426 0.405 0.315 0.214

Table 2: Comparison of our lower bound with Meinshausen and Rice’s lower bound. The

comparison is based on 3, 500 independent cycles of simulations, in each cycle, we simulated

n = 107 samples from two-point mixture with εn = 10−4 and µn =
√

2× 0.5× log n ≈ 4,

the lower bounds were calculated for each of the 8 chosen αn-levels. The unsatisfactory

performances of Meinshausen and Rice’s lower bound are displayed in boldface, which are

caused by its heavy-tailed behavior.
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We draw attention to a number of features which showed up not only in this simulation

but in our other simulations as well. First the distribution of ε̂∗an
/εn has a relatively thin

tail. Figure 3 gives histograms of ε̂∗an
/εn which show that when it does over-estimate, it only

overestimates by a factor of at most 5 or 6. Moreover, the chance of under-estimation is in

general much smaller than αn, sometimes even 10 times smaller, which suggests the theo-

retical upper bound for over-estimation in Theorem 5.1 is quite conservative. For example,

the 7-th column of Table 2 suggests for αn = 25%, the empirical probability of over-

estimation ≈ 2.6% which is roughly 10 times smaller. Finally, when it does under-estimate,

the amount of under-estimation is reasonable small. In addition, the risk E([ε̂∗an
/εn]− 1)2

and E(1− [ε̂∗an
/εn])+ are also reasonably small. We also note that Meinshausen and Rice’s

lower bound display a heavy-tailed behavior, it can sometimes over-estimate εn by as large

as 1, 100 times.
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Figure 3: Histograms for 3, 500 simulated ratios between lower bounds and the true εn.

The simulations is based on 107 samples from two-point mixture with εn = 10−4 and

µn =
√

2× 0.5× log n ≈ 4. Top row: our lower bound. Bottom row: Meinshausen and

Rice’s lower bound. From left to right, lower bounds correspond to different αn level: 0.005,

0.05, and 0.25. The last column is the log-histogram of the third column.

The performance of ε̂∗an
is not very sensitive to different choice of αn (or equivalently an).
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As αn gets larger, slowly, the mean and median of ε̂∗an
increases, and E([ε̂∗an

/εn]− 1)2 and

E(1− [ε̂∗an
/εn])+ decreases, which suggest a better estimator for a larger αn in a reasonable

range, e.g. αn ≤ 50%. The phenomenon can be interpreted by the thin tail property as

well as that fact the chance of overestimate is slim: a larger αn won’t increase much of the

chance of over-estimate, but it will certainly boost the under-estimate and in effect make

the whole estimator more accurate.

We now turn to Meinshausen and Rice’s lower bound. ε̂MR
a∗n

also provides an honest

lower bound, and P (ε̂MR
a∗n

≥ εn) is typically much smaller than αn. However, for relatively

larger αn empirical study shows that ε̂MR
a∗n

is not an entirely satisfactory lower bound as the

variance of ε̂MR
a∗n

is relatively large. For example, when αn ≥ 0.1, E(
ε̂MR
a∗n
εn
−1)2 can be as large

as a few hundred or a few thousand, see the cells in boldface in the table. Even for smaller

αn, ε̂MR
a∗n

is slightly worse than ε̂∗an
if we compare the mean, median, E([ε̂MR

a∗n
/εn]− 1)2, and

risks etc., which suggests ε̂MR
a∗n

is not as accurate as ε̂∗an
.

The large variance of ε̂MR
a∗n

is caused by its heavy-tailed behavior behavior. We have

plotted the histograms of ε̂MR
a∗n

/εn. In some circumstances, ε̂MR
a∗n

can overestimate εn by a

factor of several hundred or even larger, and larger-scale study shows that this phenomenon

won’t disappear just by taking a smaller αn.

Naturally, one wonders what causes such heavy-tailed behavior, and how to modify ε̂MR
a∗n

such that it preserve the good property of ε̂MR
a∗n

and with a relatively thin tail. Recall that

[14, Page 3]

ε̂MR
a∗n

= sup
0<t<1

{
Fn(t)− t− (a∗n/

√
n) ·

√
t(1− t)

1− t

}
; (7.21)

the heavy-tailed behavior of ε̂MR
a∗n

is mainly caused by the denominator term (1− t), which

can get extremely small as t gets closer to 1. We recommend dropping the term in the

denominator and using the following as a lower bound:

ε̂+a∗n = sup
0<t<1

[Fn(t)− t− (a∗n/
√

n) ·
√

t(1− t)].
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Clearly this is still a lower bound which is a little bit more conservative than ε̂MR
a∗n

. However

whenever the maximum in (7.21) is reached at t ≈ 0, the difference between ε̂MR
a∗n

and ε̂+a∗n

is small. The advantage of this procedure is that it has a thin tail.

8 Proofs

8.1 Proof of Theorem 4.1

Before going into technical details, we briefly explain the main ideas behind the proof. First

note that there are two major contributions to the risk: one part due to over-estimating εn

and the other part due to under-estimating εn. By selecting an as large as 4
√

2π log3/2(n),

the probability of over-estimating is so small that the first part is negligible. It is thus

sufficient to limit our attention to the event where the estimator under-estimates εn. Now

recall that the estimator ε∗an
is the maximum of a collection of individual estimators ε

(j)
an ,

each of which is based on a pair of adjacent grid points tj and tj+1. Comparing ε∗an
with

ε
(j)
an , it is clear that the component of the risk due to ε∗an

under-estimating ε won’t exceed

that of any ε
(j)
an ; hence we can choose any such estimator to give us an upper bound for this

component of the risk.

In detail, let t∗n =
√

2q log n with

q =


4r, β ≥ 3r,

(β + r)2/4r, r < β < 3r,

r, β ≤ r.

(8.22)

The particular j = j0 we would like to choose is the one which satisfies tj0 ≤ t∗n < tj0+1.

To elaborate the above observations, we denote the event {F−
an

(t) ≤ F (t) ≤ F+
an

(t), ∀ 0 ≤

t ≤
√

2 log n} by Aan . First, note that for an = 4
√

2π log3/2(n), Lemma 3.2 implies that

P ((Aan)c) ≤ O(1/n3). It then follows that in the bound for the risk given by E( ε̂∗an
εn
−1)2 ≤
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( 1
εn

)2P ((Aan)c) + E([ε̂∗an
/εn − 1]2 · 1{Aan}), the first term is negligible. Secondly note that

ε̂
(j0)
an ≤ ε̂∗an

≤ εn over Aan , so:

E([ε̂∗an
/εn − 1]2 · 1{Aan}) ≤ E([ε̂(j0)

an
/εn − 1]2 · 1{Aan}). (8.23)

Finally the key inequality we need to show is the following:

E([ε̂(j0)
an

/εn − 1]2 · 1{Aan}) ≤


C log(n)(a2

n/n)F (t∗n)(1−F (t∗n))
(Φ(t∗n)−F (t∗n))2

, β > r,

C(a2
n/n)F (t∗n)(1−F (t∗n))

(Φ(t∗n)−F (t∗n))2
, β ≤ r;

(8.24)

In fact, Theorem 4.1 follows directly by combining (8.23) - (8.24) with the following lemma

in which we calculate [F (t∗n)(1− F (t∗n))]/[Φ(t∗n)− F (t∗n)]2:

Lemma 8.1 Suppose F (·) = (1 − εn)Φ(·) + εnΦ(· − µn) with εn = n−β, µn =
√

2r log n,

where 1/2 < β < 1, and r > ρ∗(β) so (β, r) falls above the detection boundary. With t∗n

defined in (8.22),

F (t∗n)(1− F (t∗n))
[Φ(t∗n)− F (t∗n)]2

=



√
πr log n · n−2r+2β · (1 + o(1)), β > 3r,

β(β−r)
β+r

√
4πr log n · n(β+r)2/(4r) · (1 + o(1)), r < β ≤ 3r,

2 · nβ · (1 + o(1)), β ≤ r.

Moreover, for any |t − t∗n| ≤ c/
√

log n, there is a constant C = C(r, β; c) > 0 such that:

F (t)(1− F (t))/(Φ(t)− F (t))2 ≤ C · F (t∗n)(1− F (t∗n))/(Φ(t∗n)− F (t∗n))2.

Using 1 − Φ(x) ∼ φ(x)/x for large x, the proof for Lemma 8.1 follows from basic calculus

and thus omitted.

The proof of (8.24) needs careful analysis on |F±
an
− F | and |µ̂(j0)

an − µn|. The following

lemmas are proved in [2, Section 8.5.1] and [2, Section 8.5.2], respectively.

Lemma 8.2 For fixed 0 < q < 1, an = O(log3/2 n) and t = tn =
√

2q log n+O(1/
√

log(n)),

we have that |F±
an

(t)− F (t)| ≤ (an/
√

n) ·
√

F (t)(1− F (t)) · (1 + o(1)) over the event Aan.
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Lemma 8.3 Suppose F (·) = (1 − εn)Φ(·) + εnΦ(· − µn) with εn = n−β, µn =
√

2r log n,

where 1/2 < β < 1, and r > ρ∗(β) so (β, r) falls above the detection boundary, then there

is a constant C > 0 such that over Event Aan, µ̂
(j0)
an ≥ µn and for sufficiently large n,

|µ̂(j0)
an − µn| ≤ C · (an/

√
n) ·

√
F (tj0)(1− F (tj0))/[Φ(tj0) − F (tj0)]. As a result, E[(µ̂(j0)

an −

µn) · 1{Aan}]2 ≤ C · (a2
n/n) · F (tj0)(1− F (tj0))/[Φ(tj0)− F (tj0)]

2.

We now proceed to prove (8.24). For short, denote A = Aan , τ = tj0 , µ = µn, µ̂ = µ̂
(j0)
an ,

ε = εn, ε̂ = ε̂
(j0)
an , and F± = F±

an
. By basic algebra, we can rewrite ε̂/ε − 1 = Φ(τ)−Φ(τ−µ)

Φ(τ)−Φ(τ−µ̂) ·[F (τ)−F+(τ)
Φ(τ)−F (τ) −

Φ(τ−µ)−Φ(τ−µ̂)
Φ(τ)−Φ(τ−µ)

]
. But by Lemma 8.3, µ̂ ≥ µ over A so the first term ≤ 1, we

then have:

(ε̂/ε− 1)2 ≤ 2
[
(
F (τ)− F+(τ)
Φ(τ)− F (τ)

)2 + (
Φ(τ − µ̂)− Φ(τ − µ)

Φ(τ)− Φ(τ − µ)
)2
]
. (8.25)

Now, first, by Lemma 8.2:

E

[(
F (τ)− F+(τ)
Φ(τ)− F (τ)

)2

· 1A

]
∼ (a2

n/n) · F (τ)(1− F (τ))
(Φ(τ)− F (τ))2

, (8.26)

and second, observe that |Φ(τ−µ̂)−Φ(τ−µ)|
Φ(τ)−Φ(τ−µ) ∼ φ(τ−µ)

Φ(τ)−Φ(τ−µ) · |µ̂ − µ|, where φ(τ−µ)
Φ(τ)−Φ(τ−µ) =

O(τ − µ) when β > r and = O(1) when β ≤ r, so by Lemma 8.3:

E

([
Φ(τ − µ̂n)− Φ(τ − µn)

Φ(τ)− Φ(τ − µ)

]2

1A

)
≤


C log(n)(a2

n/n)F (τ)(1−F (τ))
(Φ(τ)−F (τ))2

, β > r,

C(a2
n/n)F (τ)(1−F (τ))

(Φ(τ)−F (τ))2
, β ≤ r;

(8.27)

inserting (8.26)-(8.27) into (8.25) gives (8.24), and finishes the proof the theorem. �

8.2 Proof of Theorem 4.2

The basis strategy underlying the proof of Theorem 4.2 is to calculate the Hellinger affinity

between pairs of carefully chosen probability measures since as Le Cam and Yang [12]

has shown corresponding bounds for the minimax mean squared error easily follow. More
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specifically let Qθ1 and Qθ2 be a pair of probability measures. The Hellinger affinity is

defined by A(Qθ1 , Qθ2) =
∫ √

dQθ1dQθ2 and the minimax risk is bounded as follows:

inf
θ̂

sup
θ∈{θ1,θ2}

E(θ̂ − θ)2 ≥ 1
16

(θ2 − θ1)2A4(Qθ1 , Qθ2). (8.28)

The actual implementation of this general strategy in the proof of Theorem 4.2 requires

great care in the choice of the two probability measures and involves somewhat delicate

calculations of the affinity between these measures. Let X1, ..., Xn
iid∼ P . Let P0 = (1 −

ε0,n)N(0, 1) + ε0,nN(µ0,n, 1) and P1 = (1 − ε1,n)N(0, 1) + ε1,nN(µ1,n, 1). We shall write εi

for εi,n and µi for µi,n for i = 0, 1, and calibrate by ε0 = n−β, ε1 = n−β + (log n)ρn−τ with

τ ≥ β and 1
2 < β ≤ 1, µ0,n =

√
2r log n for some r > 0, and µ1,n =

√
2r log n− δn where δn

is “small” and will be specified later.

Denote by Pi,n the joint distribution of X1, ..., Xn under Hi for i = 0, 1. Set λn =

β+r
2
√

r

√
2 log n and ∆(x) ≡ ε0(eµ0x−µ2

0
2 −1)+ ε1(eµ1x−µ2

1
2 −1)+ ε0ε1(eµ0x−µ2

0
2 −1)(eµ1x−µ2

1
2 −1).

Then simple calculations show that the Hellinger Affinity between P0 and P1 satisfies

A(P0, P1) =
∫ √

dP0dP1 =
∫ ∞

−∞

√
1 + ∆(x) φ(x)dx =

{∫ λn

−∞
+
∫ ∞

λn

}√
1 + ∆(x) φ(x)dx.

It then follows from the inequalities
√

1 + ∆ ≥ 1+ 1
2∆− 1

8∆2+ 1
16∆3− 5

128∆4 and 1+∆(x) ≥

[1 + (ε0ε1)
1
2 (eµ0x−µ2

0
2 − 1)

1
2 (eµ1x−µ2

1
2 − 1)

1
2 ]2 and some algebra that

A(P0, P1) ≥ 1− 1
2
∆1 −

1
8
∆2 + o(n−1)

where

∆1 = ε0Φ̃(λn − µ0)


(

1− (
ε1
ε0

)
1
2 (

Φ̃(λn − µ1)
Φ̃(λn − µ0)

)
1
2

)2

+ 2(
ε1
ε0

)
1
2 (

Φ̃(λn − µ1)
Φ̃(λn − µ0)

)
1
2

(
1− e−

1
8
(µ0−µ1)2 Φ̃(λn − µ0+µ1

2 )

Φ̃
1
2 (λn − µ0)Φ̃

1
2 (λn − µ1)

)}

∆2 = ε20e
µ2

0Φ(λn − 2µ0)

{(
1− ε1

ε0
e

1
2
(µ2

1−µ2
0)(

Φ(λn − 2µ1)
Φ(λn − 2µ0)

)
1
2

)2

+ 2
ε1
ε0

e
1
2
(µ2

1−µ2
0)(

Φ(λn − 2µ1)
Φ(λn − 2µ0)

)
1
2

(
1− e−

1
2
(µ1−µ0)2 Φ(λn − (µ0 + µ1))

Φ
1
2 (λn − 2µ0)Φ

1
2 (λn − 2µ1)

)}
.
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Case 1: β ≥ 3r. In this case set τ = 1
2 + r, ρ = 1

2 and δn = (2r)−
1
2 n−τ+β. With these

choices direct calculations show that ∆2 � ∆1 and it suffices to focus attention on ∆2 in

this case. We shall only consider the case β > 3r as the case β = 3r is similar. When

β > 3r, β+r
2
√

r
> 2

√
r and λn > 2µi, i = 0, 1, for sufficiently large n. Hence ∆2 = ε20e

µ2
0{(1−

(1+ (log n)ρn−τ+β)(1−µ0δn + 1
2δ2

n))2 +2[1− (1− 1
2δ2

n)]}(1+ o(1)) = 1
2rn−1(1+ o(1)). Thus

A(P0, P1) ≥ 1− 1
2∆1− 1

8∆2+o(n−1) = 1− 1
16rn−1(1+o(1)) and consequently A(P0,n, P1,n) =

An(P0, P1) ≥
(
1− 1

16rn−1(1 + o(1))
)n → e−

1
16r > 0. It then follows that the minimax lower

bound for estimation under the mean squared error satisfies inf ε̂n sup(εn,µn)∈Ωn
E(ε̂n−εn)2 ≥

C(ε0,n−ε1,n)2 = C(log n)n−1−2r for some constant C > 0. Hence inf ε̂n sup(εn,µn)∈Ωn
E( ε̂n

εn
−

1)2 ≥ C(log n)n−1−2r+2β.

Case 2: r < β < 3r. In this case set τ = 1
2 + β − (β+r)2

8r , ρ = 5
4 and δn = (log n)ρn−τ+β

λn−µ0
=

√
2r

β−r (log n)
3
4 n−τ+β. Note that for sufficiently large n, µi < λn < 2µi for i = 0, 1. In this case

∆1 and ∆2 are balanced. It then follows from the standard approximation to the Gaussian

tail probability, Φ̃(x) = 1√
2πx

e−
1
2
x2

(1 + o(1)) as x →∞ that

∆1 =
1
4
ε0Φ̃(λn − µ0)

{(
[(log n)ρn−τ+β − (λn − µ0)δn]− δn

λn − µ0

)2

+
δ2
n

(λn − µ0)2

}
(1 + o(1))

=
1
2
ε0Φ̃(λn − µ0)

δ2
n

(λn − µ0)2
(1 + o(1)) =

2r
5
2

√
π(β − r)5

n−1(1 + o(1))

and ∆2 = ε20e
µ2

0Φ(λn − 2µ0)
2δ2

n
(2µ0−λn)2

(1 + o(1)) = 8r
5
2√

π(β−r)(3r−β)3
n−1(1 + o(1)). Hence

A(P0, P1) ≥ 1 − 1
2∆1 − 1

8∆2 + o(n−1) = 1 − cn−1(1 + o(1)), where c = r
5
2√

π(β−r)5
+

r
5
2√

π(β−r)(3r−β)3
. Therefore A(P0,n, P1,n) = An(P0, P1) ≥ (1− cn−1)n → e−c > 0 and conse-

quently inf ε̂n sup(εn,µn)∈Ωn
E( ε̂n

εn
− 1)2 ≥ C(ε0,n − ε1,n)2 ≥ C(log n)

5
2 n−1−2β+

(β+r)2

4r .

Case 3: β ≤ r. In this case set τ = 1
2 + 1

2β, ρ = 0 and δn = 0. With these choices µ0 = µ1

and this case is simpler than the other two cases. It is easy to verify that ∆1 � ∆2 and

A(P0,n, P1,n) = An(P0, P1) ≥ (1− cn−1)n → e−c > 0 and once again it follows from (8.28)

that inf ε̂n sup(εn,µn)∈Ωn
E( ε̂n

εn
− 1)2 ≥ Cn−1+β . �
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8.3 Proof of Theorem 5.1

Consider the event Aan
n ≡ {F−

an
(t) ≤ F (t) ≤ F+

an
(t) : ∀ 0 ≤ t ≤

√
2 log n}. For the first

claim, on one hand, the above argument shows that ε∗an
≤ εn over Aan

n . On the other hand,

it follows directly from the definition of F±
an

that Yn ≤ an over Aan
n , so by Lemma 3.2,

P ((Aan
n )c) ≤ P (Yn ≥ an) ≤ 2P (W+ ≥ an) ≤ α. Combining these, the first claim follows

from Lemma 5.1 and the argument right below it in Section 5. The second claim follows

similarly by using Lemma 3.3. �

8.4 Proof of Theorem 5.2

We only give a sketch of the proof of Theorem 5.2 since the details in terms of calculating

the Hellinger affinity are similar to the proof of Theorem 4.2. Without loss of generality

assume b1 ≤ 1 < b2. Set
τ = 1

2 + r, ρ = 1
2 δn = (2r)−

1
2 n−τ+β when β ≥ 3r

τ = 1
2 + β − (β+r)2

8r , ρ = 5
4 δn =

√
2r

β−r (log n)
3
4 n−τ+β when r < β < 3r

τ = 1
2 + 1

2β, ρ = 0 δn = 0 when β ≤ r

.

For 1
2 < β < 1 and 0 < r < 1, set (ε0,n, µ0,n) = (n−β,

√
2r log n) and (ε1,n, µ1,n) =

(ε0,n + c∗(log n)ρn−τ , µ0,n − δn). It is clear that (ε0,n, µ0,n) and (ε1,n, µ1,n) are both in

Ωn. Calculations as given in the proof of Theorem 4.2 then yield lower bounds on the

Hellinger affinity which in turn give upper bounds on the L1 distance between P0,n and

P1,n. These bounds show that for any given 0 < γ < 1
2 one can choose a constant c∗ > 0

such that the L1 distance between the distributions satisfies L1(P0,n, P1,n) ≤ 2γ. Since ε̂n

is a (1 − α) level lower confidence limit over Ωn, P0,n(ε̂n ≤ ε0,n) ≥ 1 − α. It then follows

that P1,n(ε̂n ≤ ε0,n) ≥ 1 − α − γ and hence E1,n(ε1,n − ε̂n)+ ≥ (1 − α − γ)(ε1,n − ε0,n) =

(1− α− γ)c∗(log n)ρn−τ . �
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8.5 Proof of Theorem 5.3

We will only show the first claim, as the proof of the second claim is similar. Let An be the

event that
√

n|Fn(t) − F (t)|/
√

F (t)(1− F (t)) ≤ 4
√

2π log3/2(n) for all 0 ≤ t ≤
√

2 log n,

by Lemma 3.2 the risk over Ac
n is negligible. Adapting to the notations of the proof of

Theorem 4.1, the key for the proof is that, similar to the proof of Lemma 4.1, especially

(8.24) and Lemma 8.1, the following is true for a wide range of an, e.g. O(
√

log log n) ≤

an ≤ 4
√

2π log3/2(n):

E

([
1− ε̂

(j0)
an

εn

]2

· 1{An}

)
≤


Ca2

n(log n)2.5n−1−2r+2β when β ≥ 3r,

Ca2
n(log n)2.5n−1+

(β+r)2

4r when r < β < 3r,

Ca2
n(log n)n−1+β when β ≤ r.

(8.29)

Using Hölder’s inequality and note that [1− ε̂∗an
/εn]+ ≤ [1− ε̂

(j0)
an /εn]+, all we need to show

is that an ≤ O(
√

2 log log n). Choose a∗n such that P (W ∗
n ≥ a∗n) = α/2, compare it with

P (W+
n ≥ an) = α/2, as W+

n ≤ W ∗
n so an ≤ a∗n. It is well known that a∗n ∼

√
2 log log n for

any fixed 0 < α < 1 (see for example [15, page 600]), so the claim follows directly. �

8.6 Proof of Theorem 6.1

By Lemma 3.2, uniformly, the probability of over-estimation will not exceed P{Yn ≥ an} ≤

2P{W+
n ≥ an}, which tends to 0 by the choice of an. So it is sufficient to show that

(1− ε̂∗an
/εn)+ tends to 0 in probability uniformly for all (β, r) ∈ Ω.

Note that Theorem 5.3 still holds if we replace the sequence an there by the current one.

Moreover, the inequality can be further strengthen into that, there is a constant C(Ω) > 0

37



such that for sufficiently large n:

E

[(
1−

ε̂∗an

εn

)
+

]
≤


C(Ω)

√
log log n · (log n)5/4 · n−[1/2+r−β] when β ≥ 3r,

C(Ω)
√

log log n · (log n)5/4 · n−[1/2− (β+r)2

8r
] when r < β < 3r,

C(Ω)
√

log log n · n−[1/2−β/2] when β ≤ r.
(8.30)

At the same time, note that the exponents are bounded away from 0:

d(Ω) ≡ minΩ{
1
2

+ r − β,
1
2
− (β + r)2

8r
,
1− β

2
} > 0. (8.31)

Combining (8.30) and (8.31) yields that E[(1 − ε̂∗an
/εn)+] ≤ C(Ω) ·

√
log log n · log1.25(n) ·

n−d(Ω) for sufficiently large n, so it follows that uniformly (1 − ε̂∗an
/εn)+ tends to 0 in

probability. This concludes the proof of Theorem 6.1. �
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