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Abstract

Control of the False Discovery Rate (FDR) is an important development in multiple
hypothesis testing, allowing the user to limit the fraction of rejected null hypotheses which
correspond to false rejections (i.e. false discoveries). The FDR principle also can be used in
multiparameter estimation problems to set thresholds for separating signal from noise when
the signal is sparse. Success has been proven when the noise is Gaussian; see [3].

In this paper, we consider the application of FDR thresholding to a non-Gaussian setting,
in hopes of learning whether the good asymptotic properties of FDR thresholding as an
estimation tool hold more broadly than just at the standard Gaussian model. We consider
a vector Xi, i = 1, . . . , n, whose coordinates are independent exponential with individual
means µi. The vector µ is thought to be sparse, with most coordinates 1 and a small
fraction significantly larger than 1. This models a situation where most coordinates are
simply ‘noise’, but a small fraction of the coordinates contain ‘signal’.

We develop an estimation theory working with log(µi) as the estimand, and use the per-
coordinate mean-squared error in recovering log(µi) to measure risk. We consider minimax
estimation over parameter spaces defined by constraints on the per-coordinate `p norm of
log(µi):

1
n
(
Pn

i=1 logp(µi)) ≤ ηp. Members of such spaces are vectors (µi) which are sparsely
heterogeneous.

We find that, for large n and small η, FDR thresholding can be nearly minimax, increas-
ingly so as η decreases. The FDR control parameter 0 < q < 1 plays an important role:
when q ≤ 1

2
, the FDR estimator is nearly minimax, while choosing a fixed q > 1

2
prevents

near minimaxity. These conclusions mirror those found in the Gaussian case in [3].
The techniques developed here seem applicable to a wide range of other distributional

assumptions, other loss measures, and non-i.i.d. dependency structures.
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1 Introduction

Suppose we have n measurements Xi which are exponentially distributed, with possibly different
means µi:

Xi ∼ Exp(µi), µi ≥ 1, i = 1, . . . , n. (1.1)

The unknown µ′is exhibit sparse heterogeneity: most take the common value 1, but a small
fraction take different values > 1.

There are various ways to define sparsity precisely; see [3] for example. In our setting of
exponential means, the most intuitive notion of sparsity is simply that there is a relatively small
proportion of µi’s which are strictly larger than 1:

#{i : µi 6= 1}
n

≤ ε ≈ 0. (1.2)

Such situations arise in several application areas.

• Multiple Lifetime Analysis. Suppose the Xi represent failure times of many comparable
independent systems, where a small fraction of the systems – we don’t know which ones –
may have significantly higher expected lifetimes than the typical system.

• Multiple Testing. Suppose that we conduct many independent statistical hypothesis tests,
each yielding a p-value pi say, and that the vast majority of those tests correspond to
cases where the null distribution is true, while a small fraction correspond to cases where a
Lehmann alternative [13] is true. Then Xi ≡ log(1/pi) ∼ Exp(µi) where most of the µi are
1 – corresponding to true null hypotheses, while a few are greater than 1, corresponding
to Lehmann alternatives.

• Signal Analysis. A common model (e.g. in spread-spectrum communications) for a discrete-
time signal (Yt)n

t=1 takes the form Yt =
∑

j Wj exp{
√
−1λjt} + Zt, where Zt is a white

Gaussian noise, and the λj index a small number of unknown frequencies with white Gaus-
sian noise coefficients Wj . In spectral analysis of such signals it is common to compute the
periodogram I(ω) = |n−1/2

∑
t Yt exp(

√
−1ωt)|2, and consider as primary data the peri-

odogram ordinates Xi ≡ I( 2πi
n ), i = 1, . . . , n/2−1. These can be modeled as independently

exponentially distributed with means µi, say; here most of the µi = 1, meaning that there
is only noise at those frequencies, while some of the µi > 1, meaning that there is signal
at those frequencies. (That is, certain frequencies ωi = 2πi

n happen to match some λj). In
an incoherent or noncooperative setting, we wouldn’t know the λj and hence we wouldn’t
know which µi > 1.

The simple sparsity model (1.2) is merely a first pass at the problem, in applications we may
also need to consider situations with a large number of means which are close to, but not exactly
1. A more general assumption (adapted from [7, 3]) is that for some 0 < p < 2, the log means
obey an `p constraint,

1
n

(
n∑

i=1

logp µi) ≤ ηp, η small, 0 < p < 2.

Working on the log-scale turns out to be useful because of the ‘multiplicative’ nature of the
exponential data. The parameter p measures the degree of sparsity of µ. As p→ 0,

n∑
i=1

logp(µi) −→ #{i : µi 6= 1}.

1.1 Minimax Estimation of Sparse Exponential Means

We now turn to simultaneous estimation of the means µi. Let µ = (µ1, µ2, . . . , µn), and suppose
we use the squared `2-norm on the log-scale to measure loss

‖ log µ̂− logµ‖22 =
n∑

i=1

(log µ̂i − logµi)2.
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Motivated by situations of sparsity, we consider restricted parameter spaces – `p-balls with radius
η:

Mn,p(η) = {µ :
1
n

n∑
i=1

logp(µi) ≤ ηp}. (1.3)

We quantify performance by the expected coordinatewise loss:

Rn(µ̂, µ) = E
[ 1
n

n∑
i=1

(log µ̂i − logµi)2
]
.

We are interested in the minimax risk, the optimal risk which any estimator can guarantee to
hold uniformly over the parameter space:

R∗n = R∗n(Mn,p(η)) = inf
µ̂

sup
Mn,p(η)

Rn(µ̂, µ). (1.4)

This quantity has been studied before in a related Gaussian noise setting [3], but not, to our
knowledge, in an exponential noise setting. Its asymptotic behavior as η → 0 is pinned down by
the following result:

Theorem 1.1

lim
η→0

[
limn→∞R∗n(Mn,p(η))

ηp log2−p log 1
η

]
= 1.

A natural approach in this problem is simple thresholding. In detail, set µ̂t ≡ (µ̂t,i)n
i=1, where

µ̂t,i =
{
Xi, Xi ≥ t,
1, otherwise. (1.5)

For an appropriate choice of threshold t (which depends in principle on p and η, but not on n),
this can be asymptotically minimax:

Theorem 1.2

lim
η→0

inf
t

[
lim

n→∞

supMn,p(η)Rn(µ̂t, µ)
R∗n(Mn,p(η))

]
= 1.

Here, by “asymptotically minimax” we mean that the ratio of the worst risk obtained by the
estimator to the corresponding minimax risk tends to 1 as n→∞ followed by η → 0.

The minimizing threshold t0 = t0(p, η) referred to in this theorem behaves as

t0(p, η) ∼ p log(1/η) + p log log(1/η) · (1 + o(1)), η → 0.

In order to have asymptotic minimaxity, it is important to adapt the threshold to the sparsity
parameters (p, η).

1.2 FDR Thresholding

FDR-controlling methods were first proposed in a multiple hypothesis testing situation in [1, 2].
For the exponential model we are considering, we suppose there are n independent tests of
unrelated hypotheses, H0,i vs H1,i, where the test statistics Xi obey

under H0,i: Xi ∼ Exp(1), (1.6)
under H1,i: Xi ∼ Exp(µi), µi > 1, (1.7)

and it is unknown how many of the alternative hypotheses are likely to be true. Pick a number
q, 0 < q < 1, which Abramovich et al. [1, 2], called the FDR control parameter. If we call a
‘discovery’ any case where H0,i is rejected in favor of H1,i, then a ‘false discovery’ is a situation
where H0,i is falsely rejected. An FDR-controlling procedure controls

E
[ #{False Discoveries}
#{Total Discoveries}

]
≤ q.
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Simes’ procedure [17] was shown by [4] to be FDR controlling, and is easy to describe. We begin
by, sorting all the observations in the descending order,

X(1) ≥ X(2) ≥ . . . ≥ X(n).

Next compare the sorted values with quantiles of Exp(1); more specifically, if E(t) denotes the
standard exponential distribution function, and Ē = 1−E the corresponding survival function,
compare (X(1), X(2), . . . , X(n)) with (t1, t2, . . . , tn), where

tk = Ē−1(q · k
n

) = − log(q · k
n

), 1 ≤ k ≤ n,

and let t0 = ∞. Finally, let k = kFDR be the largest index k ≥ 1 for which X(k) ≥ tk, with
k = 0 if there is no such index. The FDR thresholding estimator µ̂FDR

q,n uses the (data-dependent)
threshold t̂FDR ≡ tkF DR

, and has components (µ̂i)n
i=1, where

µ̂i =
{
Xi, Xi ≥ t̂FDR,
1, otherwise. (1.8)

In particular, if kFDR = 0, µ̂i = 1 for all i. We think of the observations exceeding tFDR as
discoveries; the FDR property guarantees relatively few false discoveries.

An attractive property of the procedure is its simplicity and definiteness. Another attractive
property is its good performance in an estimation context. Our main result in this paper:

Theorem 1.3 1. When 0 < q ≤ 1
2 , the FDR estimator µ̂FDR

q,n is asymptotically minimax:

lim
η→0

[
lim

n→∞

supµ∈Mn,p(η)Rn(µ̂FDR
q,n , µ)

R∗n(Mn,p(η))

]
= 1.

2. When q > 1
2 , the FDR estimator µ̂FDR

q,n is not asymptotically minimax:

lim
η→0

[
lim

n→∞

supµ∈Mn,p(η)Rn(µ̂FDR
q,n , µ)

R∗n(Mn,p(η))

]
=

q

1− q
> 1.

1.3 Interpretation

By controlling the FDR so there are at least as many ‘true’ discoveries above threshold as ‘false’
ones we get an estimator that, with increasing sparsity η → 0, asymptotically attains the mini-
max risk. This is so across a wide range of measures of sparsity.

The same general conclusion was found in a model of Gaussian observations by Abramovich,
Benjamini, Donoho, and Johnstone [3]. In that setting, the authors supposed that Xi ∼ N(µi, 1)
and the µi are mostly close to zero, so that 1

n (
∑n

i=1 |µi|p) ≤ ηp
n. (Note that the sparsity parameter

η was replaced by a sequence ηn → 0 as n→∞ in [3]). In that setting, it was shown that FDR
thresholding gave asymptotically minimax estimators. Hence, the results in our paper show that
FDR thresholding, known previously to be successful in the Gaussian case, is also successful in
an interesting non-Gaussian case.

It appears to us that there may be a wide range of non-Gaussian cases where the vector
of means is sparse and FDR gives nearly-minimax results. Elsewhere, Jin will report results
showing that similar conclusions are possible in the case of Poisson data. In that setting we
have, for large n, n Poisson observations Ni ∼ Poisson(µi) with µi mostly 1, with perhaps a
small fraction significantly greater than 1. In that setting as well, it seems that FDR thresholding
gives near-minimax risk.

In fact, the approach developed here seems applicable to a wide range of non-Gaussian
distributions and loss functions. At the same time, it seems able to cover a wide range of
dependence structures as well.
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1.4 Contents

The paper is organized as follows. Theorems 1.1 (on minimax risk) and 1.2 (on thresholding
risk) are developed and proved in Sections 2 and 3, respectively. These sections also introduce
a model in which the parameter µ is realized by i.i.d. random sampling rather than as a fixed
vector; this model is very useful for computations.

Sections 4-7 develop our technical approach for analyzing FDR thresholding. This starts, in
Section 4, with a definition and analysis of the so-called FDR functional, establishing various
boundedness and continuity properties. The FDR functional allows us to articulate the idea that,
in a Bayesian setting where both the mean vector µ and the subordinate data X are drawn i.i.d.
at random, there is a ‘large-sample threshold’ which FDR thresholding is consistently ‘estimat-
ing’. Section 5 discusses the performance of an idealized pseudo-estimator which thresholds at
this large-sample threshold even in finite samples; it shows that the idealized ‘estimator’ achieves
risk performance approaching the minimax risk. Section 6 shows that, in large samples, the risk
of FDR thresholding is well-approximated by the risk of idealized FDR thresholding. Section 7
ties together the pieces by showing that the results of Sections 4-6 for the Bayesian model have
close parallels in the original frequentist setting of this introduction, implying Theorem 1.3.

Section 8 ends the paper by graphically illustrating two important points about the method
and the proof below; then by comparing our results to recent work of Genovese and Wasserman
and of Abramovich et al.; and finally by describing generalizations to a variety of non-Gaussian
and dependent data structures.

1.5 Notation

In this paper, we let E denote the cdf of Exp(1), while, to avoid confusion, we use E for the
expectation operator applied to random variables; we also let Ē denote the survival function of
Exp(1), and we extend this notation to all cdf’s; that is for any cdf G, we let Ḡ = 1−G denote
the survival function.

We let ‘#′ denote the scale mixture operator, mapping any (marginal) distribution F on
[1,∞) to a corresponding G = E#F on [0,∞) according to :

F
E#7−→ G : G(t) =

∫
E(t/µ)dF (µ),

notice here G is the cdf of a scalar random variable X, with µ a random variable µ ∼ F and
X|µ ∼ Exp(µ). We let F denote the set of all eligible cdf’s:

F = {F : PF {µ ≥ 1} = 1},

and Fp(η) denote the convex set of p-th moment-constrained cdf’s:

Fp(η) = {F ∈ F :
∫

logp(µ)dF (µ) ≤ ηp}, 0 < p < 2. (1.9)

We also let G denote the collection of all scale mixtures of exponentials:

G = {G : G = E#F, F ∈ F},

and let Gp(η) denote the subclass where the mixing distributions obey the moment condition
E [logp(µ)] ≤ ηp:

Gp(η) = E#Fp(η) = {G : G = E#F, F ∈ Fp(η)}, 0 < p < 2. (1.10)

In this paper, except where we explicitly state otherwise, the cdf’s F and G are always related
by scale mixing, so

G = E#F.
(The relation F 7→ E#F is one-to-one.) We often use G and Gn together, always implicitly
assuming they are related as the theoretical and empirical CDF of the same underlying samples,
so that Gn is the empirical distribution for n iid samples Xi ∼ G, where

Gn(t) =
1
n

n∑
i=1

1{Xi<t}.
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2 Asymptotics of Minimax Risk

In this section, we prove Theorem 1.1. As usual, R∗n(M) = supπ∈Π ρn(π), where ρn(π) denotes
the Bayes risk EπEµ

[
1
n‖ log µ̂π − logµ‖22

]
with µ random, µ ∼ π; µ̂π denotes the Bayes estimator

corresponding to prior π and `2 loss, and Π denotes the set of all priors supported on M (here
M = Mn,p(η) as in(1.3)). Throughout this paper, we always implicitly assume that Pπi

{µi ≥
1} = 1, where πi is the ith entry of π.

As in [7], we get a simple approximation to R∗n by considering a minimax-Bayes problem
in which µ is a random vector that is only required to belong to M on average. Define the
minimax-Bayes risk

R̄∗n(Mp,n(η)) = inf
µ̂

sup
π

{
EπEµ

[ 1
n
‖ log µ̂− logµ‖22

]
: Eπ

[ 1
n

n∑
i=1

logp µi

]
≤ ηp

}
. (2.1)

Since a degenerate prior distribution concentrated at a single point µ ∈Mp,n(η) trivially satisfies
the moment constraint, the minimax-Bayes risk is an upper bound for the minimax risk:

R∗n(Mn,p(η)) ≤ R̄∗n(Mn,p(η)). (2.2)

In fact, for large n we have asymptotic equality; in Section 2.1 below we prove:

Theorem 2.1

lim
n→∞

R∗n(Mn,p(η))
R̄∗n(Mn,p(η))

= 1.

Consider a univariate decision problem with data X a scalar random variable, with µ a random
scalar µ ∼ F and X|µ ∼ Exp(µ). The corresponding univariate minimax-Bayes risk is

ρ̄(η) = ρ̄p(η) = inf
δ

sup
F∈Fp(η)

EFEµ(log δ(X)− logµ)2. (2.3)

The univariate and n-variate minimax risks are closely connected; in Section 2.2 we prove:

Theorem 2.2 R̄∗n(Mn,p(η)) = ρ̄p(η).

The univariate minimax-Bayes risk has a simple asymptotic expression:

Theorem 2.3 For 0 < p < 2,

lim
η→0

(
ρ̄p(η)

ηp log2−p log 1
η

)
= 1.

Theorem 1.1 follows immediately by combining Theorems 2.1-2.3. �

2.1 Proof of Theorem 2.1

Because (2.2) gives half of what we need, our task is to establish an asymptotic inequality in the
other direction. We use a strategy similar to [7].

Now for fixed η, choose 0 < ζ � η, and construct the product distribution Π(n)
η−ζ = Πn

i=1π
∗
η−ζ ,

where µi
iid∼ π∗η−ζ ,

∫
logp(µ)dπ∗ = (η − ζ)p, 1 ≤ i ≤ n, and π∗ is least favorable for univariate

Bayes Minimax problem (2.3), so Π(n)
η−ζ is least-favorable for the n-variate Bayes Minimax prob-

lem (2.1). Let An = { 1
n

∑n
i=1 logp µi ≤ ηp}, then we construct a new prior Π̃(n)

η−ζ = Π(n)
η−ζ(·|An).

By the Law of Large Numbers (LLN),

P (An) → 1; (2.4)

while under Π(n)
η−ζ , µ ∈Mn,p(η), i.e. supp Π(n)

η−ζ ⊂Mn,p(η). As the minimax risk is the supremum
of Bayes risks,

R∗n ≥ ρn(Π̃(n)
η−ζ). (2.5)

6



Now for any constant w > 1 and with L(·, ·) the loss function

L(µ̂, µ) =
1
n

n∑
i=1

(log µ̂i − logµi)2,

define the w-truncated loss function,

L(w)(µ̂, µ) =
1
n

n∑
i=1

min{(log µ̂i − logµi)2, w}.

Clearly,
ρn(Π̃(n)

η−ζ , L) ≥ ρn(Π̃(n)
η−ζ , L

(w)), (2.6)

where ρn(π, L) denotes the Bayes risk with respect to loss function L. With ‖ ·‖TV the variation
distance, the definition of Π̃(n)

η−ζ and (2.4) give

‖Π̃(n)
η−ζ −Π(n)

η−ζ‖TV ≤ 1− P (An) → 0.

For variation distance, |EP f − EQf | ≤ ‖f‖∞ · ‖P −Q‖TV ; thus for any fixed w, the Bayes risk

|ρn(Π̃(n)
η−ζ , L

(w))− ρn(Π(n)
η−ζ , L

(w))| ≤ w · (1− P (An)) → 0, n→∞.

On the other hand, for L or L(w), the coordinatewise separability of the loss and the independence
of the coordinates give that the per-coordinate Bayes risk does not depend on the number of
coordinates:

ρn(Π(n)
η−ζ , L) = ρ1(π∗η−ζ , L), ρn(Π(n)

η−ζ , L
(w)) = ρ1(π∗η−ζ , L

(w)),

we conclude that, for each w > 0,

ρn(Π̃(n)
η−ζ , L

(w)) → ρ1(π∗η−ζ , L
(w)), n→∞.

Using monotone convergence of L(w) → L, as w →∞,

ρ1(π∗η−ζ , L
(w)) → ρ1(π∗η−ζ , L) = ρ̄(η − ζ),

so from (2.5)-(2.6),
R∗n ≥ ρ̄(η − ζ).

Now ρ̄(η) is monotone and continuous as a function of η; thus, by letting ζ → 0, we have:

R∗n ≥ ρ̄(η) = R̄∗n.

�

2.2 Proof of Theorem 2.2

First, observe that by the coordinatewise-separable nature of any estimator δ = δn for µ, and
the i.i.d structure of the Xi/µi,

1
n
EπEµ‖ log δn − logµ‖22 =

1
n

∑
i

∫
Eµi [log δ(Xi)− logµi]2πi(dµi) (2.7)

=
1
n

∫
Eµ1 [log δ(X1)− logµ1]2(

∑
i

πi)(dµ1) (2.8)

= EFπ
Eµ1 [log δ(X1)− logµ1]2, (2.9)
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where Fπ = 1
n

∑
πi(dµ1) is a univariate prior. Second, observe that the moment condition on π

can also be expressed in terms of Fπ, since

1
n
Eπ

∑
logp µi =

1
n

∑
i

∫
logp(µi)πi(dµi) =

∫
logp(µ1)Fπ(dµ1), (2.10)

thus EFπ logp µ1 ≤ ηp. Theorem 2.2 derives easily from (2.7) - (2.10). Indeed, let (F 0, δ0) be a
saddlepoint for the univariate problem (2.3): that is, δ0 is a minimax rule, F 0 is a least favorable
prior distribution and δ0 is Bayes for F 0. Let F 0,n denote the n-fold Cartesian product measure
derived from F 0, δ0,n the n-fold Cartesian product of δ0: from (2.10) and (2.7), it satisfies the
moment constraint for R̄∗n(Mn,p(η)), and

1
n
EF 0,nEµ‖ log δ0,n − logµ‖22 = ρ̄p(η).

To establish the Theorem, it is enough to verify that (F 0,n, δ0,n) is a saddlepoint for the minimax
problem R̄∗n(Mn,p(η)), which would follow if for every π obeying the moment constraint for
R̄∗n(Mn,p(η)),

EπEµ‖ log δ0,n − logµ‖22 ≤ EF 0,nEµ‖ log δ0,n − logµ‖22.

But (2.7) - (2.10) reduce this to the saddlepoint property of (F 0, δ0) in the 1-dimensional minimax
problem ρ̄p(η). �

2.3 Proof of Theorem 2.3

The following is proved in [11, Chapter 6].

Lemma 2.1 For functions a = a(η) and d = d(η) such that limη→0 a(η) = 0, limη→0 d(η) = ∞,
and limη→0[a(η)/d(η)]1/(d(η)−1) = 0, then:∫ 1

0

[
(a/d) + y1−1/d

]−1
dy = d ·

(
1 +O((a/d)1/(d−1))

)
, η → 0.

We now describe lower and upper bounds for ρ̄(η), both equivalent to ηp log2−p(log 1
η ) asymp-

totically as η → 0. First, consider a lower bound for ρ̄(η). A natural lower bound uses 2-point
priors:

ρ̄(η) ≡ sup
F∈Fp(η)

ρ1(F ) ≥ sup
{(ε,µ): ε logp(µ)=ηp}

ρ1(Fε,µ), (2.11)

where Fε,µ = (1 − ε)ν1 + ενµ ∈ Fp(η) denotes the mixture of mixing point masses at 1 and µ
with fractions (1− ε) and ε respectively. The Bayes rule δB(X;Fε,µ) obeys

log(δB(X;Fε,µ)) =
ε
µe

−X/µ

(1− ε)e−X + ε
µe

−X/µ
logµ, (2.12)

and the Bayes risk is

ρ1(Fε,µ) = (logµ)2
∫ ∞

0

(1− ε)e−x ε
µe

− x
µ

(1− ε)e−x + ε
µe

− x
µ
dx =

ε log2(µ)
µ

∫ 1

0

(
ε

(1− ε)µ
+ y1− 1

µ )−1dy; (2.13)

particularly, if we let µ∗ = µ∗(η) = log( 1
η )/(log log 1

η ), ε∗ = ε∗(η) = ηp/ logp(µ∗), applying
Lemma 2.1 with a = a(η) = ε∗/(1− ε∗), and d = d(η) = µ∗:

ρ1(Fε∗(η),µ∗(η)) = (ηp log2−p log
1
η
) · (1 + o(1)),

and we obtain the desired lower bound:

ρ̄(η) ≥ ρ1(Fε∗(η),µ∗(η)) = (ηp log2−p log
1
η
) · (1 + o(1)). (2.14)
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We get an upper bound by considering the risk of thresholding. Define the univariate thresh-
olding nonlinearity

δt(x) =
{
x, x ≥ t,
1, otherwise. (2.15)

Then with thresholding estimator δt(X) based on scalar data X obeying X|µ ∼ Exp(µ), where
scalar µ is distributed according to a prior F ∈ Fp(η), the univariate Bayes thresholding risk is:

ρT (t, F ) = E(log(δt(X))− log(µ))2.

We are particularly interested in the specific threshold

t0 = t0(p, η) = p log(
1
η
) + p log log(

1
η
) +

√
log log(

1
η
).

The worst case univariate Bayes risk for this rule is

ρ̄T (t0, η) = ρ̄(t0, η; p) ≡ sup
F∈Fp(η)

ρT (t0, F ). (2.16)

As the minimax rule is at least as good as any specific rule,

ρ̄(η) ≤ ρ̄T (t0, η). (2.17)

Now in the proof of Theorem 1.2 below, we show that the thresholding risk obeys:

ρ̄T (t0, η; p) ≤ ηp log2−p log
1
η
(1 + o(1)), η → 0. (2.18)

Combining the lower bound given by (2.14) and the upper bounds given by (2.17)-(2.18), we
obtain Theorem 2.3. �

3 Asymptotic Minimaxity of Thresholding

We now prove Theorem 1.2, showing that thresholding estimates can asymptotically approach
the minimax risk.

3.1 Reduction to Univariate Thresholding

In effect, we only have to prove (2.18). We first remind the reader why this establishes Theorem
1.2. Let again µ̂t denote the thresholding procedure on samples of size n. Trivially, for any t
and n, the risk of thresholding at t exceeds the minimax risk:

sup
Mn,p(η)

Rn(µ̂t, µ) ≥ R∗n(Mn,p(η)).

Theorem 1.2 thus follows from an asymptotic inequality in the other direction:

lim sup
η→0

inf
t

[
lim sup

n→∞

supMn,p(η)Rn(µ̂t, µ)
R∗n(Mn,p(η))

]
≤ 1. (3.1)

Take
t0 = t0(p, η) = p log(1/η) + p log log(1/η) +

√
log log(1/η); (3.2)

by Theorem 2.1 and Theorem 2.2, (3.1) reduces to:

lim sup
η→0

[ lim supn→∞ supMn,p(η)Rn(µ̂t0 , µ)
ρ̄(η)

]
≤ 1. (3.3)
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Consider the worst Bayes risk of µ̂t0 with respect to any prior µ ∼ π, where π is the distri-
bution of a random vector which is only required to belong to Mn,p on average:

R̄∗n(µ̂t0 , η) = R̄∗n(µ̂t0 , η; p) = sup{EπEµ[
1
n
‖ log µ̂t0 − logµ‖22], for π : Eπ

1
n

n∑
i=1

logp µi ≤ ηp}.

(3.4)
Now since degenerate prior distributions concentrated at points µ ∈Mp,n(η) trivially satisfy the
moment constraint Fp(η), we have:

sup
Mn,p(η)

Rn(µ̂t0 , µ) ≤ R̄∗n(µ̂t0 , η). (3.5)

Consider also the worst univariate Bayes risk (2.16) of the scalar rule δt0(X) as in (2.15) with
respect to univariate prior F ∈ Fp(η). As in the proof of Theorem 2.2, it is not hard to show
that the minimax multivariate Bayes risk is the same as the minimax univariate Bayes risk:

R̄∗n(µ̂t0 , η) = ρ̄T (t0, η). (3.6)

Hence, we now see that given (2.14), the matching upper bound (2.18) implies

lim
η→0

ρ̄T (t0, η)
ρ̄(η)

= 1. (3.7)

Combining (3.5) – (3.7), yields (3.3), and Theorem 1.2. We thus turn to (2.18).
The univariate Bayes risk for thresholding at t can be decomposed into a bias proxy and a

variance proxy:

ρ̄T (t, F ) =
∫

(logµ)2(1− e−
t
µ )dF (µ) +

∫
[
∫ ∞

t
µ

log2(x)e−xdx]dF (µ),

≡
∫
b(t, µ)dF (µ) +

∫
v(t, µ)dF (µ),

say. We now proceed to show that, as η → 0,

sup
F∈Fp(η)

∫
b(t0, µ)dF (µ) ≤ ηp log2−p log

1
η
; (3.8)

and
sup

F∈Fp(η)

∫
v(t0, µ)dF (µ) = o(ηp log2−p log

1
η
), (3.9)

together these imply (2.18).

3.2 Maximizing Linear Functionals over Fp(η)

The relations (3.8) - (3.9) concern maximization of functionals over cdf’s of moment-constrained
scale mixtures. We now approach this problem from a general viewpoint, looking ahead to
maximization problems in later sections.

Consider two functions ψ(µ), φ(µ) in C[1,∞) ∩ C2(1,∞); suppose

(a) φ is strictly increasing and φ(1) = 0;

(b) ψ is bounded, ψ(1) = 0, ψ ≥ 0, but ψ is not identically 0;

(c) limµ→∞[ψ(µ)/φ(µ)] = 0.
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Figure 1: Generalized convex envelope Ψ(z) for the case limµ→1+[ψ(µ)/φ(µ)] < ∞ in the
φ – ψ plane, the example showed here with limµ→1+[ψ(µ)/φ(µ)] = 0, the thinner curve is
{(φ(µ), ψ(µ)) : µ ≥ 1}. When 0 ≤ z ≤ φ(µ∗), Ψ(z) is a linear function of z and is illustrated by
the line segment. The case z > φ(µ∗) is not discussed.

We are interested in the maximization problem:

Ψ(z) = sup
F∈F

{
∫
ψ(µ)dF (µ) :

∫
φ(µ)dF (µ) ≤ z}. (3.10)

In the case φ(µ) = µ, Ψ(z) is the usual convex envelope of ψ, i.e. Ψ(z) traces out the least
concave majorant of the graph of Ψ. The next two lemmas describe the computation of the
envelope.

Lemma 3.1 Suppose limµ→1+[ψ(µ)/φ(µ)] exists and the limit is strictly smaller than Ψ∗ ≡
supµ>1{ψ(µ)/φ(µ)}. Set

µ∗ = µ∗(ψ, φ) ≡ max{µ > 1 : ψ(µ)/φ(µ) = Ψ∗},

then for any 0 ≤ z ≤ φ(µ∗), Ψ(z) = Ψ∗ · z and is attained by the mixture of point masses at 1
and µ∗, with masses (1− ε(z)) and ε(z) respectively, where ε(z) = ε(z;ψ, φ) = z/φ(µ∗).

See Figure 1.

Lemma 3.2 Suppose that limµ→1+[ψ(µ)/φ(µ)] = ∞ and suppose there is µ̄ = µ̄(ψ, φ) > 1 so
that (ψ′(µ)/φ′(µ)) is strictly decreasing in the interval (1, µ̄], and, finally, that ψ′(µ̄)/φ′(µ̄) <
Ψ∗∗(µ̄), where

Ψ∗∗(µ) = Ψ∗∗(µ; µ̄, φ, ψ) ≡ sup
µ′>µ̄

ψ(µ′)− ψ(µ)
φ(µ′)− φ(µ)

, 1 ≤ µ < µ̄. (3.11)

Then there is a unique solution µ∗ = µ∗(ψ, φ) to the equation

Ψ∗∗(µ) = ψ′(µ)/φ′(µ), 1 < µ ≤ µ̄;

moreover, letting

µ∗ = max
{
µ ≥ µ̄ :

ψ(µ)− ψ(µ∗)
φ(µ)− φ(µ∗)

= Ψ∗∗(µ∗)
}
,

then when 0 < z ≤ φ(µ∗), Ψ(z) = ψ(φ−1(z)) and is attained by the single point mass νµz
with

µz = φ−1(z), and when φ(µ∗) < z ≤ φ(µ∗), Ψ(z) = ψ(µ∗) + Ψ∗∗(µ∗)[z − φ(µ∗)] and is attained
by the mixture of point masses at µ∗ and µ∗ with masses (1− ε(z)) and ε(z) respectively, where
ε(z) = ε(z;φ, ψ) = [z − φ(µ∗)]/[φ(µ∗)− φ(µ∗)].

Notice here that the strict monotonicity of ψ′(µ)/φ′(µ) over (1, µ̄] is equivalent to concavity of
the curve {(φ(µ), ψ(µ)) : 1 < µ ≤ µ̄} in the (φ(µ), ψ(µ)) plane. See Figure 2.

Lemma 3.1 - 3.2 are proved in the appendix.
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Figure 2: Generalized convex envelope Ψ(z) for the case limµ→1+[ψ(µ)/φ(µ)] = ∞ in the φ – ψ
plane. The thinner curve is {(φ(µ), ψ(µ)) : µ ≥ 1}. When 0 < µ < µ∗, {(φ(µ),Ψ(µ)) : 0 < µ <
µ∗} traces out the same curve as that of {(φ(µ), ψ(µ)) : 0 < µ < µ∗}, and when µ∗ ≤ µ ≤ µ∗,
Ψ(z) is a linear function of z = φ(µ) which is illustrated by the line segment. The slope of the
line segment equals to the tangent at µ∗ of the curve {(φ(µ), ψ(µ)) : µ ≥ 1}. The case z > φ(µ∗)
is not discussed.

3.3 Maximizing Bias and Variance

To apply Lemma 3.1 to the bias proxy, set ψ = ψη(µ) = b(t0, µ) = log2(µ)(1 − e−
t0
µ ), φ(µ) =

logp(µ), and Ψ(z) as in (3.10). Then the worst bias supFp(η)

∫
b(t0, µ)dF ≡ Ψ(ηp). Direct

calculation shows that for large t0:

µ∗ ≡ argmax[ψ(µ)/φ(µ)] ∼ t0
log log t0 − log(2− p)

,

and

Ψ∗ = Ψ̄p,η ≡
ψ(µ∗)

logp(µ∗)
∼ log2−p t0 ∼ log2−p log(

1
η
).

It is obvious that for sufficiently small η, ηp < φ(µ∗); thus by Lemma 3.1, Ψ(ηp) = Ψ∗ · ηp, and
relation (3.8) follows directly.

Now consider the variance proxy. Letting ψ(µ) = ψη(µ) ≡ v(t0, µ)− v(t0, 1), φ(µ) = logp(µ),
and again with Ψ(z) as in (3.10), the maximal variance proxy supFp(η)

∫
v(t0, µ)dF = Ψ(ηp) +

v(t0, 1). Notice here that v(t0, 1) = o(ηp log2−p(log 1
η )), so to show relation (3.9), all we need to

show is:
Ψ(ηp) = O(ηp). (3.12)

Direct calculations show that:

lim
µ→1+

[ψ(µ)
φ(µ)

]
=


0, 0 < p < 1,
t0 log2(t0)e−t0 , p = 1,
∞, 1 < p < 2;

(3.13)

so we will calculate Ψ(z) for the cases 0 < p ≤ 1 and 1 < p < 2 separately.
When 0 < p ≤ 1, letting c =

∫∞
1

log2(x)e−xdx, notice that for sufficiently large t0, the
condition of Lemma 3.1 is satisfied; moreover, direct calculations show that:

µ∗ = argmaxµ>1{ψ(µ)/φ(µ)} ∼ t0, Ψ∗ = ψ(µ∗)/ logp(µ∗) ∼ c

logp(t0)
;

for sufficiently small η, ηp < φ(µ∗), so by Lemma 3.1, Ψ(ηp) = Ψ∗ ·ηp, and (3.12) follows directly.
When 1 < p < 2, letting µ̄ be the smaller solution of the equation t0

µ log(µ) = (p − 1), then
for large t0, µ̄ ∼ 1 + p−1

t0
; moreover, by elementary analysis, [ψ′(µ)/φ′(µ)] is strictly decreasing
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in (1, µ̄] and ψ′(µ̄)/φ′(µ̄) < Ψ∗∗(µ̄), and the condition of Lemma 3.2 is satisfied; moreover, for
large t0,

Ψ∗∗(µ) ∼ c

logp t0
, ∀ 1 < µ ≤ µ̄. (3.14)

More elementary analysis shows that:

µ∗ = argmaxµ≥µ̄

ψ(µ)− ψ(µ∗)
φ(µ)− φ(µ∗)

∼ argmaxµ≥µ̄

ψ(µ)
φ(µ)

∼ t0,

and
µ∗ = exp([ct0 log2+p t0e

−t0/p]1/(p−1)), φ(µ∗) = [ct0 log2+p t0e
−t0/p]p/(p−1);

it is now clear that for sufficiently small η > 0, φ(µ∗) < ηp < φ(µ∗), thus by Lemma 3.2,

Ψ(ηp) = ψ(µ∗) + Ψ∗∗(µ∗)(ηp − log(µ∗)); (3.15)

taking µ = µ∗ in (3.14) and (3.15) gives (3.12):

Ψ(ηp) = ψ(µ∗) + Ψ∗∗(µ∗)[ηp − φ(µ∗)] ∼ ηp c

logp t0
= o(ηp).

4 The FDR Functional

We now come to the central idea in our analysis of FDR thresholding: to view the FDR threshold
as a functional of the underlying cumulative distribution (cdf). For any fixed 0 < q < 1, the
FDR functional Tq(·) is defined as:

Tq(G) = inf{t : Ḡ(t) ≥ 1
q
Ē(t)}, (4.1)

where G is any cdf.
The relevance of Tq follows from a simple observation. If Gn is the empirical distribution of

X1, X2, . . . , Xn, then Tq(Gn) is effectively the same as the FDR threshold t̂FDR(X1, . . . , Xn). In
more detail – see Lemma 6.1 below – thresholding at Tq(Gn) and at t̂FDR(X1, . . . , Xn) always
gives numerically the exact same estimate µ̂q,n.

In this section, we expose several key properties of this functional.

4.1 Definition, Boundedness, Continuity

We first observe that Tq(G) is well defined at nontrivial scale mixtures of exponentials.

Lemma 4.1 (Uniqueness) For fixed 0 < q < 1 and ∀G ∈ G, G 6= E, the equation

Ḡ(t) =
1
q
Ē(t) (4.2)

has a unique solution on [0,∞) which we call Tq(G).

Proof. Indeed, with µ a random variable ≥ 1, Ḡ(t) = E [Ē(t/µ)]. Hence if µ 6= 1 a.s. then, for
some µ0 > 1 and some ε > 0, we have that for all t ≥ 0, Ḡ(t) > εĒ(t/µ0). Now Ḡ(0) < Ē(0)/q
while, for sufficiently large t, Ē(t)/q < εĒ(t/µ0). Hence, for some t = t0 on [0,∞), (4.2) holds.
Now look at the slope of Ḡ(t)

− d

dt
Ḡ(t) = E [Ē(t/µ)/µ] < E [Ē(t/µ)] = Ḡ(t).

Compare this with the slope of Ē(t)/q. We have

− d

dt

1
q
Ē(t) =

1
q
Ē(t).
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At t = t0, 1
q Ē(t) = Ḡ(t), so

d

dt

(
Ḡ(t0)−

1
q
Ē(t)

)
|t=t0 > 0.

In short, at any crossing of Ḡ− 1
q Ē the slope is positive. Downcrossings being impossible, there

is only one upcrossing, so the solution (4.2) is unique. �
The ideas of the proof immediately give two other important properties of Tq.

Lemma 4.2 (Quasi-Concavity) The collection of distributions G ∈ G satisfying Tq(G) = t is
convex. The collection of distributions satisfying Tq(G) ≥ t is convex.

Proof. The uniqueness lemma shows that the set Tq(G) = t consists precisely of those cdf’s
G obeying Ḡ(t) = e−t/q; this is a linear equality constraint over the convex set G and defines a
convex subset of G. The set Tq(G) ≥ t consists precisely of those cdf’s G obeying Ḡ(t) ≤ e−t/q;
this is a linear inequality constraint over the convex set G and generates a convex subset. �

We also immediately have:

Lemma 4.3 (Stochastic Ordering) Say that the cdf G0 . G1 if Ḡ1(t) ≥ Ḡ0(t) ∀t > 0. Then

G0 . G1 =⇒ Tq(G0) ≥ Tq(G1).

We now turn to boundedness and continuity of Tq. Recall the Kolmogorov-Smirnov distance
between cdf’s G, G′ is defined by

‖G−G′‖ = sup
t
|G(t)−G′(t)|.

Viewing the collection of cdf’s as a convex set in a Banach space equipped with this metric, the
FDR functional Tq(·) is in fact locally bounded over neighbourhoods of nontrivial scale mixture
of exponentials.

Lemma 4.4 (Boundedness). For G ∈ G, G 6= E,

− log(
q

1− q
‖G− E‖) ≤ Tq(G) ≤ 1− q

q

1
‖G− E‖

.

Proof. Put for short τ = Tq(G). The left-hand inequality follows from Ḡ(τ) = Ē(τ)/q, which
gives

‖G− E‖ = sup
t
|G(t)− E(t)| ≥ Ḡ(τ)− e−τ =

1− q

q
e−τ .

For the right-hand inequality, use again Ḡ(τ) = Ē(τ)/q and convexity of et to get

1
q

=
∫
e(1−

1
µ )τdF ≥ 1 + τ ·

∫
(1− 1

µ
)dF.

At the same time, since E . G, ‖G − E‖ = supt>0

∫
[e−

t
µ − e−t]dF ; observe that as a function

of t,
∫

[e−
t
µ − e−t]dF has a unique maximum point t = t̄ satisfying

∫
1
µe

− t̄
µ dF = e−t̄, so

‖G− E‖ =
∫

[e−
t̄
µ − e−t̄]dF =

∫
(1− 1

µ
)e−

t̄
µ dF ≤

∫
(1− 1

µ
)dF,

and we have: τ ≤ 1−q
q

1
‖G−E‖ . �

In fact the FDR functional is even locally Lipschitz away from G = E. Notice that the image
of the mapping Tq : G 7→ R is the interval (log( 1

q ),∞).

Lemma 4.5 (Modulus of Continuity) Define

ω∗(ε; t0) ≡ sup{|Tq(G′)− t0| : Tq(G) = t0, ‖G−G′‖ ≤ ε, G ∈ G};

then, for each fixed t0 > log(1/q),

ω∗(ε; t0) ≤
q

log(1/q)
t0e

t0ε · (1 + o(1)), ε→ 0. (4.3)
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Figure 3: The dashed curve is (1/q)Ē(t) with q = 1/2, and the solid curve is Ḡ∗t0(t). In the plot,
t− is the solution of Ḡ∗t0(t) + ε = (1/q)Ē(t), and t+ is the smallest solution to the equation of
Ḡ∗t0(t)− ε = (1/q)Ē(t). For any other G with Tq(G) = t0, Ḡ(t) is bounded above by Ḡ∗t0(t) when
0 < t < t0, and is bounded below by Ḡ∗t0(t) when t > t0; moreover, for any G′ with ‖G′−G‖ ≤ ε,
t− ≤ Tq(G′) ≤ t+.

Crucially, the estimate (4.3) is uniform over {G ∈ G, Tq(G) ≤ t0} for fixed t0 > 0. The proof
even shows that

ω∗(ε; t0) ≤ C · ε for 0 < ε < εt0 ; (4.4)

where C = Ct0,q <∞ if t0 <∞; this implies the local Lipschitz property.
Proof. Consider the optimization problem of finding the cdf G∗ ∈ G which (a): satisfies
Tq(G∗) = t0 and (b): subject to that constraint, is as ‘steep’ as possible at t0:

∂

∂t
Ḡ∗(t)|t=t0 = inf

{ ∂
∂t
Ḡ(t)|t=t0 : Ḡ(t0) =

1
q
Ē(t0), G ∈ G

}
. (4.5)

Letting φ(µ) = e−t0/µ and ψ(µ) = (t0/µ)e−t0/µ, Problem (4.5) can be viewed as maximiz-
ing the linear functional

∫
ψ(µ)dF (µ) with the constraint

∫
φ(µ)dF (µ) = 1

q e
−t0 ; observe that

ψ′(µ)/φ′(µ) strictly decreases in µ over (1,∞), so in the φ − ψ plane the curve (φ(µ), ψ(µ)) is
strictly concave, and by arguments used in the proof of Lemma 3.2, the constrained maximum
of

∫
ψ(µ)dF (µ) is obtained at the point mass F which satisfies

∫
φ(µ)dF (µ) = 1

q e
−t0 .

It thus follows that the solution to Problem (4.5) is Ḡ∗t0(t) = e−t/µ∗ for µ∗ = 1/(1+log(q)/t0).
It has a remarkable property: if Tq(G) = t0,

Ḡ(t) ≤ Ḡ∗t0(t), 0 < t < t0, Ḡ(t) ≥ Ḡ∗t0(t), t > t0. (4.6)

Indeed, letting

h(t) ≡ [Ḡ(t)/Ḡ∗t0(t)]− 1 =
∫
e(

1
µ∗−

1
µ )tdF (µ)− 1;

direct calculation shows that h(t) is strictly convex as long as PF {µ = µ∗} 6= 1 (otherwise h ≡ 0),
(4.6) follows by noticing that h(0) = h(t0) = 0.

For sufficiently small ε, define t− by

Ḡ∗t0(t−) + ε = Ē(t−)/q, (4.7)

and define t+ be the smallest solution to the equation

Ḡ∗t0(t)− ε = Ē(t)/q, (4.8)

see Figure 3. Now if ‖G′ −G‖ ≤ ε, then by (4.6) and (4.8):

Ḡ′(t+) ≥ Ḡ(t+)− ε ≥ Ḡ∗t0(t+)− ε = Ē(t+)/q,
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hence Tq(G′) ≤ t+; similarly, by (4.6) and (4.7):

Ḡ′(t−) ≤ Ḡ(t−) + ε ≤ Ḡ∗t0(t−) + ε = Ē(t−)/q; (4.9)

observe that the function (Ḡ∗t0(t)− Ē(t)/q) is strictly decreasing in the interval [0, t0], (4.9) can
be strengthened into:

Ḡ′(t) ≤ Ḡ(t) + ε ≤ Ḡ∗t0(t) + ε < Ē(t)/q, 0 < t < t−,

hence Tq(G′) ≥ t−. It follows that

ω(ε; t0) ≤ max{t0 − t−(ε), t+(ε)− t0}. (4.10)

Last, setting w = t+− t0, (4.7) can be rewritten as e−w/µ∗−e−w = εqet0 ; letting w(δ) denote
the smaller one of the two solutions to e−w/µ∗ − e−w = δ, elementary analysis shows that for
small δ > 0, w(δ) ∼ δ/(1− 1/µ∗) = δt0/ log(1/q), so as ε→ 0, t+− t0 ∼ (q/ log(1/q)) · t0et0ε and
similarly t0 − t−(ε) ∼ (q/ log(1/q)) · t0et0ε. Inserting these into (4.10) gives the Lemma. �

4.2 Behavior under the Bayesian Model

The continuity of Tq established in Lemma 4.5, and the role of minimax Bayes risk in solving
for the Minimax risk in Sections 2 and 3, combine to suggest a fruitful change of viewpoint.
Instead of viewing the Xi ∼ Exp(µi) with fixed constants µi, i = 1, . . . , n, we instead view
the µi as themselves sampled i.i.d. from a distribution F , and so the Xi are sampled i.i.d.
from a mixture of exponentials G = E#F . Starting now, and continuing through Sections 5
and 6, we adopt this viewpoint exclusively. Moreover, for our sparsity constraint, instead of
assuming that 1

n (
∑n

i=1(logp(µi)) ≤ ηp, we assume that this happens in expectation, so that F
obeys EF log(µ1)p ≤ ηp. We call this viewpoint the Bayesian model because now the estimands
are random. Although it seems a digression from our original purposes, it is interesting in its
own right, and will be connected back to the original model in Section 7.

The motivation for this model is of course the ease of analysis. We get immediately the
asymptotic consistency of FDR thresholding:

Corollary 4.1 For G ∈ G and G 6= E, the empirical FDR threshold Tq(Gn) converges to Tq(G):

lim
n→∞

Tq(Gn) = Tq(G) a.s.

In a natural sense, the FDR functional Tq(G) can be considered as the ideal FDR threshold: the
threshold that FDR is ‘trying” to estimate and use.
Proof. The ‘Fundamental Theorem of Statistics’, e.g. [16, Page 1], tells us that if Gn is the
empirical cdf of X1, X2, . . . , Xn i.i.d. G, then

‖Gn −G‖ → 0 a.s. (4.11)

Simply combining this with continuity of Tq(G) at G 6= E gives the proof. �
Of course, we can sharpen our conclusions to rates. Under i.i.d. samplingXi ∼ G, ‖Gn−G‖ =

OP (n−1/2). Matching this, we have a root-n rate of convergence for the FDR functional.

Corollary 4.2 If G ∈ G and G 6= E,

|Tq(Gn)− Tq(G)| = OP (n−1/2),

where the OP () is locally uniform in G.

Proof. Indeed,

|Tq(Gn)− Tq(G)| ≤ ω∗(‖Gn −G‖;Tq(G)) = ω∗(OP (n−1/2);Tq(G)).

By (4.4), for small ε > 0, ω∗(ε;Tq(G)) ≤ CGε where CG locally bounded where G 6= E. So this
last term is locally uniformly OP (n−1/2) at each G ∈ G where G 6= E. �

More is of course true: by Massart’s work on the DKW constant [15], we have

P{‖Gn −G‖ ≥ s/
√
n} ≤ 2e−2s2

, ∀s ≥ 0, (4.12)

which combines with estimates of ω∗ to control probabilities of deviations Tq(Gn)− Tq(G).
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5 Ideal FDR Thresholding

Continuing now in the Bayesian model just defined, we define the ideal FDR thresholding pseudo-
estimate µ̃q,n, with coordinates (µ̃i) given by

µ̃i =
{
Xi, Xi ≥ Tq(G),
1, otherwise. (5.1)

In words, we are thresholding at the large-sample limit of the FDR procedure.
Notice that Tq(G) depends on the underlying cdf G, which is actually unknown in any realistic

situation; µ̃q,n is not a true estimator; it could only be applied in a setting where we had side
information supplied by an oracle, which told us Tq(G). We view µ̃q,n as an ideal procedure, and
the risk for µ̃q,n as an ideal risk: the risk we would achieve if we could use the threshold that
FDR is ‘trying’ to ‘estimate’. Despite the gap between ‘true’ and ‘ideal’, µ̃q,n plays an important
role in studying the true risk for (true) FDR thresholding; in fact, we will eventually show that,
asymptotically, there is only a negligible difference between the ideal risk for µ̃q,n and the (true)
risk for the FDR thresholding estimator µ̂q,n. Let R̃n(Tq, G) denote the ideal risk for µ̃q,n in the
Bayesian model:

R̃n(Tq, G) ≡ 1
n
E
[ n∑

i=1

(log(µ̃q,n)i − logµi)2
]
.

Arguing much as in Sections 2 and 3 above we also have in the Bayesian model an identity with
univariate thresholding risk:

R̃n(Tq, G) = ρT (Tq(G), F ). (5.2)

Since this ideal risk only depends on an univariate random variable X1 ∼ G and Tq(G) is non-
stochastic, its analysis is relatively straightforward. Also, we can now drop the subscript n from
R̃n.

Theorem 5.1 Fix 0 < q < 1 and 0 < p < 2.

1. Worst-Case Ideal Risk. We have

lim
η→0

[ supG∈Gp(η) R̃(Tq, G)

ηp log2−p log 1
η

]
=

{
1, 0 < q ≤ 1

2 ,
q

1−q ,
1
2 < q < 1. (5.3)

2. Least-Favorable Scale Mixture. Fix 0 ≤ s ≤ 1. Set

µ∗b = µ∗b(η) = log(
1
η
)/ log log(

1
η
), µ∗v = µ∗v(η) = log(

1
η
) · log log(

1
η
),

and
Gε,µ = (1− ε)E(·) + εE(·/µ), ε · logp(µ) = ηp;

define

µ̃ = µ̃(η; q, s) =

 µ∗b(η), 0 < q < 1
2 ,

µ∗v(η), 1
2 < q < 1,

(1− s) · µ∗b(η) + s · µ∗v(η), 0 ≤ s ≤ 1, q = 1
2 ,

then Gε,µ̃ is asymptotically least-favorable for Tq:

lim
η→0

[
R̃(Tq, Gε,µ̃)

supG∈Gp(η) R̃(Tq, G)

]
= 1.

By Theorems 2.1-2.3, the denominator on the left-hand side of (5.3) is asymptotically equiv-
alent to the minimax risk in the original model of Section 1. In words, the worst-case ideal risk
for the i.i.d. sampling model is asymptotically equivalent to the minimax risk (1.4) as η → 0.
This of course is no accident; it is a key step towards Theorem 1.3.
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5.1 Proof of Theorem 5.1

We now describe the ideas for proving Theorem 5.1, in a series of lemmas. In later subsections
we prove the individual lemmas.

Since the ideal risk R̃(Tq, G) is, by (5.2), reducible to the univariate thresholding Bayes risk
which we studied in Section 3, we know to split ideal risk R̃(Tq, G) into two terms, the bias
proxy and the variance proxy:

B̃2(Tq, G) ≡
∫
b(Tq(G), µ)dF (µ), Ṽ (Tq, G) ≡

∫
v(Tq(G), µ)dF (µ).

Consider Ṽ (Tq, G). Asymptotically, as η → 0, every eligible F ∈ Fp(η) puts almost all mass
in the vicinity of 1, and so

Ṽ (Tq, G) ≈ v(Tq(G), 1) ≈ log2(Tq(G))e−Tq(G). (5.4)

We set ṽ(t) ≡ log2(t)e−t. The following formal approximation result is proved in [11, Chapter
6].

Lemma 5.1 As η → 0,

sup
G∈Gp(η)

|Ṽ (Tq, G)− ṽ(Tq(G))| = o(ηp log2−p log
1
η
).

Notice that as G tends to E, Lemma 4.4 implies that Tq(G) → ∞, and ṽ(Tq(G)) decreases
rapidly, so the key for majorizing the variance is to keep Tq(G) small, motivating study of:

T ∗q = T ∗q (η; p) = inf
G∈Gp(η)

Tq(G). (5.5)

Lemma 5.2 As η → 0,

T ∗q = T ∗q (η; p) = p(log
1
η

+ log log log
1
η
) + log(

1− q

q
) + o(1).

The proof is given in Section 5.2 below. As a direct result, we get

log2(T ∗q )e−T∗
q = [

q

1− q
ηp log2−p log

1
η
] · (1 + o(1));

moreover, when Tq(G) exceeds T ∗q , the variance proxy ṽ(T ∗q ) drops; we obtain:

Lemma 5.3 As η → 0,

sup
G∈Gp(η)

Ṽ (Tq, G) = [
q

1− q
ηp log2−p log

1
η
] · (1 + o(1)),

and
sup

G∈Gp(η),Tq(G)≥T∗
q +
√

T∗
q

Ṽ (Tq, G) = o(ηp log2−p log
1
η
).

We now study the bias proxy. The key observation:

b(t, µ) ≈
{

log2 µ, µ� t,
t
µ log2 µ, µ� t.

(5.6)

To develop intuition, consider the family of 2-point mixtures:

G2,0
p (η) = {Gε,µ = (1− ε)E(·) + εE(·/µ), ε logp µ = ηp}.
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Now (5.6) tells us that the maximum of the bias functional over this family is obtained by taking
µ as large as possible while avoiding Tq(Gε,µ)

µ � 1; moreover, direct calculations show that:

Tq(Gε,µ)
µ

=
log(1 + p( 1

q − 1) 1
ηp log(µ))

µ− 1
, (5.7)

so the value of µ causing the worst bias proxy should be close to the solution of the following
equation:

log(1 + p( 1
q − 1) 1

ηp log(µ))

µ− 1
= 1.

Elaborating this idea leads to the following result, proven in Section 5.3 below.

Lemma 5.4 As η → 0,

sup
G∈Gp(η)

B̃2(Tq, G) = (ηp log2−p log
1
η
) · (1 + o(1)).

Combine the above analysis for bias and variance proxies, giving

1 + o(1) ≤
supG∈Gp(η) R̃(Tq, G)

ηp log2−p log 1
η

≤ 1
1− q

+ o(1), η → 0.

Compare to the conclusion of Theorem 5.1; we have obtained the correct rate, but not yet the
precise constant. To refine our analysis, observe that the worst bias and the worst variance are
obtained at different values µ within the family G2,0

p (η). Label the µ’s causing the worst bias
and the worst variance by µ∗b and µ∗v; then

µ∗b ∼
log 1

η

log log 1
η

, µ∗v ∼ log
1
η
· log log

1
η
, η → 0.

Divide Gp(η) into two subsets,

G1 ≡ {G ∈ Gp(η), Tq(G) ≥ T ∗q +
√
T ∗q }, G2 ≡ {G ∈ Gp(η), Tq(G) < T ∗q +

√
T ∗q },

and consider each separately. (Note that Gµ∗b
∈ G1, while Gµ∗v ∈ G2; here Gµ∗b

and Gµ∗v are
mixtures of point masses at 1 and µ living in G2,0

p (η) with µ = µ∗b and µ∗v respectively). Over
the first subset, the variance is uniformly O(ηp), and we immediately obtain

sup
G1

R̃(Tq, G) ≈ sup
G1

B̃2(Tq, G) ≈ ηp log2−p log
1
η
, η → 0.

For the second subset, we have the following lemma:

Lemma 5.5 As η → 0,

sup
G2

R̃(Tq, G) =

{
(ηp log2−p log 1

η ) · (1 + o(1)), 0 < q ≤ 1
2 ,

q
1−q · (η

p log2−p log 1
η ) · (1 + o(1)), 1

2 < q < 1.

Theorem 5.1 follows once Lemmas 5.2 - 5.5 are proved. �

5.2 Proof of Lemma 5.2

Consider the upper envelope of the survivor function among moment-constrained scale mixtures:

Ḡ∗t = Ḡ∗t (η; p) = sup{Ḡ(t), G ∈ Gp(η)}.
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The quantity of interest is the crossing point where this envelope meets the FDR boundary:

T ∗q = inf{t : Ḡ∗t ≥ Ē(t)/q}.

Equivalently:
T ∗q = inf{t : [(Ḡ∗t /Ē(t))− 1] ≥ (1− q)/q}; (5.8)

letting
h∗(t; η, p) = [(Ḡ∗t /Ē(t))− 1],

the key for calculating T ∗q is to explicitly express h∗(t) as a function of t, asymptotically for
small η.

Calculating h∗(t) again involves optimization of a linear functional over a class of moment-
constrained cdf’s, and we can apply the theory in Section 3.2. Set ψ = ψt(µ) = [e(1−

1
µ )t−1] and

φ(µ) = logp(µ), define Ψ = Ψt as in (3.10), so that h∗(t; η, p) = Ψt(ηp). Notice that

lim
µ→1+

[ ψt(µ)
logp(µ)

]
=

 0, 0 < p < 1,
t, p = 1,
∞, 1 < p < 2;

(5.9)

so we treat the cases 0 < p ≤ 1 and 1 < p < 2 separately.
When 0 < p ≤ 1, elementary analysis shows that for large t:

µ∗ = argmaxµ≥1{
e(1−

1
µ )t − 1

logp(µ)
} ∼ t log(t)

p
, Ψ∗ =

e(1−
1

µ∗ )t − 1
logp(µ∗)

∼ et/[logp(t)],

so the condition of Lemma 3.1 is satisfied, and

Ψt(ηp) ∼ ηpet/ logp(t), (5.10)

inserting (5.10) into (5.8) and solving for t gives the Lemma in case 0 < p ≤ 1.
When 1 < p < 2, direct calculations show that the function ψ′(µ)/φ′(µ) strictly increases in

the interval (1, µ̄] with log(µ̄) = log(µ̄(t; p)) = (p− 1)/t; also that [ψ′(µ̄)/φ′(µ̄)] ≤ Ψ∗∗(µ̄), so the
condition of Lemma 3.2 is satisfied. More calculations show that, first,

µ∗ = µ∗(t; p) ∼ argmax{µ′≥µ̄}{
ψ(µ′)

logp(µ′)
} ∼ t

p log(t)
;

secondly, for any 1 < µ ≤ µ̄,

Ψ∗∗(µ) = Ψ∗∗(µ; t) ≡ max{µ′≥µ̄}{
ψ(µ′)− ψ(µ)

logp(µ′)− logp(µ)
} ∼ max{µ′≥µ̄}{

ψ(µ′)
logp(µ′)

} ∼ et

logp(t)
;

and finally,

log(µ∗) = log(µ∗(t; p)) ∼ (
1
p
t logp(t)e−t)1/(p−1),

since h∗(t, η, p) = Ψt(ηp). By Lemma 3.2,

h∗(t, η, p) =

{
e(1−e−η)t − 1, ηp ≤ logp(µ∗),
e(1−

1
µ∗ )t − 1 + Ψ∗∗(µ∗)(ηp − log(µ∗)), logp(µ∗) < ηp ≤ logp(µ∗);

(5.11)

moreover, by letting t∗ = t∗p(η) be the solution of logp(µ∗(t, p)) = ηp, then we can rewrite (5.11)
as:

h∗(t; η, p) =

{
e(1−e−η)t − 1, t ≤ t∗,

e(1−
1

µ∗ )t − 1 + Ψ∗∗(µ∗)(ηp − log(µ∗)), t ≥ t∗,
(5.12)

here, noticing t∗ ∼ (p− 1)p log( 1
η ) for small η.

Inserting (5.12) into (5.8), clearly for sufficiently small η and t ≤ t∗, h(t; η, p) ≈ 0, thus T ∗q is
obtained by equating

1− q

q
= e(1−

1
µ∗ )t − 1 + Ψ∗∗(µ∗)(ηp − log(µ∗)) ∼ ηpet/ logp(t),

which gives the Lemma for the case 1 < p < 2. �
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5.3 Proof of Lemma 5.4

Lemma 5.6 For a measurable function ψ defined on [1,∞), with ψ ≥ 0 but not identically 0,
and supµ≥1{ψ(µ)/µ} <∞, then for G ∈ G and 0 < τ < Tq(G),∫

ψ(µ)[e−τ/µ − e−Tq(G)/µ]dF ≤ (1/q) sup
{µ≥1}

{ψ(µ)/µ} · τe−τ/(1− e−τ ).

Letting τ → 0, combining Lemma 5.6 with Fatou’s Lemma, we have:∫
ψ(µ)[1− e−Tq(G)/µ]dF ≤ (1/q) sup

{µ≥1}
{ψ(µ)/µ}. (5.13)

Proof. Let k0 = k0(τ ;G) = bTq(G)
τ c; since Tq(G) > τ , k0 ≥ 1; moreover:∫

ψ(µ)[e−τ/µ − e−Tq(G)/µ]dF ≤
∫
ψ(µ)[e−τ/µ − e−(k0+1)τ/µ]dF (5.14)

=
∫
ψ(µ)(1− e−τ/µ)[

k0∑
j=1

e−j·τ/µ]dF. (5.15)

Put for short c = maxµ≥1{ψ(µ)/µ}, recall that 1− e−x/µ ≤ x/µ for all x ≥ 0, so for 1 ≤ j ≤ k0:∫
ψ(µ)(1− e−τ/µ)e−j·τ/µdF ≤ τ

∫
(ψ(µ)/µ)e−j·τ/µdF ≤ τ · c ·

∫
e−j·τ/µdF ; (5.16)

by definition of k0 and the FDR functional,∫
e−j·τ/µdF = Ḡ(j · τ) ≤ (1/q)e−j·τ , 1 ≤ j ≤ k0, (5.17)

combining (5.14) - (5.17) gives:∫
ψ(µ)[e−τ/µ − e−Tq(G)/µ]dF ≤ (c/q) · τ ·

k0∑
j=1

e−j·τ ≤ (c/q) · τ · e−τ/(1− e−τ ). (5.18)

�
We now prove Lemma 5.4. As in Section 3, let

t0 = t0(p, η) = p log(1/η) + p log log(1/η) +
√

log log(1/η),

by the monotonicity of b(t, µ) and (3.8), for sufficiently small η > 0:

sup
G∈Gp(η),Tq(G)≤t0

B̃2(Tq, G) ≤ sup
Gp(η)

∫
b(t0, µ)dF = ηp log2−p log(1/η)(1 + o(1)). (5.19)

Moreover, for any G with Tq(G) > t0, letting ψ(·) = log2(·) and τ = t0 in Lemma 5.6,

0 ≤ B̃2(Tq, G)−
∫
b(t0, µ)dF =

∫
log2(µ)[e−t0/µ − e−Tq(G)/µ]dF ≤ ct0e

−t0/(1− e−t0),

where c = maxµ≥1{log2(µ)/µ}, so it is clear

sup
{G∈Gp(η),Tq(G)>t0}

B̃2(Tq, G) ≤
∫
b(t0, µ)dF +O(t0e−t0), (5.20)

Lemma 5.4 follows directly from (5.19) - (5.20) and t0e−t0 = o(ηp log2−p log( 1
η )). �
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5.4 Proof of Lemma 5.5

By Lemma 5.1, the difference between Ṽ (Tq, G) and ṽ(Tq(G)) is uniformly negligible over Gp(η),
so it is sufficient to prove

sup
G2

[B̃2(Tq, G) + ṽ(Tq(G))] =

{
(ηp log2−p log 1

η ) · (1 + o(1)), 0 < q ≤ 1
2 ,

q
1−q · (η

p log2−p log 1
η ) · (1 + o(1)), 1

2 < q < 1.
(5.21)

Let φ(·) = logp(·) and

ψt(µ) = log2(µ)(1− e−
t
µ ) +

q

1− q
log2 t[e−

t
µ − e−t].

Put for short τ = Tq(G); by definition of the FDR functional,
∫

[e−
τ
µ − e−τ ]dF = 1−q

q e−τ , so∫
ψτ (µ)dF (µ) ≡ B̃2(Tq, G) + ṽ(Tq(G)).

Define Ψt according to (3.10), so that

sup
G1

∫
ψt(µ)dF ≤ sup

{T∗
q ≤t≤T∗

q +
√

T∗
q }

Ψt(ηp).

Hence (5.21) follows from:

sup
{T∗

q ≤t≤T∗
q +
√

T∗
q }

Ψt(ηp) =

{
ηp log2−p log( 1

η )(1 + o(1)), 0 < q < 1
2 ,

ηp q
1−q log2−p log( 1

η )(1 + o(1)), 1/2 ≤ q < 1.
(5.22)

Now for (5.22), applying again the theory of Section 3.2, notice that

lim
µ→1+

[ ψt(µ)
logp(µ)

]
=

 0, 0 < p < 1,
te−t, p = 1,
∞, 1 < p < 2,

so we treat the cases 0 < p ≤ 1 and 1 < p < 2 separately.
When 0 < p ≤ 1, for sufficiently large t, the condition of Lemma 3.1 is satisfied. Before we

prove (5.22), we explain the key role of q.
An intuitive way to see the role of q is the following. Observe that ψ(µ)/φ(µ) splits into two

parts, r1 + r2, where

r1(µ) ≡ log2−p(µ)(1− e−t/µ), r2(µ) ≡ q

1− q
log2(t)[e−t/µ − e−t]/ logp(µ).

Elementary analysis shows that

µ∗1 ≡ argmax{µ>1}r1(µ) ∼ t/[log log(t)− log(2− p)] ∼ t/ log log(t), r1(µ∗1) ∼ log2−p(t),

and

µ∗2 ≡ argmax{µ>1}r2(µ) ∼ t log(t)/p, r2(µ∗2) =
q

1− q
log2(t)/ logp(µ∗2) ∼

q

1− q
log2−p(t).

In comparison, asymptotically, r1(µ∗1) > r2(µ∗2) when 0 < q < 1/2 and r1(µ∗1) ≤ r2(µ∗2) otherwise;
accordingly, the maximum point of [ψ(µ)/φ(µ)] is attained at µ∗1 and µ∗2; in other words,

µ∗ ≡ argmaxµ≥1{ψt(µ)/φ(µ)} ∼
{
µ∗1 ∼ t/ log log(t), 0 < q < 1/2,
µ∗2 ∼ t log(t)/p, 1/2 ≤ q < 1,

and

Ψ∗ =
{
ψ(µ∗1)/φ(µ∗1) ∼ log2−p(t), 0 < q < 1/2,
ψ(µ∗2)/φ(µ∗2) ∼

q
1−q log2−p(t), 1/2 ≤ q < 1, (5.23)
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this explains the role of q.
Back to (5.22), for sufficiently small η, it is clear ηp ≤ φ(µ∗), so by Lemma 3.1,

Ψt(ηp) = Ψ∗ · ηp; (5.24)

inserting (5.23) to (5.24) gives (5.22).
When 1 < p < 2, elementary analysis shows that for large t, the function ψ′(µ)/φ′(µ) strictly

increases in the interval (1, µ̄] with log(µ̄) = log(µ̄(t; p)) = (p−1)e−t, and [ψ′(µ)/φ′(µ)] is strictly
decreasing in (1, µ̄] and ψ′(µ̄)/φ′(µ̄) < Ψ∗∗(µ̄), so the condition of Lemma 3.2 is satisfied; also
for any 1 < µ ≤ µ̄,

Ψ∗∗(µ) ∼
{

log2(t), 0 < q < 1/2,
q

1−q log2−p(t), 1/2 ≤ q < 1. (5.25)

More calculations show that

µ∗ =
{
t/[log log(t)− log(2− p)], 0 < q < 1/2,
t log(t)/p, 1/2 ≤ q < 1,

and

log(µ∗) =
{

( q
1−qpt logp(t)e−t)1/(p−1), 0 < q < 1/2,

(pt logp(t)e−t)1/(p−1), 1/2 ≤ q < 1,

notice here we clearly have a similar phenomenon as in the case 0 < p ≤ 1, we omit for further
discussion.

Now for sufficiently small η and T ∗q ≤ t ≤ T ∗q +
√
T ∗q , it is clear that φ(µ∗) < ηp < φ(µ∗), so

by Lemma 3.2:
Ψt(ηp) = ψt(µ∗) + Ψ∗∗(µ∗)(ηp − log(µ∗)) ∼ Ψ∗∗(µ∗)ηp; (5.26)

taking µ = µ∗ in (5.25) and insert it to (5.26), gives (5.22). �

6 Asymptotic Risk Behavior for FDR Thresholding

Now we turn to µ̂q,n, the true FDR thresholding estimator. For technical reasons, we define a
threshold T̂q,n slightly differently than t̂FDR. This difference does not affect the estimate. Thus
we will have µ̂q,n ≡ µ̂T̂q,n

= (µ̂i) with

µ̂i =
{
Xi, Xi ≥ T̂q,n,

1, Xi < T̂q,n.

Our strategy is to show that ideal and true FDR behave similarly.
We are still in the Bayesian model, and let Rn(T̂q,n, G) denote the per-coordinate average

risk for µ̂q,n:

Rn(T̂q,n, G) ≡ 1
n
E
[ n∑

i=1

(log(µ̂q,n)i − logµi)2
]
.

Here again the expectation is over (Xi, µi) pairs i.i.d. with bivariate structure Xi|µi ∼ Exp(µi).
We will show that as n→∞ the difference between the true risk Rn(T̂q,n, G) and the ideal

risk R̃(Tq, G) is asymptotically negligible. We suppress the subscript n on Rn; this is an abuse
of notation.

Theorem 6.1

lim
n→∞

[
sup
G∈G

∣∣R(T̂q,n, G)− R̃(Tq, G)
∣∣] = 0.

As a result:

lim
n→∞

[
sup

G∈Gp(η)

∣∣R(T̂q,n, G)− R̃(Tq, G)
∣∣] = 0.
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Combining Theorems 6.1 and 5.1 we have:

lim
η→0

[
lim

n→∞

supG∈Gp(η)R(T̂q,n, G)

ηp log2−p log 1
η

]
=

{
1, 0 < q ≤ 1

2 ,
q

1−q ,
1
2 < q < 1.

Hence, T̂q,n asymptotically achieves the n-variate minimax Bayes risk, when n→∞ followed by
η → 0.

6.1 Proof of Theorem 6.1

We begin by defining T̂q,n. In applying the FDR functional to the empirical distribution, it is
always possible that

Ḡn(t) <
1
q
Ē(t), for all t > 0, (6.1)

in which case Tq(Gn) = t̂FDR = +∞. Letting Wn denote the event (6.1), define:

T̂q,n =
{
Tq(Gn), over W c

n,
log(n

q ), over Wn.
(6.2)

The following lemma, proven in [11, 6], shows that this definition of threshold gives the same
estimator as Tq(Gn), while obeying a bound which is convenient for analysis.

Lemma 6.1 Suppose Xi
iid∼ G, G ∈ G, G 6= E, and T̂q,n is defined as in (4.1), then:

1. The FDR estimator is equivalently realized by thresholding at T̂q,n: µ̂FDR
q,n = µ̂T̂q,n

.

2. T̂q,n ≤ log(n
q ).

Next we study the risk for T̂q,n. We have:

R(T̂q,n, G) =
1
n

n∑
i=1

EFEµ

[
log2(µi)1{Xi<T̂q,n} + log2(

Xi

µi
)1{Xi≥T̂q,n}

]
= EFEµ

[
log2(µ1)1{X1<T̂q,n} + log2(X1/µ1)1{X1≥T̂q,n}

]
,

and R(T̂q,n, G) naturally splits into a ‘bias’ proxy and the ‘variance’ proxy:

B2(T̂q,n, G) = EFEµ

[
log2(µ1)1{X1<T̂q,n}

]
,

V (T̂q,n, G) = EFEµ

[
log2(X1/µ1)1{X1≥T̂q,n}

]
.

The comparable notions in the ideal risk case were:

B̃2(Tq, G) = EFEµ

[
log2(µ1)1{X1<Tq(G)}

]
,

Ṽ (Tq, G) = EFEµ

[
log2(X1/µ1)1{X1≥Tq(G)}

]
.

Intuitively, we expect that B̃2 is ‘close’ to B2 and Ṽ is ‘close’ to V ; our next task is to validate
these expectations. Observe that

|B2(T̂q,n, G)− B̃2(Tq, G)| ≤ E
[
log2(µ1)|1{X1<T̂q,n} − 1{X1<Tq(G)}|

]
, (6.3)

|V (T̂q,n, G)− Ṽ (Tq, G)| ≤ E
[
log2(X1/µ1)|1{X1<T̂q,n} − 1{X1<Tq(G)}|

]
, (6.4)

it would not be hard to validate the expectations if |T̂q,n − Tq(G)| were negligible for large n,
uniformly for G ∈ G. In Section 4, Lemma 4.5 tells us that T̂q,n − Tq(G) is locally OP (n−1/2),
or more specifically,

|Tq(G)− Tq(Gn)| ∼ q

log(1/q)
Tq(G)eTq(G)‖G−Gn‖, G 6= E. (6.5)
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Unfortunately, for any fixed n, G might get arbitrary close to E and as a result Tq(G) might get
arbitrary large, so the relationship in (6.5) can not hold uniformly over G ∈ G.

A closer look reveals that those G’s failing (6.5) would, roughly, satisfy:

Tq(G)eTq(G) ≥
√
n, or Tq(G) ≥ log(n)/2;

notice that, as n increases from 1 to ∞, {G ∈ G : Tq(G) ≥ log(n)/2} defines a sequence of
subsets, strictly decreasing to ∅; motivated by this, we look for a subsequence of subsets of G
obeying:

(a) G(1) ⊂ G(2) ⊂ . . . ⊂ G(n) ⊂ . . . and ∪∞1 G(n) = G,

(b) G(n) approaching G slowly enough such that supG(n)

[√
nTq(G)eTq(G))

]
= o(1),

(c) For large n, |R(T̂q,n)− R̃(Tq, G)| is uniformly negligible over G \ G(n).

A convenient choice is:

G(n)
1 ≡ {G ∈ G : Tq(G) ≤ log(n)/8}, n ≥ 1. (6.6)

We expect that the difference between Tq(Gn) and Tq(G) is uniformly negligible over G(n)
1 :

sup
G(n)

1

|Tq(G)− Tq(Gn)| = op(1).

Lemma 6.2 Letting An denote the event {|T̂q,n − Tq(G)| ≤ n−1/4}, then for sufficiently large
n,

sup
G∈G(n)

1

PG{Ac
n} ≤ 3e−[32(1−q)2/q2]n1/4/ log2(n).

Based on Lemma 6.2, one can develop a proof for:

Lemma 6.3 For sufficiently small 0 < δ < 1,

1. limn→∞ sup
G∈G(n)

1

∣∣B2(T̂q,n, G)− B̃2(Tq, G)
∣∣ = 0.

2. limn→∞ sup
G∈G(n)

1

∣∣V (T̂q,n, G)− Ṽ (Tq, G)
∣∣ = 0.

As a result, limn→∞ sup
G∈G(n)

1

∣∣R(T̂q,n, G)− R̃(Tq, G)
∣∣ = 0.

We now consider (c). Define

G(n)
0 ≡ G \ G(n)

1 , n ≥ 1. (6.7)

Though it is no longer sensible to require that |Tq(Gn)−Tq(G)| be uniformly negligible over G(n)
0 ,

we still hope that Tq(Gn) at least stays at the same magnitude as Tq(G), or Tq(Gn) = Op(log(n));
this turns out to be true, and in fact is an immediate consequence of Massart’s Inequality (4.12).

Lemma 6.4 Letting Dn be the event {T̂q,n ≥ log(n)/16},

sup
G∈G(n)

0

PG{Dc
n} = 2e−2[(1−√q)2/q2]n7/8

.

Proof. Put for short τ = Tq(G) and τn ≡ Tq(Gn). For any G ∈ G(n)
0 , over event Dc

n, T̂q,n ≡
Tq(Gn), and τn < 2τ , so by Hölder and definition of the FDR functional, Ḡ(τn) ≤ (Ḡ(2τn))1/2 ≤
(1/

√
q)e−τn ; but Ḡn(τn) ≥ 1

q e
−τn and τn ≤ log(n)/16 over Dc

n:

‖Gn −G‖ ≥ Ḡn(τn)− Ḡ(τn) ≥
1−√q
q

e−τn ≥
1−√q
q

n−
1
16 ;
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this implies that Dc
n ⊂ {‖Gn −G‖ ≥ 1−√q

q n−
1
16 }. Now use (4.12). �

Combining this with Lemma 6.1, we have, except for an event with negligible probability:

log(n)/16 ≤ T̂q,n ≤ log(n/q).

Since v(t, µ) is monotone decreasing in t, it is now clear that both V (T̂q,n, G) and Ṽ (Tq, G) are
uniformly negligible over G(n)

0 :

Lemma 6.5

lim
n→∞

[
sup

G∈G(n)
0

Ṽ (Tq, G)
]

= 0, lim
n→∞

[
sup

G∈G(n)
0

V (T̂q,n, G)
]

= 0.

Last, notice that b(t, µ) is strictly increasing in t, so either B2(T̂q,n, G) or B̃2(Tq, G) will not be
uniformly negligible over G(n)

0 ; however, notice that b(t, µ) increases very slowly in t for large t,
so we can expect that |B2(T̂q,n, G)− B̃2(Tq, G)| is uniformly negligible over G(n)

0 :

Lemma 6.6 limn→∞
[
sup

G∈G(n)
0
|B2(T̂q,n, G)− B̃2(Tq, G)|

]
= 0.

The choice of log(n)/8 is only for convenience, a similar result holds if we replace log(n)/8
by c log(n) for 0 < c < 1/2.

Theorem 6.1 follows once Lemma 6.1 - 6.6 are proved. �

6.2 Proof of Lemma 6.1

Consider Claim 1. Sort the Xi’s in descending order, X(1) ≥ X(2) ≥ . . . ≥ X(n). First, over
event Wn, 1

q e
−t > Ḡn(t) for all t > 0; thus 1

q e
−X(k) > Ḡ(X(k)) = k

n , or X(k) < − log(q k
n ),

1 ≤ k ≤ n; it then follows that µ̂FDR
q,n ≡ 1. Moreover, X(1) < log(n

q ); since T̂q,n = log(n
q ) over

Wn, so µ̂T̂q,n
≡ 1; this shows µ̂T̂q,n

= µ̂FDR
q,n over the event Wn. Second, over the event W c

n,
µ̂FDR

q,n uses the threshold tFDR = − log(q kF DR

n ), X(kF DR+1) < tFDR ≤ X(kF DR), where kFDR

is the largest k such that X(k) ≥ − log(q n
k ) or 1

q e
−X(k) ≤ k

n ; since Ḡ(X(k)) ≡ k
n , equivalently,

kFDR is the largest k such that Ḡ(X(k)) ≥ 1
q e
−X(k) ; by definition of the FDR functional, this

implies: X(kF DR+1) < Tq(Gn) ≤ X(kF DR). Since over W c
n, T̂q,n ≡ Tq(Gn), it then follows that

µ̂T̂q,n
= µ̂FDR

q,n . This shows that µ̂T̂q,n
= µ̂FDR

q,n over the event W c
n.

Consider Claim 2. It is sufficient to prove that Tq(Gn) ≤ log(n/q) over W c
n. By definition of

the FDR functional, Ḡ(Tq(Gn)) = 1
q e
−Tq(Gn); since the smallest non-zero value of Ḡ(Tq(Gn)) is

1
n , Tq(Gn) ≤ log(n/q). �

6.3 Proof of Lemma 6.2

Notice that PG{Ac
n} ≤ PG{Wn} + PG{Ac

n ∩ W c
n}, where Wn is defined in (6.1). First, we

evaluate PG{Wn}. By Hölder and definition of the FDR functional, Ḡ(2Tq(G)) ≥ Ḡ2(Tq(G)) =
1
q2 e

−2Tq(G); moreover, onWn, Gn(t) ≤ 1
q e
−t for all t, particular Ḡn(2Tq(G)) ≤ 1

q e
−2Tq(G). Hence,

for any G ∈ G(n)
1 ,

‖G−Gn‖ ≥ Ḡ(2Tq(G))−Gn(2Tq(G)) ≥ 1− q

q2
e−2Tq(G) ≥ 1− q

q2
n−1/4;

this implies: Wn ⊂ {‖G−Gn‖ ≥ (1− q)n−1/4/q2}. Using Massart (4.12), we claim:

sup
G∈G(n)

1

PG{Wn} ≤ sup
G∈G

PG{‖G−Gn‖ ≥ (1− q)n−1/4/q2} ≤ 2e−2(1−q)2
√

n/q4
. (6.8)
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Next, we evaluate Ac
n ∩W c

n. Noticing Tq(Gn) ≡ T̂q,n over event W c
n, for sufficiently large n

and G ∈ G(n)
1 , Tq(G) ≤ log(n)/8, so by Lemma 4.5:

Ac
n ∩W c

n ⊂ {|Tq(G)− Tq(Gn)| ≥ n−1/4}

⊂ { 2q
1− q

Tq(G)eTq(G)‖G−Gn‖ ≥ n−1/4}

= {‖G−Gn‖ ≥ [(1− q)/2q]n−1/4e−Tq(G)/Tq(G)}
⊂ {‖G−Gn‖ ≥ 4(1− q)/q]n−3/8/ log(n)};

using again Massart (4.12):

sup
G∈G(n)

1

PG{Ac
n ∩W c

n} ≤ 2e−[32(1−q)2/q2]n1/4/ log2(n). (6.9)

Notice that for sufficiently large n, e−2(1−q)2
√

n/q4 � e−[32(1−q)2/q2]n1/4/ log2(n), Lemma 6.2 fol-
lows by combining (6.8) and (6.9). �

6.4 Proof of Lemma 6.3

By (6.3) - (6.4), all we need to show is (for convenience, drop the subscript for X1 and µ1):

lim
n→∞

sup
G(n)

1

E
[
log2(µ)|1{X<T̂q,n} − 1{X<Tq(G)}| · 1{Ac

n}
]

= 0, (6.10)

lim
n→∞

sup
G(n)

1

E
[
log2(X/µ)|1{X<T̂q,n} − 1{X<Tq(G)}| · 1{Ac

n}
]

= 0, (6.11)

lim
n→∞

sup
G(n)

1

E
[
log2(µ)|1{X<T̂q,n} − 1{X<Tq(G)}| · 1{An}

]
= 0, (6.12)

lim
n→∞

sup
G(n)

1

E
[
log2(X/µ)|1{X<T̂q,n} − 1{X<Tq(G)}| · 1{An}

]
= 0. (6.13)

To show (6.10), first, for anyG ∈ G(n)
1 , Tq(G) ≤ log(n)/8, and by Lemma 6.1, T̂q,n ≤ log(n/q),

so:

E
[
log2(µ)|1{X<T̂q,n} − 1{X<Tq(G)}| · 1{Ac

n}
]
≤ E

[
log2(µ) · 1{X<log(n/q)} · 1{Ac

n}
]
, (6.14)

second, by Hölder:

E
[
log2(µ) · 1{X<log(n/q)} · 1{Ac

n}
]
≤

(
E
[
log4(µ) · 1{X≤log( n

q )}
]) 1

2 ·
(
PG{Ac

n}
)1/2

, (6.15)

last, recall that 1− e−
x
µ ≤ x/µ for any x > 0,

E
[
log4(µ) · 1{X<log(n/q)}

]
=

∫
log4(µ)(1− e− log(n/q)/µ)dF ≤ log(n/q)

∫
log4(µ)
µ

dF, (6.16)

combining (6.14) - (6.16) and Lemma 6.2 gives (6.10).
The proof of (6.11) is similar. In fact,

E
[
log2(X/µ)|1{X<T̂q,n} − 1{X<Tq(G)}| · 1{Ac

n}
]
≤ E

[
log2(X/µ) · 1{Ac

n}
]

≤
(
E
[
log4(X/µ)

) 1
2 ·

(
PG{Ac

n}
) 1

2 ;

notice that E [log4(X/µ)] =
∫∞
0

log4(x)e−xdx <∞, (6.11) follows by using Lemma 6.2.

To show (6.12), recall that e−
t−δ

µ − e−
t+δ

µ ≤ 2δ
µ , 0 < δ < t; write τ = Tq(G) for short, by the

definition of An, (6.12) follows directly from:

E
[
(log2 µ) · |1{X<T̂q,n} − 1{X<Tq(G)}| · 1{An}

]
≤ E

[
(log2 µ) · 1{τ−n−1/4≤X≤τ+n−1/4}

]
=

∫
log2(µ)[e−[τ−n−1/4]/µ − e−[τ+n−1/4]/µdF

≤ 2 · n−1/4 ·
∫

[log2(µ)/µ]dF.
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Similarly, for (6.13), write τ = Tq(G) for short, again by e−
t−δ

µ − e−
t+δ

µ ≤ 2δ
µ , 0 < δ < t,

(6.13) follows from:

E
[
log2(X/µ)|1{X1<T̂q,n} − 1{X<τ}|·1{An}

]
≤ E

[
(log2(X/µ) · 1{τ−n−1/4≤X≤τ+n−1/4}

]
≤ [E log4(X/µ)]1/2 · [PG{|X − τ | ≤ n−1/4}]1/2

= [E log4(X/µ)]1/2 · [
∫

[e−[τ−n−1/4]/µ − e−[τ+n−1/4]/µ]dF ]1/2

≤ 2n−1/4 · [E log4(X/µ)]1/2 ·
∫

(1/µ)dF.

�

6.5 Proof of Lemma 6.5

First, we show
lim

n→∞

[
sup
G(n)

0

Ṽ (Tq, G)
]

= 0. (6.17)

By monotonicity and Hölder, it is clear that when Tq(G) > log(n)/8,

Ṽ (Tq, G) ≤ E
[
log2(X/µ)1{X≥log(n)/8}

]
≤ [E log4(X/µ)]1/2[PG(X ≥ log(n)/8]1/2;

by definition of the FDR functional, PG{X ≥ log(n)/8} = Ḡ(log(n)/8) ≤ 1
q e
− log(n)/8, so (6.17)

follows directly by recalling that E [log4(X/µ)] =
∫∞
0

log4(x)e−xdx <∞.
Second, we show

lim
n→∞

[
sup
G(n)

0

V (T̂q,n, G)
]

= 0, (6.18)

which is equivalent to (drop the subscript of X1 and µ1 for convenience):

lim
n→∞

[
sup
G(n)

0

E(log2(X/µ) · 1{X≥T̂q,n} · 1{Bc
n})

]
= 0, (6.19)

lim
n→∞

[
sup
G(n)

0

E(log2(X/µ) · 1{X≥T̂q,n} · 1{Bn})
]

= 0. (6.20)

First, (6.19) is the direct result of Lemma 6.4 and Hölder:

E
[
log2(X/µ) · 1{X≥T̂q,n} · 1{Bc

n})
]
≤ [E log4(X/µ)]1/2 · [PG{Bc

n}]1/2.

Second, the proof of (6.20) is very similar to that of (6.17); in fact, since over Bn, T̂q,n ≥
log(n)/16, by monotonicity

E
[
log2(X/µ) · 1{X≥T̂q,n} · 1{Bn})

]
≤ E

[
log2(X/µ) · 1{X≥log(n)/16}

]
,

and (6.20) follows by similar arguments. �

6.6 Proof of Lemma 6.6

By (6.3) - (6.4), all we need to show is (for convenience, drop the subscript for X1 and µ1):

lim
n→∞

sup
G(n)

0

E
[
log2(µ)|1{X<T̂q,n} − 1{X<Tq(G)}| · 1{Bn}

]
= 0, (6.21)

lim
n→∞

sup
G(n)

0

E
[
log2(µ)|1{X<T̂q,n} − 1{X<Tq(G)}| · 1{Bc

n}
]

= 0. (6.22)

To show (6.21), we consider the case Tq(G) ≤ T̂q,n and the case Tq(G) > T̂q,n separately.
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For the case Tq(G) ≤ T̂q,n, recall that by Lemma 6.1, T̂q,n ≤ log(n/q), so:

E
[
log2(µ)|1{X<T̂q,n} − 1{X<Tq(G)}| · 1{Bn}

]
≤ E [(log2(µ) · 1{Tq(G)≤X≤log(n/q)}]

≤ E [(log2(µ) · 1{Tq(G)≤X≤log(n/q)}+Tq(G)]

=
∫
e−

Tq(G)
µ [log2(µ)(1− e−

[log(n/q)]
µ )]dF (µ);

similarly, log2(µ)(1− e− log(n/q)/µ) ≤ log(n/q) log2(µ)/µ, so:∫
e−

Tq(G)
µ [log2(µ)(1− e− log(n/q)/µ)]dF (µ) ≤ log(n/q) · max

{µ≥1}
{log2(µ)/µ} ·

∫
e−Tq(G)/µdF,

but by definition of the FDR functional, for any G ∈ G(n)
0 ,

∫
e−

Tq(G)
µ dF = (1/q)e−Tq(G) ≤

(1/q)n−1/8, (6.21) follows directly.
For the case Tq(G) > T̂q,n, let τn = log(n)/16 for short, since T̂q,n ≥ τn over Bn:

E
[
log2(µ)|1{X<T̂q,n} − 1{X<Tq(G)}| · 1{Bn}

]
≤ E [log2(µ) · 1{τn≤X≤Tq(G)}]

=
∫

log2(µ)[e−τn/µ − e−Tq(G)/µ]dF ;

in Lemma 5.6, letting ψ(·) = log2(·), τ = τn, it is clear that Tq(G) > τ for any G ∈ G(n)
0 , so:∫

log2(µ)[e−τn/µ − e−Tq(G)/µ]dF ≤ 1
q
·max{µ≥1}{log2(µ)/µ} · τne−τn/(1− e−τn),

(6.21) follows directly for this case.
For (6.22), we also discuss the case Tq(G) ≤ T̂q,n and the case Tq(G) > T̂q,n separately. For

the case Tq(G) ≤ T̂q,n, again by Lemma 6.1 and Hölder,

E
[
log2(µ)|1{X<T̂q,n} − 1{X<Tq(G)}| · 1{Bc

n}
]
≤ E

[
log2(µ) · 1{X≤log(n/q)} · 1{Bc

n}
]

≤ [E log4(µ) · 1{X≤log(n/q)}]1/2 · [PG{Bc
n}]1/2,

again by (1− e−x/µ) ≤ x/µ for any x ≥ 0,

E
[
log4(µ) · 1{X≤log(n/q)}

]
=

∫
log4(µ)(1− e− log(n/q)/µ)dF ≤ log(n/q)

∫
(log4(µ)/µ)dF, (6.23)

and (6.22) follows for this case by using Lemma 6.4.
For the case Tq(G) > T̂q,n, similarly by Hölder:

E
[
log2(µ)|1{X<T̂q,n} − 1{X<Tq(G)}| · 1{Bc

n}
]
≤ E

[
log2(µ)1{X<Tq(G)} · 1{Bc

n}
]

≤ [
∫

log4(µ)(1− e−Tq(G)/µ)dF ]1/2 · [PG{Bc
n}]1/2.

Letting ψ(·) = log4(·) in 5.13,
∫

log4(µ)(1 − e−Tq(G))dF ≤ 1
q · max{µ≥1}{log4(µ)/µ} for any

G ∈ G, so (6.22) follows using Lemma 6.4. �

7 Proof of Theorem 1.3

We now complete the proof of Theorem 1.3. The key point is to relate the Bayesian model of
Sections 4-6 with the frequentist model of Section 1. In the frequentist model Xi ∼ Exp(µi), 1 ≤
i ≤ n, where µ = (µ1, µ2, . . . , µn) is an arbitrary deterministic vector µ ∈ Mn,p(η). Recall that
Rn(T̂q,n, G) denotes the risk of FDR estimation in the Bayesian model, while Rn(µ̂q,n, µ) denotes
the risk in the frequentist model. Below we will show:

lim
η→0

[
lim

n→∞

supG∈Gp(η)Rn(T̂q,n, G)
supµ∈Mn,p(η)Rn(µ̂q,n, µ)

]
= 1. (7.1)
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Recall that by Theorems 1.1, 5.1, and 6.1, we have:

lim
η→0

[
lim

n→∞

supG∈Gp(η)Rn(T̂q,n, G)
R∗n(Mn,p(η))

]
=

{
1, 0 < q ≤ 1

2 ,
q

1−q ,
1
2 < q < 1,

so Theorem 1.3 follows from (7.1). To prove (7.1), let now Gµ denote the mixture Gµ =
1
n

∑n
i=1E(·/µi). Let R̃n(µ̃q,n, µ) denote the ideal risk for thresholding at Tq(Gµ) under the

frequentist model. Let R̃(Tq, G) again denote the ideal risk for thresholding at Tq(G) in the
Bayesian model. We have the following crucial identity:

R̃n(µ̃q,n, µ) ≡ R̃(Tq, Gµ), ∀µ, n. (7.2)

Also, note that the class of Gµ’s arising from some µ ∈Mn,p(η) is a subset of the class of all G’s
arising in Gp(η), for each n > 0. Hence,

sup
µ∈Mn,p(η)

R̃(Tq, Gµ) ≤ sup
G∈Gp(η)

R̃(Tq, G), ∀n.

However, notice that by Theorem 5.1, appropriately chosen 2-point priors can be asymptotically
least-favorable for ideal risk in the Bayesian model. By picking µ containing entries with only the
two underlying values in the least-favorable prior, and with appropriate underlying frequencies,
we can obtain

lim
η→0

[ limn→∞ supµ∈Mn,p(η) R̃(Tq, Gµ)

supG∈Gp(η) R̃(Tq, G)

]
= 1. (7.3)

Relating now the Bayesian with the frequentist model via (7.2),

lim
η→0

[ limn→∞ supµ∈Mn,p(η) R̃n(µ̂q,n, µ)

supG∈Gp(η) R̃(Tq, G)

]
= 1. (7.4)

Suppose we can next show that the ideal FDR risk in the frequentist model is equivalent to the
true risk in the frequentist model, in the same sense as was proved in Theorem 6.1. Hence:

lim
η→0

lim
n→∞

[ supµ∈Mn,p(η)Rn(µ̂q,n, µ)

supµ∈Mn,p(η) R̃n(µ̃q,n, µ)

]
= 1. (7.5)

Then, (7.3) -(7.5) yield (7.1).
The key point is that (7.5) follows exactly as in Section 6. Indeed there is a precise analog

of Theorem 6.1 for the relation between the frequentist risk and the frequentist ideal risk. This
is based on two ideas.

First, if Gn now denotes the cdf of X1, . . . , Xn in the frequentist model, we again have very
strong convergence properties of Gn, this time to Gµ. This concerns convergence of the empirical
cdf for non-iid samples, which is not well known, but can be found in [16, Chapter 25].

Lemma 7.1 (Bretagnolle) Let Xn1, Xn2, . . . , Xnn be independent random variables with arbi-
trary df’s Fni, and Fn(x) be the empirical cdf, and F̄ = Avei{Fni}. Then for all n ≥ 1, s > 0,
there exists an absolute constant c such that

Prob{
√
n‖Fn − F̄n‖ ≥ s} ≤ 2ece−2s2

.

By Massart’s work ([16, Chapter 25] and [15]), we can take c = 1. Then, taking Fni = Exp(µi)
and F̄ = Gµ, we get

Pµ{‖Gn −Gµ‖ ≥ s/
√
n} ≤ 6e−2s2

, ∀µ.
This is completely parallel to the bound (4.12).

Second, it follows immediately from Section 4’s analysis that there are frequentist fluctuation
bounds for Tq(Gn)− Tq(Gµ) paralleling those in the Bayesian case. To apply this, we define:

M1
n,p(η) = {µ ∈Mn,p(η), Tq(Gµ) ≤ log(n)/8}, (7.6)

and
M0

n,p(η) = Mn,p(η) \M1
n,p(η). (7.7)
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Figure 4: Simulation Results for FDR Thresholding. Curves (dashed, solid, cross, and diamond)
describe per-coordinate loss of the FDR procedure with different q values (q = 0.05, 0.15, 0.25) at
different two-point mixtures. Here the mixtures concentrate at 1 and µ with mass ε = η/ log(µ)
at µ. The horizontal line corresponds to the asymptotic risk expression η log log( 1

η ).

Lemma 7.2 For sufficiently small η > 0,

1.

lim
n→∞

[
sup

µ∈M1
n,p(η)

∣∣Rn(µ̂q,n, µ)− R̃n(µ̃q,n, µ)
∣∣] = 0.

2.

lim
n→∞

[
sup

µ∈M0
n,p(η)

∣∣Rn(µ̂q,n, µ)− R̃n(µ̃q,n, µ)
∣∣] = 0.

The proof of this lemma is entirely parallel to that behind Theorem 6.1; we omit it. This
completes the proof of (7.1).

8 Discussion

8.1 Illustrations

We briefly illustrate two key points.
First, we consider finite-sample performance of FDR Thresholding. Figure 4 shows the result

of FDR thresholding with various values of q. It used a sample size n = 106, sparsity parameters
p = 1, η = 10−3, and a range of two-point mixtures of the kind discussed in Theorem 5.1.
The figure compares the actual risk of the FDR procedure under a range of situations with the
asymptotic limit given by Theorem 1.3. Clearly, the risk depends more strongly on q in finite
samples than seems called for by the asymptotic expression in Theorem 1.3. In the simulations,
the mixtures were based on various (ε, µ) pairs with µ ranging between 2 and 30, and for each
µ, ε = η

log(µ) .
For each q ∈ {0.05, 0.15, 0.25, 0.5}, we applied the FDR thresholding estimator µ̂FDR

q,n , getting
an empirical risk measure

R̂(q, µ) = R̂(q, µ; η, n) =
1
n
‖ log µ̂q,n − logµ‖22.

Figure 4 plots R̂(q, µ; η, n) versus µ for each q. As µ varies between 2 and 30, the empirical FDR
risk first increases to a maximum, then decreases; this fits well with our theory. We also notice
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Figure 5: Panel (a): The ‘bias proxy’ B̃2(Tq, Gε,µ) and the ‘variance proxy’ Ṽ (Tq, Gε,1,µ)). Panel
(b): Enlargement of (a). The maxima of B̃2(Tq, Gε,µ)) and Ṽ (Tq, Gε,µ)) are obtained roughly at
µ∗b and µ∗v respectively, with µ∗b = log( 1

η )/ log log log( 1
η ), µ∗v = log( 1

η ) · log log( 1
η ). For this figure,

η = 10−6.

that for q smaller than 1/2, the empirical FDR risk is not larger than η log log( 1
η ); and when q

is close to 1/2, though the empirical FDR risk can be larger than η log log( 1
η ), it is rarely larger

than, say, 1.3 · η log log( 1
η ).

Second, we illustrate the behavior of the ideal risk function indicated in the second part of
Theorem 5.1. Figure 5 works out an example of the ideal risk decomposition into bias proxy and
variance proxy, showing the maxima of each and the different ranges over which the two assume
their large values.

8.2 Generalizations

The approach described here can be directly extended to other settings. Jin has recently derived
by similar methods asymptotic minimaxity of FDR thresholding for sparse Poisson means obey-
ing µ ≥ 1, with most µi = 1. This could be useful in situations where we have a collection of
‘cells’ and expect one event per cell in typical cases, with occasional ‘hot spots’ containing more
than one event per cell.

Preliminary calculations show that a wide range of non-Gaussian additive noises can also
be handled by these methods. To see why, note that due to the use of log(µi) in both loss
measure and parameter set, results of this paper can be considered a study of FDR thresholding
in a situation with additive noise having a standard Gumbel distribution. Thus, defining Yi =
log(Xi), the model of Section 1 posits effectively

Yi = θi + Zi, i = 1, . . . , n,

where θi ≥ 0,
1
n

(∑
i

θp
i

)
≤ ηp,

we measure loss by
∑

i(θ̂i−θi)2 and the noise Zi obeys eZi ∼ Exp(1). Although we have focused
on the one-sided problem in which θi ≥ 0 for all i, we can certainly generalize the study to
handle the two-sided problem with 1

n (
∑

i |θi|p) ≤ ηp, and both θi > 0 and θi < 0 are possible.
Other additive non-Gaussian noises which have been considered include Double-Exponential.
Of course, in considering non-Gaussian distributions, the effectiveness of thresholding depends
on the tails of the noise distribution being sufficiently light. Thus, asymptotic minimaxity of
thresholding would be doubtful for additive Cauchy noise.
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Another generalization concerns dependent settings. In principle, FDR thresholding can still
be ‘estimating’ the FDR functional in large samples even without i.i.d. stochastic disturbances.
Suppose that the Xi are weakly dependent, in such a way that their empirical cdf still converges
at a root-n rate. Then all the above analysis can be carried through in detail without essential
change.

One frequently raised question: could the study here be easily generalized to other distribu-
tional setting, such as other exponential families. Unfortunately, the results in this paper depend
on some properties of the exponential distribution which other exponential families don’t have.
The first to mention is the monotone likelihood ratio of the family of exponential density func-
tions {fµ(x), 0 < µ < ∞ : fµ(x) = 1

µe
−x/µ · 1{x>0}} [14]; this seems crucial for our argument

[12], but some exponential families are not MLR. Jin’s study shows that the behavior of the
FDR functional in the discrete Poisson setting is essentially different from that of a continuous
setting (Gaussian, exponential, etc.). Another frequently raised issue concerns working on the
original scale instead of the log-scale. However, this does not give a meaningful problem; if we
used `2 loss on µ instead of on logµ, the minimax risk would be infinite.

8.3 Relation to Other Work

There are two points of contact with earlier literature. The first of course is with the work
of Abramovich, Benjamini, Donoho, and Johnstone [3]. Like the present work, [3] proves an
asymptotic minimaxity property for the FDR thresholding estimator, only for Gaussian noise,
and for a subtly different notion of sparsity. In [3], the sparsity parameter η = ηn, so that the
sparsity is linked to sample size, which makes sense in a variety of nonparametric estimation
applications, like wavelet denoising [1, 2, 8, 7]. In our work η goes to zero only after n → ∞.
This simplifies our analysis; the underlying tools in [3] – empirical processes, moderate deviations
– are more delicate to deploy than ours. The advantage of our approach seems principally in the
ease of generalization to a wider range of non-Gaussian and dependent situations.

The second connection is with the work of Genovese and Wasserman [10]. While they do
not consider our multiparameter estimation problem, they do use a Bayesian viewpoint related
to Sections 4-6 in our paper. Our approach considers of course a different class of Bayesian
examples, and a different notion of estimation risk. Their paper seems focused on developing
intuition and broader understanding of the FDR approach, while ours uses FDR to attack a
specific optimal estimation problem.

9 Appendix

Proof of Lemma 3.1. Extend the function ψ(µ)/φ(µ) to µ = 1 by defining ψ(1)/φ(1) =
limµ→1+[ψ(µ)/φ(µ)]; notice that∫

ψ(µ)dF (µ) =
∫

[
ψ(µ)
φ(µ)

] · φ(µ)dF (µ) ≤ Ψ∗ ·
∫
φ(µ)dF (µ),

so it follows that Ψ(z) ≤ Ψ∗·z for all z ≥ 0. Moreover, for any 0 ≤ z ≤ z∗, letting F{ε(z),µ∗} be the
mixture of point masses at 1 and µ∗ each with mass (1−ε(z)) and ε(z), where ε(z) = ε(z;ψ, φ) =
z/φ(µ∗), it is clear

∫
φ(µ)dF{ε(z),µ∗} = z. By the assumptions that limµ→∞[ψ(µ)/φ(µ)] = 0 and

that limµ→1+[ψ(µ)/φ(µ)] < Ψ∗, µ∗ is well defined, 1 < µ∗ < ∞, and ψ(µ∗)/φ(µ∗) = Ψ∗;
combining these:

Ψ(z) ≥
∫
ψ(µ)dF{ε(z),µ∗} = ε(z)ψ(µ∗) = Ψ∗ · z,

and Lemma 3.1 follows directly. �
Proof of Lemma 3.2. First, we check existence and uniqueness of µ∗. For existence:

elementary calculus shows that Ψ∗∗(µ) is continuous over (1, µ̄]; moreover, by definition, Ψ∗∗(µ) is
bounded for µ’s bounded away from µ̄, and ψ′(µ)/φ′(µ) →∞ as µ→ 1, so for sufficiently small µ,
Ψ∗∗(µ)−ψ′(µ)/φ′(µ) < 0; existence follows directly by the assumption Ψ∗∗(µ̄)−ψ′(µ̄)/φ′(µ̄) > 0.
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For uniqueness: suppose there were two solutions 1 < µ
(1)
∗ < µ

(2)
∗ < µ̄. Consider µ(1)

∗ ; by the
assumption that limµ→∞[φ(µ)/φ(µ)] = 0 and φ is strictly increasing, it follows that

lim
µ→∞

ψ(µ)− ψ(µ(1)
∗ )

φ(µ)− φ(µ(1)
∗ )

≤ lim
µ→∞

ψ(µ)

φ(µ)− φ(µ(1)
∗ )

= 0, (9.1)

so the supremum in the definition of Ψ∗∗(µ(1)
∗ ) is attainable; thus for some µ̃ > µ̄ we have:

Ψ∗∗(µ(1)
∗ ) = [ψ(µ̃)− ψ(µ(1)

∗ )]/[φ(µ̃)− φ(µ(1)
∗ )] = ψ′(µ(1)

∗ )/φ′(µ(1)
∗ );

moreover, the strict monotonicity of ψ′(µ)/φ′(µ) over (1, µ̄] implies that, the planar curve
{(φ(µ), ψ(µ)) : 1 ≤ µ ≤ µ̄} traces out the graph of a strictly concave function, so [ψ(µ(2)

∗ ) −
ψ(µ(1)

∗ )]/[φ(µ(2)
∗ )− φ(µ(1)

∗ )] < ψ′(µ(1)
∗ )/φ′(µ(1)

∗ ); combining these we have:

Ψ∗∗(µ(2)
∗ ) ≥ ψ(µ̃)− ψ(µ(2)

∗ )

φ(µ̃)− φ(µ(2)
∗ )

=
[ψ(µ̃)− ψ(µ(1)

∗ )]− [ψ(µ(2)
∗ )− ψ(µ(1)

∗ )]

[φ(µ̃)− φ(µ(1)
∗ )]− [φ(µ(2)

∗ )− φ(µ(1)
∗ )]

> ψ′(µ(1)
∗ )/φ′(µ(1)

∗ ),

which implies Ψ∗∗(µ(2)
∗ ) = ψ′(µ(2)

∗ )/φ′(µ(2)
∗ ) < ψ′(µ(1)

∗ )/φ′(µ(1)
∗ ); this contradicts the strict mono-

tonicity of ψ′(µ)/φ′(µ) and uniqueness follows directly.
Notice here that, by similar argument in (9.1), the supremum in the definition of Ψ∗∗(µ∗) is

attainable, so µ∗ is well defined.
The remaining part of the claim would follow easily if we could show that for any fixed

1 < µ0 ≤ µ∗:
[ψ(µ)− ψ(µ0)] ≤ (ψ′(µ0)/φ′(µ0))[φ(µ)− φ(µ0)], ∀µ ≥ 1. (9.2)

In fact, for the case 0 < z ≤ φ(µ∗), taking µ0 = µz ≡ φ−1(z) in (9.2), for any F with
∫
φ(µ)dF =

z, ∫
[ψ(µ)− ψ(µz)]dF (µ) ≤ (ψ′(µz)/φ′(µz))

∫
[φ(µ)− z]dF (µ) = 0, (9.3)

it then follows that
∫
ψ(µ)dF ≤ ψ(µz) for any such F ; this implies that Ψ(z) ≤ ψ(µz). At the

same time, taking the point mass νµz
, it is clear that

∫
φ(µ)dνµz

= z, and
∫
ψ(µ)dνµz

= ψ(µz),
so Ψ(z) ≥ ψ(µz); combining these gives the claim in Lemma 3.2 in this case.

Second, for the case φ(µ∗) < z ≤ φ(µ∗), take µ = µ∗ in (9.2), by the definition of Ψ∗∗,

[ψ(µ)− ψ(µ∗)] ≤ Ψ∗∗(µ∗) · [φ(µ)− φ(µ∗)], 1 < µ <∞,

so for any F with
∫
φ(µ)dF (µ) = z:∫

[ψ(µ)− ψ(µ∗)]dF (µ) ≤ Ψ∗∗(µ∗)
∫

[φ(µ)− φ(µ∗)]dF (µ) = Ψ∗∗(µ∗)[z − φ(µ∗)]; (9.4)

this implies Ψ(z) ≤ ψ(µ∗)+Ψ∗∗(µ∗)[z−φ(µ∗)]. At the same time, let F{ε(z),µ∗,µ∗} be the mixture
of point masses at µ∗ and µ∗ with masses (1 − ε(z)) and ε(z). By direct calculation, it is clear
that

∫
φ(µ)dF{ε(z),µ∗,µ∗} = z and that

∫
ψ(µ)dF{ε(z),µ∗,µ∗} = ψ(µ∗) + Ψ∗∗(µ∗)[z − φ(µ∗)]; so

Lemma 3.2 also follows for the case that φ(µ∗) < z ≤ φ(µ∗).
We now show (9.2). Fixed 1 < µ0 ≤ µ∗, by the definition of µ∗, Ψ∗∗(µ0) ≤ (ψ′(µ0)/φ′(µ0)),

combining this with the definition of Ψ∗∗(µ0):

[ψ(µ)−ψ(µ0)] ≤ Ψ∗∗(µ0) · [φ(µ)−φ(µ0)] ≤ (ψ′(µ0)/φ′(µ0)) · [φ(µ)−φ(µ0)], ∀ µ ≥ µ̄; (9.5)

moreover, observe that the curve {(φ(µ), ψ(µ)) : 1 < µ ≤ µ̄} in the φ – ψ plane is concave, also
noticing the tangent of this curve at (φ(µ0), ψ(µ0)) equals to ψ′(µ0)/φ′(µ0), we have:

[ψ(µ)− ψ(µ0)] ≤ (ψ′(µ0)/φ′(µ0)) · [φ(µ)− φ(µ0)], ∀ 1 < µ ≤ µ̄, (9.6)

combining (9.5)-(9.6) gives (9.2). �
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