
Some ANCOVA theory

Let X be a random variable

Let Xi be iid ∼ fx (pdf or pmf: probability density or mass function) with
mean µ and variance σ2.

Think of Xi as repeated observations from the same population or the same
statistic calculated for repeated experiments.

var(X) ≡ σ2
x =

∑n
i=1(Xi − X̄)2

n − 1

Let Y be another random variable. Let fxy be the joint pdf (or pmf) of X
and Y . fx and fy are called marginal pdf’s. We now have an additional
characteristic of the joint pdf: the covariance of X and Y.

cov(X, Y ) =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

n − 2

If X is independent of Y then fxy = fxfy and cov(X, Y ) = 0.

(We won’t use it today, but cor(X, Y ) = cov(X, Y )/(σxσy.)

Without any normality requirement, it is easy to show that

E(aX + bY ) = aE(X) + bE(Y ), but not E(XY ) = E(X)E(Y )

and

cov(aX, bY ) = ab cov(X, Y ) and cov(aX+bY, cZ) = ac cov(X, Z)+bc cov(Y, Z)

and

var(aX + bY + c) = a2var(X) + b2var(Y ) + 2ab cov(X, Y ).
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What is var(aX + bY + cZ)?

var(aX + bY + cZ) = var((aX + bY ) + cZ)

= var(aX + bY ) + c2var(Z) + 2c cov(aX + bY, Z)

= a2var(X) + b2var(Y ) + 2ab cov(X, Y ) + c2var(Z)

+2c(acov(X, Z) + bcov(Y, Z))

= axvar(X) + b2var(Y ) + c2var(Z) + 2ab cov(X, Y )

+2ac cov(X, Z) + 2bc cov(Y, Z)

In simple linear regression, where β̂ is a vector of length 2

var(β̂) = σ2[X ′X]−1

where X here is a matrix with the first column all 1’s and the second column
equal to the n explanatory variables, xi.

Using standard matrix properties, [X ′X] has diagonal elements n and
∑

x2
i ,

and off-diagonal elements equal to
∑

xi, Also

[
a b
c d

]
−1

= g

[
d −b
−c a

]

where g is 1
ad−bc

, so var(β̂0) and var(β̂1) can be explicitly written out. In

practice we need to use S.E.(β̂j) where σ2 is replaced by an estimator, σ̂2 =
SSres/df. Note the effect of “centering” the explanatory variable. Also note
that it is CI’s and p-values that need normality.

F-test of two nested models:

The numerator is an estimator of σ2 under the null hypothesis that the extra
components of the “larger” model are useless, and the denominator is always
an estimator of σ2. The numerator is (SSsmall − SSbig)/dfn with df equal to
dfn, the difference in the number of parameters between the two models. The
denominator is SS/dfd for the “larger” model where dfd = n − pl and n is
the number of subjects in the regression and pl is the number of parameters
in the “larger” model. Under the null distribution, this F statistic has a
central F distribution with dfn and dfd degrees of freedom.
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Scheffe multiple (infinite) comparison procedure for contrasts:

C =
r∑

i=1

ciYi

var(C) ≡ σ2
C =

r∑

i=1

c2
i var(Yi) + 2

∑

i<j

cicj cov(YiYj)

We need a value of m such that the experiment-wise error rate of any number
of confidence intervals of the form C ±m σC is bounded by α. Scheffe found

m to be
√

(r − 1)F(α,r−1,dfd), where dfd is the df of σC .

Summarizing adjusted means in a model with a single covariate fixed at value
x0 and T treatments and different slopes and intercepts for each treatment:

Pick a few meaningful values of x0 such as Q1, Q2, Q3.

Let µ̂j represent E(Y |X = x0, T = tj). The model says that adjusted mean

µ̂j = α̂j + x0β̂j. So var(µ̂j) ≡ σ2
µ̂j

= var(α̂j) + x2
0var(β̂j) + 2x0 cov(α̂j, β̂j).

A confidence region can be written as µ̂j ± t(1−α/2,df) σµ̂j
.

Multiple testing that E(Y |X = x0, T = t1) differs from E(Y |X = x, T =
t2) in a model with a single covariate fixed at value x0 and T treatments and
different slopes and intercepts for each treatment:

Let µ̂j represent E(Y |X = x0, T = tj). The model says µ̂j = α̂j + x0β̂j.

So var(µ̂j) = var(α̂j) + x2
0var(β̂j) + 2x0 cov(α̂j, β̂j). For any pair of levels of

treatment, the β’s are uncorrelated. So var(µ̂1 − µ̂2) = var(µ̂1) + var(µ̂2).

To find the region of x’s where there is a “significant difference” in adjusted
outcomes between a pair of treatments, make an infinite number of CIs (for
all x’s, or all in a reasonable range) using Scheffe’s method, and see which
ones exclude zero for the difference.
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