Some ANCOVA theory
Let X be a random variable

Let X; be iid ~ f, (pdf or pmf: probability density or mass function) with

mean j and variance o2.

Think of X; as repeated observations from the same population or the same
statistic calculated for repeated experiments.
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var(X) = o2 =

Let Y be another random variable. Let f,, be the joint pdf (or pmf) of X
and Y. f, and f, are called marginal pdf’'s. We now have an additional
characteristic of the joint pdf: the covariance of X and Y.
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If X is independent of Y then f,, = f,f, and cov(X,Y) = 0.

(We won'’t use it today, but cor(X,Y) = cov(X,Y)/(0,04.)

Without any normality requirement, it is easy to show that

cov(X,Y) =

E(aX +bY) =aFE(X)+bE(Y), but not E(XY) = E(X)E(Y)
and
cov(aX,bY) = ab cov(X,Y) and cov(aX+bY, cZ) = ac cov(X, Z)+bc cov(Y, Z)
and

var(aX + bY + ¢) = a®var(X) + b*var(Y) + 2ab cov(X,Y).



What is var(aX + bY + cZ)?

var(aX +bY +c¢Z) = var((aX +0b0Y) + cZ)

var(aX + bY) + c¢*var(Z) + 2c cov(aX + bY, Z)

a*var(X) + b*var(Y) + 2ab cov(X,Y) + c*var(2)

+2c(acov(X, Z) + beov(Y, Z))

= a"var(X) + b*var(Y) + c*var(Z) + 2ab cov(X,Y)
+2ac cov(X, Z) 4 2bc cov(Y, Z)

In simple linear regression, where ﬂA is a vector of length 2
var(f) = o?[X'X]

where X here is a matrix with the first column all 1’s and the second column
equal to the n explanatory variables, z;.

Using standard matrix properties, [X’X| has diagonal elements n and Y z?,
and off-diagonal elements equal to Y z;, Also
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where ¢ is ﬁ’ S0 var(ﬁa) and Var(B\l) can be explicitly written out. In

practice we need to use SE(@) where o2 is replaced by an estimator, o2 =

SS,es/df. Note the effect of “centering” the explanatory variable. Also note
that it is CI’s and p-values that need normality.

F-test of two nested models:

The numerator is an estimator of 2 under the null hypothesis that the extra
components of the “larger” model are useless, and the denominator is always
an estimator of 0. The numerator is (SSsma — SSkig)/dfn with df equal to
dfn, the difference in the number of parameters between the two models. The
denominator is SS/dfd for the “larger” model where dfd = n — pl and n is
the number of subjects in the regression and pl is the number of parameters
in the “larger” model. Under the null distribution, this F statistic has a
central F distribution with dfn and dfd degrees of freedom.
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Scheffe multiple (infinite) comparison procedure for contrasts:
C= Z CZ'Y;'
i=1

var(C) = 03 = Y _civar(Y;) + 2> cicj cov(ViY))
i=1

i<j

We need a value of m such that the experiment-wise error rate of any number
of confidence intervals of the form C'4+m o¢ is bounded by a. Scheffe found

m to be \/(r — 1) Flar—1,dra), Where dfd is the df of o¢.

Summarizing adjusted means in a model with a single covariate fixed at value
o and T treatments and different slopes and intercepts for each treatment:

Pick a few meaningful values of xq such as Q1, Q2, Q3.
Let fi; represent E(Y|X = xo, T =t;). The model says that adjusted mean
[ = a; + xof;. So var(f;) = aij = var(a;) + agvar(53;) + 2xo cov(ay, 53).

A confidence region can be written as ji; £ t(1_a/2.4) O

Multiple testing that E(Y|X = xo, T =t;) differs from E(Y|X =2z, T =
ts) in a model with a single covariate fixed at value xy and T treatments and
different slopes and intercepts for each treatment:

Let i; represent E(Y|X = xo, T = t;). The model says [i; = @; + x0;.
So var(pi;) = var(a;) + aivar(53;) + 2xo cov(aj, 3;). For any pair of levels of
treatment, the §’s are uncorrelated. So var(f; — jiz) = var(py) + var(fiz).

To find the region of x’s where there is a “significant difference” in adjusted
outcomes between a pair of treatments, make an infinite number of Cls (for
all x’s; or all in a reasonable range) using Scheffe’s method, and see which
ones exclude zero for the difference.



