Some ANCOVA theory

Let X be a random variable

Let X_i be iid ~ f_x (pdf or pmf: probability density or mass function) with mean μ and variance σ^2 .

Think of X_i as repeated observations from the same population or the same statistic calculated for repeated experiments.

$$
var(X) \equiv \sigma_x^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}
$$

Let Y be another random variable. Let f_{xy} be the joint pdf (or pmf) of X and Y. f_x and f_y are called marginal pdf's. We now have an additional characteristic of the joint pdf: the covariance of X and Y.

$$
cov(X, Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n - 2}
$$

If X is independent of Y then $f_{xy} = f_x f_y$ and $cov(X, Y) = 0$. (We won't use it today, but $\text{cor}(X, Y) = \text{cov}(X, Y) / (\sigma_x \sigma_y)$.) Without any normality requirement, it is easy to show that

$$
E(aX + bY) = aE(X) + bE(Y),
$$
 but not $E(XY) = E(X)E(Y)$

and

$$
cov(aX, bY) = ab cov(X, Y)
$$
 and $cov(aX+bY, cZ) = ac cov(X, Z) + bc cov(Y, Z)$

and

$$
var(aX + bY + c) = a^2 var(X) + b^2 var(Y) + 2ab cov(X, Y).
$$

What is $\text{var}(aX + bY + cZ)$?

$$
\begin{aligned}\n\text{var}(aX + bY + cZ) &= \text{var}((aX + bY) + cZ) \\
&= \text{var}(aX + bY) + c^2 \text{var}(Z) + 2c \text{ cov}(aX + bY, Z) \\
&= a^2 \text{var}(X) + b^2 \text{var}(Y) + 2ab \text{ cov}(X, Y) + c^2 \text{var}(Z) \\
&\quad + 2c(a \text{cov}(X, Z) + b \text{cov}(Y, Z)) \\
&= a^x \text{var}(X) + b^2 \text{var}(Y) + c^2 \text{var}(Z) + 2ab \text{ cov}(X, Y) \\
&\quad + 2ac \text{ cov}(X, Z) + 2bc \text{ cov}(Y, Z)\n\end{aligned}
$$

In simple linear regression, where $\hat{\beta}$ is a vector of length 2

$$
\text{var}(\hat{\beta}) = \sigma^2 [X'X]^{-1}
$$

where X here is a matrix with the first column all 1's and the second column equal to the *n* explanatory variables, x_i .

Using standard matrix properties, $[X'X]$ has diagonal elements n and $\sum x_i^2$, and off-diagonal elements equal to $\sum x_i$, Also

$$
\left[\begin{array}{cc}a & b \\c & d\end{array}\right]^{-1}=g\left[\begin{array}{cc}d & -b \\-c & a\end{array}\right]
$$

where g is $\frac{1}{ad-bc}$, so $\text{var}(\widehat{\beta_0})$ and $\text{var}(\widehat{\beta_1})$ can be explicitly written out. In practice we need to use S.E. $(\hat{\beta}_j)$ where σ^2 is replaced by an estimator, $\sigma^2 =$ SS_{res}/df . Note the effect of "centering" the explanatory variable. Also note that it is CI's and p-values that need normality.

F-test of two nested models:

The numerator is an estimator of σ^2 under the null hypothesis that the extra components of the "larger" model are useless, and the denominator is always an estimator of σ^2 . The numerator is $\frac{(SS_{small} - SS_{big})}{dfn}$ with df equal to dfn , the difference in the number of parameters between the two models. The denominator is SS/dfd for the "larger" model where $dfd = n - pl$ and n is the number of subjects in the regression and pl is the number of parameters in the "larger" model. Under the null distribution, this F statistic has a central F distribution with dfn and dfd degrees of freedom.

Scheffe multiple (infinite) comparison procedure for contrasts:

$$
C = \sum_{i=1}^{r} c_i Y_i
$$

$$
\text{var}(C) \equiv \sigma_C^2 = \sum_{i=1}^r c_i^2 \text{var}(Y_i) + 2 \sum_{i < j} c_i c_j \text{ cov}(Y_i Y_j)
$$

We need a value of m such that the experiment-wise error rate of any number of confidence intervals of the form $C \pm m \sigma_C$ is bounded by α . Scheffe found m to be $\sqrt{(r-1)F_{(\alpha,r-1,dfd)}}$, where dfd is the df of σ_C .

Summarizing adjusted means in a model with a single covariate fixed at value x_0 and T treatments and different slopes and intercepts for each treatment: Pick a few meaningful values of x_0 such as Q1, Q2, Q3. Let $\widehat{\mu_j}$ represent $E(Y|X=x_0, T=t_j)$. The model says that adjusted mean $\widehat{\mu_j} = \widehat{\alpha_j} + x_0 \widehat{\beta_j}$. So $\text{var}(\widehat{\mu_j}) \equiv \sigma_{\widehat{\mu}}^2$ $\hat{\mu}_j = \text{var}(\widehat{\alpha_j}) + x_0^2 \text{var}(\widehat{\beta_j}) + 2x_0 \text{ cov}(\widehat{\alpha_j}, \widehat{\beta_j}).$

A confidence region can be written as $\widehat{\mu_j} \pm t_{(1-\alpha/2, df)} \sigma_{\widehat{\mu_j}}$.

Multiple testing that $E(Y|X=x_0, T=t_1)$ differs from $E(Y|X=x, T=$ t_2) in a model with a single covariate fixed at value x_0 and T treatments and different slopes and intercepts for each treatment:

Let $\widehat{\mu_j}$ represent $E(Y|X = x_0, T = t_j)$. The model says $\widehat{\mu_j} = \widehat{\alpha_j} + x_0\beta_j$. So $\text{var}(\widehat{\mu_j}) = \text{var}(\widehat{\alpha_j}) + x_0^2 \text{var}(\widehat{\beta_j}) + 2x_0 \text{ cov}(\widehat{\alpha_j}, \widehat{\beta_j})$. For any pair of levels of treatment, the β's are uncorrelated. So $var(\widehat{\mu_1} - \widehat{\mu_2}) = var(\widehat{\mu_1}) + var(\widehat{\mu_2})$.

To find the region of x's where there is a "significant difference" in adjusted outcomes between a pair of treatments, make an infinite number of CIs (for all x's, or all in a reasonable range) using Scheffe's method, and see which ones exclude zero for the difference.