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Review 

  Quantitative DV Categorical DV 

Quantitative IV Regression 
(HLM) 

Logistic regression (k=2) 
(generalized HLM) 

      
One Categorical IV ANOVA 

R.M. ANOVA 

Chi-square test of 
independence 

      
Both Regression (ANCOVA) Logistic Regression (k=2) 
  R.M. ANCOVA 

(HLM) 
 (generalized HLM) 
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An analysis choice grid: 



Tests for categorical outcomes (DVs) 

 No normality or equal variance assumption.  Still assume 
independent errors assumption. 

 Chi-square test of independence 

 Two categorical variables with any number of levels 

 Null hypothesis is equal probability distributions of one factor across 
levels of another factor, i.e., knowing X tells you nothing about Y. 

 Logistic regression 

 Binary categorical DV (i.e., k=2) with any IV(s). 

 Model how the probability of “success” varies with some categorical 
and/or continuous explanatory variable(s). 

 Not covered by the above: DV has >2 levels and >1 IV or a 
quantitative IV. 
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Chi-square Test of Independence 
 Setting: Categorical IV and categorical DVs (or two 

categorical DVs) 
 

Null hypothesis 
 X is independent of Y or  
 “distribution of Y|X=a” equals the “distribution of Y|X=b”= … or 
 Pr(Y=1) is equal across all levels of X (only when Y has k=2 levels) 

 
 Examples of truth in the population: 

 Null: P(Y=1)=0.4, P(Y=2)=0.3,  P(Y=3)=0.3 for each level of x  
 Specific alternative:  P(Y=1|x=1)=0.4, P(Y=2|x=1)=0.3, P(Y=3|x=1)=0.3 

P(Y=1|x=2)=0.3, P(Y=2|x=2)=0.3, P(Y=3|x=2)=0.4 
etc. 
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Chi-square Test, continued 

EDA: Construct a sample contingency table 
(cross-tabulation) which counts the numbers of 
subjects for each combination of levels of 
variable x and variable Y.  Example (100 people 
with 20 given each of 5 drugs): 

 

 

 
 Percentages may be calculated by column or by row. 
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Memory\Drug 
A B C D E All 

Improved 3 5 8 10 14 40 

Not 17 15 12 10 6 60 



Chi-square Test, continued 

Expected value under the null hypothesis:  
Here, overall 40/100 improved, 40% of 20 is 
8.0, so the expected cell count is 8.0 for each 
dose for “improved” and 12.0 for “not”. 

  Statistic is 𝑋2 =  
observed−expected

2

expected
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Memory\Drug A B C D E All 

Improved 3 5 8 10 14 40 

Not 17 15 12 10 6 60 



Chi-square Test, continued 
Under H0, the X2  statistic follows an asymptotic 

chi-square (χ2) distribution with (r-1)*(c-1) d.f.   
(assume independence across subjects; incorrect 
for tiny expected cell counts) 
 “Asymptotic” means “for large N”.  Many programs 

warn of possible incorrect p-values when any cell has 
its “expected value” (not observed value) less than 5.  
This warning is fairly conservative, so a few 4’s, 3’s, or 
2’s is unlikely to have much negative affect. 

  
SPSS (Analyze/Descriptive/Crosstab with 

“Statistics” set to “ChiSquare”): 
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Dose * Success Crosstabulation 

  
Success 

Total 0 1 

Drug A Count 17 3 20 

Expected Count 12.0 8.0 20.0 

% within Drug 85.0% 15.0% 100.0% 

B Count 15 5 20 

Expected Count 12.0 8.0 20.0 

% within Drug 75.0% 25.0% 100.0% 

C Count 12 8 20 

Expected Count 12.0 8.0 20.0 

% within Drug 60.0% 40.0% 100.0% 

D Count 10 10 20 

Expected Count 12.0 8.0 20.0 

% within Drug 50.0% 50.0% 100.0% 

E Count 6 14 20 

Expected Count 12.0 8.0 20.0 

% within Drug 30.0% 70.0% 100.0% 

Total Count 60 40 100 

Expected Count 60.0 40.0 100.0 

% within Drug 60.0% 40.0% 100.0% 



Chi-Square Test, cont. 

 “Pearson” is as good as the others so (pre-)choose it. 
 “Contrasts”: Sub-tables analyzed by c2 with Bonferroni 

corrections for post-hoc testing. 
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Chi-Square Tests

15.417a 4 .004

16.120 4 .003

15.036 1 .000

100

Pearson Chi-Square

Likelihood Ratio

Linear-by-Linear

Association

N of  Valid Cases

Value df

Asy mp. Sig.

(2-sided)

0 cells (.0%) hav e expected count less than 5. The

minimum expected count is 8.00.

a. 



Binary Outcome: Logistic Regression 

Purpose: With the two outcome categories 
labeled as “success” and “failure”, model how the 
chance of success depends on the explanatory 
variable(s). 

  
Model “log odds of success”:  

log[Pr(S)/Pr(F)] = b0 + b1x1 + … + bkxk 
 (As usual, factors with k>2 need to be coded.) 
 The change in the chance of success due to “x going 

up by 1” can be expressed as an addition on the log 
odds scale, a multiplication on the odds scale, but 
in no general way on the probability scale. 
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Mathematics of Logistic Regression 
 Define: S = Success   F = Failure 

 Probability of success: P(S) or Pr(S) 
 0 ≤ P(S) ≤ 1   P(F) = 1 – P(S) 
 0.5 is the “middle” 
 Cannot keep adding, so P(S)=b0+b1x fails 

 Odds: Odds(S) = P(S) / P(F) = P(S) / [1 – P(S)] 
 0 ≤ Odds(S) < ∞ 
 1 is the “middle” 
 Interpretation of odds values:  

• odds=3=3/1 means 3 succeed for every 1 who fails 
• odds=0.21 ≈ 2/10 = 1/5 means 1 succeeds for every 5 who fail 

 Can keep multiplying, so  
Odds(S|X=x+1) =  g Odds(S|X=x) does work 
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Logistic Regression Math, cont. 

 Log odds: Logit(S) = ln(Odds(S)) = loge(Odds(S)) 

 −∞ ≤ logit(S) ≤ ∞ 

 Zero is the “middle” 

 Can keep adding, so logit(S|x)= b0 + bxx is OK. 

 

 Needed formulas 

 Odds(S) = elogit(S) = exp(logit(S)) 
• Exp on many calculators is actually “*10^” 

• Use “Inverse” of “ln” on most calculators 

 P(S) = Odd(S) / (1 + Odds(S)) 
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Logistic Regression Math, cont. 

E.g. p = 0.2, 0.5, 0.75;   odds = 0.25, 1, 3;     
log(odds) = -1.30, 0, 1.10 

 
Adding, e.g., 1.10 to log odds(S) is the same as 

multiplying odds(S) by exp(1.10)=3.00. 

 
Deeper math: ea+b = eaeb           ecd =  (ec)d            

(ea+eb does not simplify) 
 E.g., log odds(S) = b0 + b1 x    

odd(S) = exp(b0 + b1 x) = e b0 + b1 X  
= e b0  eb1 x = e b0  (eb1) x 
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EDA 

EDA is problematic because there are only two 
values of the DV. 

For categorical IVs, a crosstabulation should be 
done.  (Some plots of the crosstab are available in 
some programs, but are only slightly helpful.) 

For quantitative IVs, the best EDA is to “cut” the 
IV into bins, compute the fraction of success in 
each bin, and plot fraction(S) vs., e.g., the mean 
or middle IV value in the bin. 

This should be “S” shaped on a linear scale and a 
straight line on a log odds scale. 
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Logistic Regression EDA 
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Formal Logistic Regression Analysis 
 “Regression / Binary Logistic” in SPSS 

 
 Technically, this is a generalized linear model with link function “logistic”. 

 
 Think of predicting log odds of success from the usual right hand side:  

hx = b0 + b1x1 + b2x2 + …. 
 
 b0 is the log odds of success for “baseline” subjects, i.e., when all x’s are zero 
 exp(b0) is the odds of success for baseline 
 exp(b0) / (1 + exp(b0)) is the baseline prob(S) 
 
 b1 is the (additive) change in the log odds of success when x1 goes up by one, 

holding all other x’s constant 
 exp(b1) is the multiplicative change in the odds of success when x1 goes up by 

one, holding all other x’s constant 
 Nothing in general can be said about the effect of a change in x on the 

probability scale. 
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Example: Donner Party 
 Scientific hypothesis: women are better able to survive harsh conditions 

than men (children excluded from the analysis) 

 
 Statistical model:  

 LogOdds(survival | age, gender) = β0 + βageAge + βfemaleFemale 
 H0G: βfemale=0    H0A: βage=0 

 
 Meaning of the parameters 

 βfemale is the (additive) change in the log odds of success when comparing a 
female to a male of any age. 

 exp(βfemale) is the multiplicative change in the odds of success when comparing 
a female to a male of any age. 

  
 βage is the (additive) change in the log odds of success when comparing a 

person to another of the same sex who is 1 year younger. 
 exp(βage) is the multiplicative change in the odds of success when comparing a 

person to another of the same sex who is 1 year younger. 
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Donner, cont. 
Dependent Variable Encoding 

 

 

 
Categorical Variables Codings 

 

 

 

Classification Table(a) 
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Original Value Internal Value 

Died 0 

Survived 1 

    Parameter coding 

  Frequency (1) 
female male 30 .000 

  female 15 1.000 

  Observed Predicted 

    survived Percentage Correct 

    died survived Died 

Step 1 Survived Died 23 2 92.0 

    Survived 8 12 60.0 

  Overall Percentage     77.8 



Donner, cont. 
Variables in the Equation 

 

 

 

 

b0: (Useless) extrapolation to baseline 

 Baseline is newborn males 

 Estimated log odds of survival is 1.633 

 Estimated odds(S) is exp(1.633) = 5.12 

 Estimated p(S) is 5.12/(1+5.12) = 0.84 (84%) 
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  B S.E. Wald df Sig. Exp(B) 
Age -.078 .037 4.399 1 .036 .925 

female(1) 1.597 .756 4.470 1 .034 4.940 

Constant 1.633 1.110 2.164 1 .141 5.120 



Donner, cont. 
Variables in the Equation 
 
 
 

 

bfemale: Female “slope” parameter 
 Describes females compared to males at the same age 
 Estimated log odds of survival is 1.60 higher (adding) 

for females than males of the same age 
 Estimated odds of survival 4.94 times (multiplying) as 

high for females than males of the same age 
• E.g., odds of survival for 25 y/o males is exp(1.633-0.078(25)) 

= 0.73 (0.73 survive for every 1 who dies; or 3S for 4D) 
• Odds of survival for 25 y/o females is 0.73*4.94=3.61 (3.61 

survive for 1 who dies; or 14S for 4D) 

20 

  B S.E. Wald df Sig. Exp(B) 
Age -.078 .037 4.399 1 .036 .925 

female(1) 1.597 .756 4.470 1 .034 4.940 

Constant 1.633 1.110 2.164 1 .141 5.120 



Donner, cont. 
Variables in the Equation 
 
 
 
 
 

 

 bAge: Age slope parameter 
 Describes any age compared to 1 year younger for the same sex 
 Estimated log odds of survival is 0.078 lower (subtracting) for 

any age than one year younger for the same sex 
 Estimated odds of survival 0.925 times (multiplying) as high (i.e., 

lower) for one year younger of the same sex 
 It is OK (better) to make “change in x” more meaningful: 

• 10 year increase in age lowers log odds of survival by 0.78.   
• 10 year increase in age multiplies odds of survival by e0.78=0.46 times.  

(Or every 8.9 years older results in half the odds of survival.) 
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  B S.E. Wald df Sig. Exp(B) 
Age -.078 .037 4.399 1 .036 .925 

female(1) 1.597 .756 4.470 1 .034 4.940 

Constant 1.633 1.110 2.164 1 .141 5.120 



Model checking for Donner 
 Hosmer-Lemeshow goodness of fit test: among other 

problems, it can detect (p≤0.05) the need for a transformation 
of IVs to corrected for non-linearity on the log odds scale. 

 

Graphical summary of the model: 
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Step Chi-square df Sig. 
1 9.320 7 .230 



Logistic Regression Assumptions 

Binomial outcome 

Logistic relationship for px=Pr(Y=1|x) vs. each 
quantitative x 

Error variance(Y|x)= px *(1- px) 

X is “fixed” (measured with no or little error) 

Independent errors 
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Categorical DV Summary 
Chi-square test of independence 
 DV with c levels and IV (or second DV) with r levels 

 H0: Pr(Y=i | X=j) = Pr(Y=i |X=j’) for j,j’ for each i (and 
vice versa) 

Logistic regression 
 Binary DV (one of the k=2 Y values called “success”) 

 Log odds(S) = b0 + b1x1 + b2x2 + … 

 X’s can include any factors, covariates and/or 
interactions 

DV with >2 levels and quantitative IV or more 
than one IV: ??? 
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