36-465/665, Spring 2021
18 February 2021 (Lecture 6)
\[ \newcommand{\Prob}[1]{\mathbb{P}\left( #1 \right)} \newcommand{\Expect}[1]{\mathbb{E}\left[ #1 \right]} \newcommand{\Var}[1]{\mathrm{Var}\left[ #1 \right]} \newcommand{\Cov}[1]{\mathrm{Cov}\left[ #1 \right]} \newcommand{\Risk}{r} \newcommand{\EmpRisk}{\hat{r}} \newcommand{\Loss}{\ell} \newcommand{\OptimalStrategy}{\sigma} \DeclareMathOperator*{\argmin}{argmin} \newcommand{\ModelClass}{S} \newcommand{\OptimalModel}{s^*} \DeclareMathOperator{\tr}{tr} \newcommand{\Indicator}[1]{\mathbb{1}\left\{ #1 \right\}} \newcommand{\myexp}[1]{\exp{\left( #1 \right)}} \]
Hoeffding’s bound: \(M_{Z}(t) \leq e^{t\mu} e^{t^2(b-a)^2/8}\)
Suppose \(X_1, \ldots X_n\) are independent but not necessarily identically distributed, and \(Z=f(X_1, \ldots X_n)\). Say \(Y_1, \ldots Y_n\) are independent copies of the \(X_i\), and define \(Z_i=f(X_1, \ldots X_{i-1}, Y_i, X_{i+1}, \ldots X_n)\). Then \[ \Var{Z} \leq \frac{1}{2}\sum_{i=1}^{n}{\Expect{(Z-Z_i)^2}} \]
The bounded difference or McDiarmid inequality
If \(f\) has the bounded difference property, then \[ \Prob{|Z-\Expect{Z}|\geq\epsilon} \leq 2\myexp{-\frac{2\epsilon^2}{\sum_{i=1}^{n}{d_i^2}}} \]