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Abstract

Machine learning (ML) is, today, the name of an important field within com-
puter science. It’s widely applied in industry, and has made important in-roads in
nearly every quantitative discipline; much of what non-computer-scientists call
“artificial intelligence” or “algorithms” is, in fact, machine learning. In one sense
ML is the heir to wide-ranging efforts, dating back to the 1950s, to build machines,
especially digital computer programs, which could be said to “learn” (in various
senses of the word). Many of those early efforts would however no longer be in-
telligible to current researchers as part of the field. Instead, a specific paradigm
crystallized between about 1985 and 2000, arguably even between 1990 and 1995.
Crucially, this paradigm involved the selective adoption by computer scientists
of ideas from statistics, relating to prediction, decision-making, and inductive in-
ference. This article traces the rise and content the statistical learning paradigm,
which has continued to give ML its core concepts and disciplinary identity, even
as the field has churned through many specific techniques and technologies.

During the late 1980s and 1990s, the field of machine learning underwent a sci-
entific revolution, very much in the mold of Kuhn (1970)1. Before, it was a pre-
paradigmatic endeavor; by the end, there was a well-defined, widely-shared paradigm,
one which still pretty much defines machine learning as an academic field. Prior to
this period, efforts to construct and theorize machines that learned showed no con-
sensus on what constituted a good contribution, or on how to evaluate contributions.
Starting in this period, the typical, readily-legible paper in machine learning follows
the statistical learning paradigm. The ideal type of such a paper
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1I am aware that Kuhn’s scheme has been challenged in many ways, from its conceptual foundations to
its historical veracity, both fairly shortly after publication (e.g., Toulmin 1972) and later (Donovan et al.,
1988). I neither want to defend all of the book, nor enter into this controversy. But my reasons for thinking
that at least this episode fits his scheme will, I hope, become clear.
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1. introduces a new class of “machines”, defined as classes of mathematical func-
tions mapping inputs2 to outputs3;

2. selects a particular function from this class of functions by solving a mathemat-
ical optimization problem involving the inputs and outputs of the function,
averaged over a (hopefully) representative “training” data set; and

3. demonstrates superiority over predecessors and alternatives by evaluating the
learned “machine”, in terms of that optimization problem, on new, “testing”
data, or used the statistical technique of cross-validation in the absence of sepa-
rate testing data.

Ancillary contributions under this paradigm could be mathematical theory saying
something about how well such a pipeline could be expected to work under various
assumptions (largely relying on the statistical / probabilistic field known as “empirical
process theory”), algorithms for actually doing the optimization in step 2 (or theory
about such optimization procedures), applications to particular concrete cases, etc.
This is a paradigm because it provides a repeatable template for what a good research
contribution should look like, along with standards for evaluating and, especially,
comparing contributions.

The class of mathematical functions called “neural networks” or “multi-layer per-
ceptrons” were the first instances of this paradigm, swiftly followed by “kernel ma-
chines” and “support vector machines”, which severed any pretense of biological or
psychological inspiration, and were justified purely in terms of the paradigm, i.e.,
their statistical performance. A large number of different types of machines have
risen and fallen in prominence within the field (neural networks have come back in
to vogue in the last decade, as “deep learning”), but the paradigm has remained in
place.

The formation of this paradigm involved computer scientists taking on concep-
tual tools, most notably decision theory, cross-validation and empirical process the-
ory, which had been previously developed for other purposes in statistics. Indeed,
the whole formation of machine learning as a separate discipline, with its own pub-
lications, career tracks, internal traditions, etc., can be seen as a process of computer
scientists selectively adopting statistical ideas, and retaining the sub-set of “learning”
problems which fit best with the paradigm and excluding the others (some of which
have however continued under labels like “knowledge discovery in data bases”).

1 Pre-Paradigmatic Machine Learning
• Samuels’ work on checkers in the 1950s (brought to wide attention by, e.g.,

Wiener (1961, 1964))

• The first edition of Holland (1992), from 1975, was certainly seen at the time
as a book about learning by machines, but would now be classified as being

2Also called “features”, “covariates”, “attributes”, “regressors”, etc.
3Variously “responses”, “labels”, “predictions”, “actions”, “decisions”, etc.
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about optimization or maybe artificial intelligence, but not learning in the ML
sense; similarly Holland et al. (1986) is clearly about learning (the subtitle is
“Processes of inference, learning, and discovery”), but it never evaluates any
algorithm or method by out-of-sample prediction performance (as opposed to,
say, being able to re-discover Vitruvius’s argument in favor of a wave theory of
sound, or matching experiments in animals on operant conditioning).

• Or, again, look at Mitchell (1993) developing a problem to solve letter-sequence
analogies (ab c : pq r :: aab b cc :?) based on examples. Clearly, this was a study
of learning, but also clearly not something that fits with the new paradigm.
(What was the loss function? the distribution over examples? the evaluation in
terms of risk or cross-validation?)

• So there were other imaginable directions for learning. There were also imag-
inable directions for AI without learning: the “expert systems” approach, pre-
suming extensive explicit human input of formalized knowledge (Feigenbaum
et al., 1988; McCorduck, 2004) [[MORE FORMAL CITATIONS]]— forms a
contrast case, very prominent in the 1980s

• Pre-paradigm work on neural networks: dates back to McCulloch and Pitts
(McCulloch, 1965), plus later developments up to Minsky and Papert’s negative
results about single-layer networks; then the revival by Rumelhart, McClelland,
etc., journalistically surveyed at the time by (e.g.) Caudill and Butler (1990)

• Pre-paradigmatic textbooks: Tou and Gonzalez (1974) or Hutchinson (1994) or
Mitchell (1997) (the last is especially interesting because it sees that the paradigm
exists but doesn’t confine itself to them)

2 Antecedents of the paradigm
• Statistical decision theory (1920s–1950s): Neyman and Pearson (1933) distin-

guished between different kinds of error and their costs, and derived optimal
statistical procedures; Neyman on “inductive behavior”; Wald’s statistical de-
cision theory, and the notion of “statistical decision functions”; Giocoli (2011)
reviewing how “homo economicus became a Bayesian statistician”; the notions
of “loss function” and “risk”

• Glivenko and Cantelli (1930s) extending the law of large numbers from a sin-
gle function of the data, to a uniform result over infinitely many functions of
the data [[citations]]; work by Kolmogorov, Donsker, etc. on convergence of
distribution functions

• Vapnik and Chervonenkis (Vapnik and Chervonenkis, 1971; Vapnik, 1979/1982)
on Glivenko-Cantelli type results for other classes of functions, and the link to
loss functions and “risks” (what was the context of this, within Soviet probabil-
ity and statistics?)

3



• Introduction of cross-validation in to the formal statistical literature by Stone
(1974); Geisser (1975), acknowledging earlier informal uses; recognition of the
generality of the approach and its use for selecting one model among others by
Geisser and Eddy (1979)

• Empirical process theory (codified early by Pollard (1984), as well as Pollard
(1989, 1990), and Wellner [CITES]; but drawing on earlier work by Donsker
et al.), providing tools for Glivenko-Cantelli or Vapnik-Chervonenkis style re-
sults, rapidly applied to neural networks (Anthony and Bartlett, 1999) [[dig up
citations to original papers from there]]

• Contributions from physicists or ex-physicists: Watkin et al. (1993) emphasiz-
ing average-case results rather than bounds; Michael Jordan as an exemplary
figure moving from physics to learning theory and applications

3 Rise of the Paradigm
[[TODO: Content analysis of the NIPS/NeurIPS proceedings between the beginning
and c. 2000, looking at uses of selected originally-statistical terms and concepts, es-
pecially risk as expected loss, cross-validation, bootstrap, empirical process theory.
When did people stop having to explain, e.g., cross-validation?]]

• Valiant (1984) introduces the idea of “probably approximately correct” learn-
ing, which is the same as the statisticians’ idea of “consistency” but as applied
to the error rate rather than the parameters (“risk consistency”)

• Appearance of paradigmatic textbooks: Kearns and Vazirani (1994), Hastie et al.
(2001) [[others?]]

– Special attention to the works of Vapnik (Vapnik, 1998, 1995), which were
widely acknowledged as important if somehow a bit odd

• Items from the 1990s showing that cross-validation was still a new thing that
needed to be explained, without consensus on how to do it (e.g., Shardanand
and Maes (1995), the first paper on recommendation systems)

• The appearance and blooming of “support vector machines” in the hands Vap-
nik, Cortina, etc., with explicit definition of the function class / machine, the
optimization problem (and algorithms for solving the problem), and evaluation
by cross-validation, complemented by theory about how well we can expect the
models to perform [[CITATIONS]]

4 Points to make somewhere

4.1 Shared data and leader-boards
Role of the UCI repository of standardized data sets. NIST (and DARPA?) pushing
benchmarks and performance on shared data sets to assess progress.
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4.2 Statistical learning vs. optimization
On the one hand a tendency to regard the optimization as, so to speak, somebody
else’s problem, i.e., exploring specific optimization methods came to be seen as not
really part of machine learning. (Unlike, say, earlier and parallel work on genetic algo-
rithms and evolutionary optimization, where the process of improving the score on
some objective function was thought of as a process of learning.) Against that, it was
important that the optimization problems posed specific combinations of architec-
ture and loss function were tractable ones, for which there were efficient algorithms;
or that one could show how to transform problems in to forms where there were
efficient algorithms. Outstanding case: the ease of optimizing support vector ma-
chines, via tractable convex programming problems, as opposed to optimizing neural
network weights by back-propagation (= gradient descent).

4.3 Statistical learning vs. statistics
ML has not just been a re-labeling of statistics4, because the up-take of statistical ideas
was highly selective. Statisticians’ traditional concerns with the interpretation of pa-
rameters in the models, and quantify uncertainty about those parameters, fell pretty
completely by the wayside; even quantified uncertainty about predictions was at best
a minor consideration. Model mis-specification was never an issue. (There was no
pretense that the models could ever be correctly specified.) Even the applied statisti-
cian’s worries about measurement quality, representative samples, biases in the data-
collecting process, etc., were largely set to one side.

4.4 Assorted quotation materials
To begin with learning machines: an organized system may be said

to be one which transforms a certain incoming message into an outgoing
message, according to some principle of transformation. If this princi-
ple of transformation is subject to a certain criterion of merit of perfor-
mance, and if the method of transformation is adjusted so as to tend to
improve the performance of the system according to this criterion, the
system is said to learn. (Wiener, 1964, p. 14, emphasis in the original)

This would still be recognizable to a contemporary researcher, though they’d
find the emphasis on “messages” odd (unless perhaps they specialized in information-
theoretic bounds). But then the examples which follow!

It is not difficult to design a machine which exhibits the following
type of learning. The machine is provided with input and output chan-
nels and an internal means of providing varied output responses to inputs
in such a way that the machine may be “trained” by “trial and error” pro-
cess to acquire one of a range of input-output functions. Such a machine,

4By contrast, I’d argue that the more recent phenomenon of “data science” is just such a re-labeling
exercise — at its best.
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when placed in an appropriate environment and given a criterion of “suc-
cess” or “failure” can be trained to exhibit “goal-seeking” behavior.

(Minsky, Dartmouth AI proposal, p. 8), http://raysolomonoff.com/dartmouth/
boxa/dart564props.pdf
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