36-462/662, Spring 2020
16 April 2020 (small revisions, 20 April 2020)
Over-all equations: \[\begin{eqnarray} C(t+h) & = & \mathrm{Binom}(S(t), \frac{\beta}{n} h I(t))\\ D(t+h) & = & \mathrm{Binom}(I(t), \gamma h)\\ S(t+h) & = & S(t) - C(t+h)\\ I(t+h) & = & I(t) + C(t+h) - D(t+h)\\ R(t+h) & = & R(t) + D(t+h) \end{eqnarray}\]
sim.SIR <- function(n, beta, gamma, s.initial=n-1, i.initial=1, r.initial=0, T) {
stopifnot(s.initial+i.initial+r.initial == n)
states <- matrix(NA, nrow=3, ncol=T)
rownames(states) <- c("S", "I", "R")
states[,1] <- c(s.initial, i.initial, r.initial)
for (t in 2:T) {
contagions <- rbinom(n=1, size=states["S",t-1],
prob=beta*states["I",t-1]/n)
removals <- rbinom(n=1, size=states["I",t-1],
prob=gamma)
states["S",t] <- states["S",t-1] - contagions
states["I",t] <- states["I",t-1] + contagions - removals
states["R",t] <- states["R",t-1] + removals
}
return(states)
}
```
Go back to the original parameter values:
(Details: tracing out to a maximum of 6 rounds of growth; assuming a geometric distribution for the number of new infections, with the mean given by \(R_0\); color-coded by generation)
Use Kieran Healy’s covdata
package to get data on reported cases and deaths for the US
The 100th confirmed case in the US was reported on 2020-03-03, about when I did the simple model
(because \(\mathrm{Var}\left[ K \right] = \mathbf{E}\left[ K^2 \right] - \mathbf{E}\left[ K \right]^2\) for any variable)
(Adapted from Newman (2002), with fewer generating functions)
deSolve
package (Soetaert, Petzoldt, and Setzer 2010)Arnol’d, V. I. 1973. Ordinary Differential Equations. Cambridge, Massachusetts: MIT Press.
Bacaër, Nicolas. 2011. A Short History of Mathematical Population Dynamics. London: Springer-Verlag.
Bartlett, M. S. 1960. Stochastic Population Models in Ecology and Epidemiology. London: Methuen.
Boccara, Nino. 2004. Modeling Complex Systems. Berlin: Springer-Verlag.
Cohen, Reuven, Keren Erez, Daniel ben-Avraham, and Shlomo Havlin. 2000. “Resilience of the Internet to Random Breakdowns.” Physical Review Letters 85:4626–8. https://doi.org/10.1103/PhysRevLett.85.4626.
———. 2001. “Breakdown of the Internet Under Intentional Attack.” Physical Review Letters 86:3682–3685</a. https://doi.org/10.1103/PhysRevLett.86.3682.
Daley, D. J., and J. Gani. 1999. Epidemic Modelling: An Introduction. Cambridge, England: Cambridge University Press.
Davis, S., P. Trapman, H. Leirs, M. Begon, and J. A. P. Heesterbeek. 2008. “The Abundance Threshold for Plague as a Critical Percolation Phenomenon.” Nature 454:634–37. https://doi.org/10.1038/nature07053.
Ellner, Stephen P., and John Guckenheimer. 2006. Dynamic Models in Biology. Princeton, New Jersey: Princeton University Press.
Ewald, Paul W. 1996. Evolution of Infectious Disease. New York: Oxford University Press.
Gallagher, Shannon, Lee F. Richardson, Samuel L. Ventura, and William F. Eddy. 2018. “SPEW: Synthetic Populations and Ecosystems of the World.” Journal of Computational and Graphical Statistics 27:773–84. https://doi.org/10.1080/10618600.2018.1442342.
Grimmett, Geoffrey. 1999. Percolation. Second. Berlin: Springer-Verlag.
Grimmett, G. R., and D. R. Stirzaker. 1992. Probability and Random Processes. 2nd ed. Oxford: Oxford University Press.
Guttorp, Peter. 1995. Stochastic Modeling of Scientific Data. London: Chapman; Hall.
Imai, Natsuko, Anne Cori, Ilaria Dorigatti, Marc Baguelin, Christl A. Donnelly, Steven Riley, and Neil M. Ferguson. 2020. “Transmissibility of 2019-nCoV.” 3. MRC Centre for Global Infectious Disease Analysis. https://www.imperial.ac.uk/mrc-global-infectious-disease-analysis/covid-19/report-3-transmissibility-of-covid-19/.
Javan, Emily, Spencer J. Fox, and Lauren Ancel Meyers. 2020. “Probability of Current COVID-19 Outbreaks in All US Counties.” E-print, medRxiv 2020.04.06.20053561. https://doi.org/10.1101/2020.04.06.20053561.
Kiss, István Z., Joel C. Miller, and Péter L. Simon. 2017. Mathematics of Epidemics on Networks: From Exact to Approximate Models. New York: Springer. https://doi.org/10.1007/978-3-319-50806-1.
May, R. M., and R. M. Anderson. 1988. “The Transmission Dynamics of Human Immunodeficiency Virus (Hiv).” Philosophical Transactions of the Royal Society of London B 321:565–607. https://doi.org/10.1098/rstb.1988.0108.
Miller, Joel C. 2012. “A Note on the Derivation of Epidemic Final Sizes.” Bulletin of Mathematical Biology 74:2125–41. https://doi.org/10.1007/s11538-012-9749-6.
Newman, Mark E. J. 2002. “The Spread of Epidemic Disease on Networks.” Physical Review E 66:016128. https://doi.org/10.1103/PhysRevE.66.016128.
Pastor-Satorras, Romualdo, and Alessandro Vespignani. 2002. “Immunization of Complex Networks.” Physical Review E 65:036104. https://doi.org/10.1103/PhysRevE.65.036104.
Saint-Onge, Guillaume, Vincent Thibeault, Antoine Allard, Louis J. Dubé, and Laurent H’bert-Dufresne. 2020. “School Closures, Event Cancellations, and the Mesoscopic Localization of Epidemics in Networks with Higher-Order Structure.” E-print, arxiv:2003.05924. http://arxiv.org/abs/2003.05924.
Smith, Laura M., Kristina Lerman, Cristina Garcia-Cardona, Allon G. Percus, and Rumi Ghosh. 2013. “Spectral Clustering with Epidemic Diffusion.” Physical Review E 88:042813. https://doi.org/10.1103/PhysRevE.88.042813.
Soetaert, Karline, Thomas Petzoldt, and R. Woodrow Setzer. 2010. “Solving Differential Equations in R: Package deSolve.” Journal of Statistical Software 33 (9):1–25. https://doi.org/10.18637/jss.v033.i09.
Zinsser, Hans. 1935. Rats, Lice and History: Being a Study in Biography, Which, After Twelve Preliminary Chapters Indispensable for the Preparation of the Lay Reader, Deals with the Life History of Typhus Fever. Boston: Little, Brown.
Social Network Structure