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A Three-Sample Multiple-Recapture Approach
to Census Population Estimation
- With Heterogeneous Catchability

JOHN N. DARROCH, STEPHEN E. FIENBERG, GARY F. V. GLONEK, and BRIAN W. JUNKER*

A central assumption in the standard capture-recapture approach to the estimation of the size of a closed population is the homogeneity
of the “capture” probabilities. In this article we develop an approach that allows for varying susceptibility to capture through individual
parameters using a variant of the Rasch model from psychological measurement situations. Our approach requires an additional
recapture. In the context of census undercount estimation, this requirement amounts to the use of a second independent sample or
alternative data source to be matched with census and Post-Enumeration Survey (PES) data. The models we develop provide a
mechanism for separating out the dependence between census and PES induced by individual heterogeneity. The resulting data take
the form of an incomplete 22 contingency table, and we describe how to estimate the expected values of the observable cells of this
table using log-linear quasi-symmetry models. The projection of these estimates onto the unobserved cell corresponding to those
individuals missed by all three sources involves the log-linear model of no second-order interaction, which is quite plausible under
the Rasch model. We illustrate the models and their estimation using data from a 1988 dress-rehearsal study for the 1990 census
conducted by the U.S. Bureau of the Census, which explored the use of administrative data as a supplement to the PES. The article

includes a discussion of extensions and related models.

KEY WORDS: Census undercount; Conditional multinomial model; Log-linear model; Multiple recapture; Quasi-symmetry;

Rasch model.

1. INTRODUCTION

Concerns about the accuracy of census counts in the
United States have existed almost as long as the census itself.
The U.S. Census Bureau has documented the extent of the
undercount by age, race, and sex in all of the censuses since
1940. Two basic quantitative techniques have been used to
estimate the census undercount: demographic analysis and
the dual-system, or capture-recapture, modeling technique.

Demographic analysis puts the overall undercount at 2.9%
in 1970, at 1.4% in 1980, and at 1.9% in 1990. The national
undercount rate for Blacks has remained roughly 5% higher
than for Non-Blacks in every census since 1940 (see Fay,
Passel, Robinson, and Cowan 1988; Fienberg 1991). De-
mographic analysis can be used only at the national level,
because we have no method for tracking the movement of
individuals among states or other political units.

Dual-system estimation is more useful for estimating the
undercount at local levels. It was also the method of choice
for the statisticians at the Census Bureau in 1990, although
Secretary of Commerce Robert A. Mosbacher decided that
there would be no adjustment of official 1990 Census data
(Fienberg 1992b; Mosbacher 1991). Following the enumer-
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ation component of the 1990 decennial census, the Bureau
conducted a sample survey of about 5,000 blocks across the
nation and matched the information gathered on the inhab-
itants of these sample blocks with the results of the census
preliminary enumeration. This second count is known as
the Post-Enumeration Survey (PES). In all, the PES involved
enumeration of the occupants of 165,000 households na-
tionwide. Data from the enumeration process and the PES
can be combined in a 2 X 2 table of counts cross-classifying
presence or absence in the original census enumeration with
presence or absence in the PES (see Table 1). One cell is
missing—the count of those missed by both the census and
the PES. The dual-system technique assumes a fixed odds-
ratio for this table and estimates the missing cell from this
odds-ratio. The estimated undercount (relative to the original
enumeration) is then the sum of this estimate and the count
of those present in the PES and absent in the original enu-
meration.

Hogan (1992) described the 1990 PES in detail, including
the sampling plan, treatment of nonresponse and erroneous
enumeration, and adaptations required to apply dual-systems
methods to the census enumeration and PES. Fienberg
(1992a) provided an annotated bibliography of work on dual-
system and capture-recapture methodology.

After the 1980 U.S. decennial census, considerable atten-
tion was given to using extensions of the dual-system meth-
odology for correcting the census for the differential under-
count of Blacks and other minorities (see, for example,
Ericksen and Kadane 1985; Mulry and Spencer 1991; Wolter
1986). Various perspectives on the problem were provided
by Fienberg (1991), Freedman (1991), and Wolter (1991).
Leaving aside the special features required to adapt it to the
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Table 1. Dual-System (Two-Sample) Census

Second sample
1 0
First sample
1 X14 X10
0 Xo1 Xoo = ?

census context, criticisms of the dual-system methodology
focus largely on three basic assumptions:

1. Perfect matching: Individuals in the second list (the
PES) can be matched with those in the first list (the census)
without error. The matching algorithms used to link census
and sample files are not perfect (Jaro 1989), and they can
be reconsidered using probabilistic matching integrated with
capture-recapture structures (Ding 1990; Ding and Fienberg
1992) or using the probabilistic imputation approach devel-
oped for the 1990 PES (Rubin, Schafer, and Schenker 1988;
Schenker 1988). In this article we assume perfect matching
for simplicity of presentation.

2. Independence of lists: The probability of an individual
being included in the first list does not depend on whether
he or she was included in the second list. The census and
the follow-up sample have been widely viewed as positively
related. This can be checked through the use of a third list
using the log-linear methods described by Fienberg (1972)
and by Bishop, Fienberg, and Holland (1975, chap. 6).

3. Homogeneity: The probability of inclusion on a list
does not vary from individual to individual. Following the
original advice of Chandrasekar and Deming (1949) and
others, this assumption has been addressed by the Bureau
of the Census through the use of an extensive poststratifi-
cation scheme in 1990; but this approach is still subject to
challenge. Isaki, Schultz, Diffendal, and Huang (1988) de-
scribed some of the efforts that went into the development
of the census stratification scheme for 1990.

In fact, Assumptions 2 and 3 are related. Suppose that the
lists are independent within strata but the probability of cap-
ture or inclusion varies across strata. When the strata are
combined, the resulting data will in general no longer exhibit
independence. Kadane, Meyer, and Tukey (1992) described
the impact of collapsing over strata on the resulting popu-
lation estimates (see also Holland and Rosenbaum 1986).

Our approach is to build models accounting for varying
catchability of individuals as well as varying levels of pene-
tration into the target population of each sample or list. We
begin with the smallest possible sampling stratum, the in-
dividual, and assume that within individuals the lists are
indeed independent. These single-individual strata are then
combined into more realistic strata, such as the sampling
post-strata described by Zaslavsky and Wolfgang (1990,
1993) and summarized in Section 2; the resulting combined
counts exhibit the positive dependence due to heterogeneity
described by Kadane et al. (1992). The resulting log-linear
model for the combined strata contains parameters that rep-
resent both list effects and artifacts of the averaging distri-
bution of the individual effects.
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With only two samples, all such models essentially reduce
to the estimator based on the 2 X 2 odds-ratio described
earlier. With three or more samples, more refined models
can be entertained. As a check on the PES methodology in
the 1988 census dress rehearsal, the Census Bureau compiled
a third list from administrative records; some interesting uses
of this third list to improve the undercount estimate from
the 2 X 2 table have been explored by Zaslavsky and Wolf-
gang (1990, 1993). These data were gathered as part of the
dress rehearsal for the 1990 census. In the remainder of this
article we develop some varying-catchability models and ap-
ply them to this example. ‘

2. DATA FROM THE 1988
DRESS-REHEARSAL CENSUS

Zaslavsky and Wolfgang (1990, 1993) considered a pop-
ulation subgroup from the 1988 Dress-Rehearsal Census in
St. Louis, Missouri and its PES. A third source of information
was the Administrative List Supplement (ALS), compiled
from pre-census administrative records of state and federal
government agencies, including Employment Security, driv-
er’s license, Internal Revenue Service, Selective Service, and
Veteran’s Administration records. Zaslavsky and Wolfgang’s
analyses focused on the 70 blocks of the PES sample design
stratum in which most residents were expected to be Black
renters. One aim of the Census in this project was to better
identify Black male renters, a group believed to be seriously
undercounted in past censuses.

The resulting data were compiled into three lists: the E
list, the dress-rehearsal enumeration; the P list, compiled
from the dress-rehearsal PES; and the A4 list, compiled from
the ALS. The P list and A4 list were not identical to the raw
lists obtained from the PES and ALS, because of matching
and classification issues.

Zaslavsky and Wolfgang considered four post-strata of
Black males in investigating their population estimators, de-
pending on whether residents owned or rented homes and
whether they were age 20-29 or 30-44. The post-strata O2,
R2, O3, and R3 represent the cross-classification of these
two variables. Finally, two sets of lists were created. One
compilation includes all of the E- and P-source persons in
the three sampling strata 11, 12, and 13, which the given
post-strata cross; the other restricts E- and P-source persons
to those living in the one sampling stratum, 11, in which

Table 2. Three-Source Data From the 1988 Dress Rehearsal Census
in St. Louis, Missouri

Lists Stratum 11 Strata 11, 12, 13
E P A 02 R2 03 R3 02 R2 03 R3
0O 0 O© — — — — — — — —
0 0 1 59 43 35 43 59 43 35 43
0 1 0 8 34 10 24 65 70 69 53
0 1 1 19 11 10 13 19 1 10 13
1 0 O 31 41 62 32 75 73 77 71
1 0 1 19 12 13 7 19 12 13 7
1 1 0 13 69 36 69 217 144 262 155
1 1 1 79 58 91 72 79 58 91 72

Source: From Zaslavsky and Wolfgang (1990, 1993).
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most of the targeted population would be expected to be
found. These data were initially considered by Zaslavsky and
Wolfgang (1990); a more detailed description and data anal-
ysis was presented in Zaslavsky and Wolfgang (1993). Table
2 gives the raw counts for the eight separate tables they con-
sidered.

Zaslavsky and Wolfgang presented various triple-system
estimates of the number of uncounted people, including the
unrestricted no-second-order-interaction model, based on
log-linear or log-linear-like models applied to a full three-
system table or to various marginal subtables of a three-
system table. It is not clear whether formal goodness-of-fit
tests are available for the models implied by the six estimates
these authors considered, though they provided informal
checks of some of the assumptions underlying their esti-
mators. Their main estimation results are presented in Ap-
pendix B.

As we noted earlier, the stratum 11 data represent counts
for a subset of the individuals counted in the strata 11, 12,
and 13 data. Applying the same model at these different
levels of aggregation raises questions about whether the
(in-)dependence among lists, sampling scheme, and other
components stays the same. The models we present in Sec-
tion 4 contain parameters for the dependence structure, to
be estimated from the data, so they should be adaptable to
different dependence structures at different levels of aggre-
gation.

3. DUAL- AND TRIPLE-SYSTEM ESTIMATION

The dual-system estimator (DSE) estimates the missing
cell count Xy in the 2 X 2 table of counts (Table 1) as Xy
= r-(X10X01/X11). The 2 X 2 cross-product ratio r cannot be
estimated and must be set to some ad hoc value; usually one
assumes that r = 1 (i.e., that the samples are independent of
one another).

The incomplete 23 table of counts for a triple-system cen-
sus (Table 3) can be divided into one complete 2 X 2 subtable
and one incomplete 2 X 2 subtable. If we assume that the
cross-product ratio r is the same in both subtables, then the
cross-product ratio for the incomplete subtable can be esti-
mated from the complete one, as 7 = x;1 X001/ X101 X011. Ap-
plying the DSE to the incomplete subtable, we obtain

A o2 _ X111 X100X010X001
Xooo = 7+ (X100X010/ X110) = ————————— . (1
Xo11 X101 X110
Table 3. Triple-System (Three-Sample) Census
Third sample
1 0
Second sample Second sample
1 0 1 0
First sample
1 X111 X101 X110 X100
0 Xo11 Xo01 Xo10 Xooo = ?
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This is equivalent to assuming that p = 1, where

Di11P100Po10Pooi

(2)
DoooPor11P101P110

p=
(the p’s are cell probabilities); that is, it is equivalent to as-
suming that there is no second-order interaction in Table 3.
The no-second-order-interaction assumption for the 23 table
is in some sense analogous to the assumption of indepen-
dence for the 2 X 2 table but is one layer deeper. All pairs
of sources can exhibit dependence, but the amount of de-
pendence in each pair is assumed to be unaffected by con-
ditioning on the third source. Also, because the cell xgq is
missing, the assumption p = 1 is untestable in isolation—
just as ¥ = 1 is untestable for the incomplete 2 X 2 table.

The use of three or more lists with a multinomial sampling
model was first explored by Darroch (1958) for independent
lists and was extended with log-linear models to allow de-
pendence among the lists by Fienberg (1972). El-Khorazaty,
Imrey, Koch, and Wells (1977) reviewed the literature on
methods for multiple-system estimation and noted the links
with the literature on multiple-recapture approaches using
log-linear models, and also identified parallel assumptions
and issues in the applications to human and wildlife popu-
lations.

In Section 4 we build models that allow for varying catch-
ability of individuals as well as varying levels of penetration
into the target population of each sample or list. Within
individuals—the smallest possible sampling stratum—we
assume that the lists are independent; however, different in-
dividuals may in general have different probabilities of cap-
ture, and the models we propose reflect this possibility with
different parameters for each individual’s catchability effect.
In addition, there are parameters reflecting the different
*““catch efforts™ of the samples producing the lists. We then
combine these single-individual strata into more realistic
strata, such as the sampling post-strata described by Zaslavsky
and Wolfgang (1990, 1993) and summarized in Section 2.
Because the actual number of parameters grows with the
number of individuals, however, the usual asymptotic sta-
tistical estimation theory fails. One might approach the pop-
ulation estimation problem directly in that context, but such
an approach is technically complex and requires the number
of lists, as well as the population size N, to tend to infinity
(Haberman 1977). If we instead consider the observed 27
table of counts arising from random sampling of individuals
(see, for example, Cressie and Holland 1983; Darroch 1981),
or from collapsing the N X 23 table cross-classifying indi-
viduals with capture patterns (see, for example, Fienberg and
Meyer 1983), the likelihood for the observed 23 table of
counts is a marginal likelihood, averaged over the individual
effects.

There are both fixed-effects and random-effects arguments
formalizing this approach to the catchability effects, which
are really nuisance parameters for the purposes of estimating
the count in the missing cell xqqo or the total population size
N. For simplicity of exposition, we restrict ourselves in this
article to a fixed-effects argument and leave for a subsequent
article the technical details and interpretations of the ap-
proach that allows for randomly varying components to rep-
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resent individuals’ contributions to the capture probabilities.
Though the two approaches are rooted in different conceptual
frameworks with different interpretations and involve very
different mathematical arguments, they ultimately lead to
identical formulations of models for the observable data of
Table 3.

To simplify the models for the 23 table, we adapt some
variants of the Rasch model, well known in educational sta-
tistics and psychological measurement (see, for example,
Rasch 1980), to the multiple-recapture setting. This leads to
a set of log-linear models for three (or more) lists—census,
PES, and ALS—to obtain an estimate of the undercount (or,
equivalently, of the size of the population) that accommo-
dates heterogeneity among individuals. Psychometric models
such as the Rasch model provide an intuitively appealing
way to generate appropriate dependence models for a three-
sample census, but the census problem is really different from
the psychometric problem: There are only three observations
on each individual, and the focus of inference changes from
the individual effects (in psychometrics) to the missing-cell
count X (in the multiple-recapture census).

Our modeling approach also has clearly related antece-
dants in the statistical literature. For example, Burnham and
Overton (1978) illustrated a random-effects binomial model
for varying catchability that does not accommodate varying
list quality. Sanathanan (1972b, 1973) developed estimation
methods for the Rasch model in the multiple-recapture set-
ting that are more complicated than the marginal log-linear
approach we take. Lee and Chao (1991) presented a number
of approaches to heterogeneity problems in animal popu-
lation problems. Viewed from a contingency table perspec-
tive, our methods are also closely related to ideas of Darroch
and McCloud (1990).

The heterogeneity models we develop do not constrain
the missing cell, xy00, SO we must embed them in the no-
second-order-interaction model. Derivation of the marginal
model for the 22 table by summing over individual effects
does impose certain inequality restrictions on the log-linear
parameters; as the number of lists increases, Holland (1990a)
conjectured that the inequality restrictions approximately
rule out to interactions of second or higher order. Thus there
is in principle no reason to stop at three lists, and there may
actually be advantages in considering a framework that allows
for four or more lists as well.

4. MODELS FOR HETEROGENEOUS CATCHABILITY

Let j = (Ji, j2, J3) represent the capture pattern of an
arbitrary individual, so j; = 1 if the individual is on list ; and
0 otherwise. If there exist observable covariates that explain
the heterogeneity, then a logistic regression model can be
built, predicting x; from the covariates for each j # (0, 0,
0). The logistic regression model can then be used to estimate
the count in the missing cell, xg00. This was the approach
taken by Alho (1990, 1991) for example. On the other hand,
if there are no observable covariates explaining the hetero-
geneity, or if we are in a stratum defined by the available
covariates and some residual heterogeneity exists in the stra-
tum, then there will be “extra dependence” induced in the
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table due to heterogeneous catchability in addition to what-
ever dependence exists among the lists.

To develop models for this within-stratum heterogeneity,
we assume a fixed, closed population of size N, where each
individual A, for A= 1, 2, ..., N, has his or her own fixed
catchability parameters, and consider the hypothetical rep-
etition of the entire triple-system estimation experiment un-
der independent identical conditions. Here repetition of the
experiment involves applying the same capture techniques
to the same population, where the individuals always retain
the same fixed catchabilities. Another way to develop our
models is to consider random individual effects wherein each
individual samples his or her catchability effects from some
distribution for each repetition of the experiment; this leads
to precisely the same dependence models as we develop in
the remainder of Section 4.

4.1 The Rasch Model

Let us suppose that each individual 4 has probability p,(j)
of capture pattern j, and actually experiences capture pattern
3n = U1, Jn2, jn3). We assume independence across individ-
uals, and we also assume that the captures or lists are in-
dependent, given A:

pi(§) = myj,(h)my ), (h)ws;(h)

3
= [[ 7 (h) ' mio(h)' o,

i=1

(3

where ;1(h) = 1 — m;o(h) is the probability that individual
h is on list i.

The assumption of homogeneous catchability means that
the probability of being on each list is independent of A:
7I','|(h) =T, Letting 6,' = lOg i1/ Tio, the prObablllty p(j)
of observing the response pattern j = (j, j», j3) is

log p(j) = a + jiB1 + j2B2 + j3Bs,

which is the model of independence for the table x;.

On the other hand, suppose that the individuals have het-
erogeneous catchability, so that the m;,(h) are allowed to
depend on 4. Continuing to allow for heterogeneity in the
catchability of individuals, we assume that the pattern of
heterogeneity is the same for all three samples. More pre-
cisely, we assume that for any two individuals 4 and #’, the
odds ratio

C))

wi(h)mio(h')

wio(h) i (h')

is constant with respect to i. This assumption is equivalent
to the additive-logit model

iy (h)

log ———

& rio(h)

so that capture probabilities are characterized by the logistic
function ‘

(&)

= t}, + ﬁi’ (6)

et+ﬂ,

(D = e
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In educational statistics and psychological measurement, (6)
is called the Rasch model, after the pioneering work done
with it by Georg Rasch in the 1950s (see, for example, Rasch
1980). In such a setting, presence or absence on census lists
is replaced by positive and negative responses to examination
questions, survey items, and so forth. Duncan (1984) gave
several applications and extensions of the Rasch model in
survey research problems.

4.2 Quasi-symmetry

The quantity py(j) = w1, (h)wy,(A)7s,,(h) is the cell
probability for the larger N X 23 table w, ; with cell counts
1 if person 4 has capture pattern jand O otherwise (see, for
example, Fienberg and Meyer 1983). It is easy to see that
the cell probabilities for the marginal 2° table x; must be

1 N
p(J) = Djpjs = N 2 T (R (R)ws, (k). (7)
h=1
In many situations the counts x; will approximately follow
the multinomial distribution

Xni2us

N! p]l]ZJS . (8)

. |
(J1,02:3) X1 s2ds

Some details of this approximation in the case of mild het-
erogeneity are considered in Appendix A. The variance-
covariance matrix for x; under the approximating multino-
mial (8) is actually larger than it would be under a product-
multinomial model for wy j, so that standard errors of
parameter estimates are if anything too large under (8).

Using (3) and (6), we may rewrite the cell probabilities in
(7) as

1 N 7"Il(h))

—— i h
2 NE, I,J, (mo(h) mio(h)
IS H3 5+
[ Ji(tp B, .

th=:] i=1 ¢ 7"10(}1)

= exp[/iB1 + j262 +Jsﬁ3] - Z [e"1* pa(0);
N,

(€))

taking logarithms we obtain a log-linear model for the 2°
table x; of the form

log p(j) = a + jiBy + joB2 + j3Bs + v(J+), (10)
= j, + j, + j3. It follows from Holland (1990a) that
v(k) = log E[¢*" |j = 0] (11)

where T follows the posterior distribution of the catchability
effects ¢ conditional on not being caught in any sample (j
=0). Cressie and Holland (1983) gave a simple proof that
Equation (10) holds, with expy(k), k = 0, 1, 2, 3 being the
moment sequence of a positive random variable, if and only
if a random-effects model of the form (6) holds. In particular,
the y(k) are restricted by the inequalities that any set of log-
moments must satisfy, such as y(2) = 2y(1), v(3) + v(1)
= 2v(2), and so forth. The log-linear parameters v( k) identify

where j,
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exactly the dependence due to heterogeneous catchability
modeled by (6).

Equation (10) is the model of quasi-symmetry of order
one (preserving one-dimensional marginal totals) first pro-
posed by Bishop et al. (1975, chap. 8), together with the
moment restrictions on y(k). The representation (10) for
the Rasch model has been discovered independently by many
authors; among them, Darroch (1981) obtained (10) by ran-
domly sampling strata (%) with constant odds ratio (5),
Fienberg (1981) and Fienberg and Meyer (1983) linked the
additive representation (6) to quasi-symmetry by collapsing
the larger N X 23 table, Tjur (1982) showed that maximum
likelihood (ML) estimates of the §;’s under a Poisson sam-
pling scheme are identical with conditional ML estimates,
given the sums j, for each individual, and Cressie and Hol-
land (1983) focused on the statistical modeling implications
of (10) for educational measurement. A description of current
estimation theory for the Rasch model was given by Lindsay,
Clogg, and Grego (1991).

4.3 Conditional Estimation and the Assumption of
No Second Order Interaction

Following Sanathanan (1972a) and Fienberg (1972), we
analyze the incomplete 2 table conditionally. Thus instead
of estimating parameters directly from the likelihood (8), we
work with the likelihood based on the conditional probability
of the observable frequencies, given n = Xgo; + Xoi10 + Xoi11
+ X100 + X101 + X110 + X111 that is,

— Dooo ) ] X1J2d3

P
xjuzjs'

H [pjuzjs/(l

n!

(12)

(J1,J2,J3)#(0,0,0)

Once the model parameters have been estimated (condi-
tionally, given ») using (12), we must be able to write the
cell probability pooo in terms of these parameters in order to
generate an estimate Xy for the unobserved cell count.
For J = 3 lists, the quasi-symmetry model (10) is equiv-
alent (except for moment restrictions) to the two constraints

p(011)p(100) = p(101)p(010) = p(110)p(001), (13)

and does not relate the probability p(000) to the other seven
probabilities. Thus an additional assumption, such as no
second-order interaction, is needed. Under the Rasch/quasi-
symmetry model (10), the second-order interaction (2) be-
comes

3 73 p3v() 4
P on©® 3@ (14)

where (k) is defined as in (11). This is of considerable help
in seeing how no second-order interaction, p = 1, might
plausibly occur.

If U = e7 is exactly lognormal in (11), then

v(k) = ak + bk?
and p = 1 exactly. In this case the model (10) reduces to

log p(§) = a + jiBy +jaB2 + j3Bs + v-(jr)?,  (15)
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where now the «, 8,’s, and +y are all linear coefficients, with
v > 0. This is a submodel of the no-second-order-interaction /
quasi-symmetry model; for J = 3 lists, the models are equiv-
alent except for the restriction that v > 0, which is a con-
sequence of the normality assumption.

It turns out that p =~ 1 for other distributions for U in
(11) as well. If U is distributed as a gamma random variable
with parameters a and B3, then expy(k) = [T(k + «)}/
[8*T'(«)] and hence

_a(a+t2)
Pm e+ )2

so that if « is large, then p is close to 1. A similar conclusion
obtains if U is inverse gamma or Weibull. More generally,
Holland (1990a) conjectured that as the number of lists J
grows, U will likely be asymptotically lognormal in (11).
When U is bimodal, however—for example, a mixture of
two lognormals—the value of p can be very different
from 1.

The no-second-order-interaction assumption allows us to
express Xgoo in terms of the conditional ML estimates. In
particular, we estimate Xyo as in (1), but now replace the
Xj, j»j» With conditional (given n) ML estimates of the cor-
responding cell means. Finally,

N = n+)’C‘000 (16)

estimates the total population, and N — x,., estimates the
undercount. As Sanathanan (1972a) showed, N and the
“unconditional” estimate Ny, formed by maximizing (8) di-
rectly with respect to the unknown parameters and xgq0, are
asymptotically equivalent—and Ny < N—under suitable
regularity conditions. In Section 5 we show how the calcu-
lations may be arranged to make the estimation of Xo9 and
its (conditional) standard error particularly easy.

4.4 Partial Quasi-symmetry

The assumptions of quasi-symmetry and no second-order
interaction make the cell probabilities pgo,, - . . , p11; for the
seven observed cell functions of the five parameters «, 8,
B2, B3, and « in (15), leaving 2 degrees of freedom for as-
sessing model fit. The deviances for testing quasi-symmetry
in the eight contingency tables displayed in Table 2 are shown
in Table 4. (Model fitting and moment restrictions are dis-
cussed in Section 5.) The manner in which each table con-

Table 4. Fit of Models (13) and (17)

Deviance Deviance
Sampling-and  from (13) from (17)
Post-Strata (2 df) Xo11X100  X110Xo01  X101X010 (1df)
Stratum 11
02 11.70 589 767 152 7.51
R2 41.09 451 2,967 408 .04
03 25.99 620 1,260 130 8.27
R3 59.31 416 2,967 168 2.92
Strata 11, 12, 13
02 94.04 1,425 12,803 1,235 15
R2 53.00 803 6,192 840 .01
03 67.89 770 9,170 897 11
R3 73.01 923 6,665 37 3.45
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flicts with quasi-symmetry can be seen from the three fre-
quency products corresponding to the probability products
in (13). These are also shown in Table 4.

There is a consistently large difference between x;10Xo01
and the other two products. In fact, the deviations from quasi-
symmetry here are related to marginal tests for constant latent
odds ratios proposed by Rosenbaum (1987) and by Tjur
(1982). For example, their results imply that when the Rasch
model holds, if an individual is caught in either the PES or
the ALS, but not both, then which list the individual is on
should be independent of whether that individual was caught
in the original enumeration. This is a 1-degree-of-freedom
test based on the cross-product ratio x;19Xo01 /X101 Xo10; in all
of the tables, this independence hypothesis would be rejected.

For several of the tables, the products xo;;X100 and X;01Xo10
are fairly close together. Thus it seems reasonable to assume
that

p(011)p(100) = p(101)p(010). 17)

The deviances for testing (17) are also given in Table 4.
Property (17) may be interpreted in terms of the individual
capture logits (6): Equation (17) arises by assuming that

1 Wil(h)
og ———

i=1,2
7rto(h)

=th+6i,

= s, + B3, i=3 (18)

(this specification is related to the generalization of the Rasch
model discussed in Stegelman 1983). That is, (17) arises from
the assumption (18) that the pattern of heterogeneity is the
same for the E samples and P samples only (and different
in the 4 sample).

Indeed, the derivation leading to (10) immediately gen-
eralizes to vector-valued catchability effects, as in (18). Fol-
lowing the arguments in Section 4.2, we get a “partial quasi-
symmetry” model for the table x;, replacing (10):

log p(j) = a + jiBy + j2B2 + j3Bs + v(ji + j2, j3),  (19)

where y(k;, k,) = log E[U*V ¥2|j = 0] for positive random
variables U = e” and V = e%; compare (11). Except for
moment restrictions such as y(2, 0) = 2vy(1, 0) and (2, 1)
+ (0, 1) = 2v(1, 1), the model (19) is equivalent to the
model (17).

Assuming that the model (19) holds, we examine the dif-
ference between p;10poo; and poy1Pioo (=P101Po10) to under-
stand how this difference can turn out to be large and positive.
We find that

Di1oPoo1 _ e720 vl _ E[U?]E[V]
PoiiPio  e""Pe 0 E[UV]E[U]

if and only if
E[Vlvar(U) > E[U]cov(U, V).

Keeping in mind that U = e” and V = ¢* for the catchability
effects ¢ and s in (18), conditional on not being caught in
any sample, it is clear that if s and ¢ are weakly or negatively
associated among the uncaught individuals, then p;opoo;
> po11P1oo Will result. The assumption that catchability in
the E or P lists is weakly associated with catchability in the

> 1



Darroch, Fienberg, Glonek, and Junker: Multiple-Recapture With Heterogeneous Catchability

A list is made plausible by the radically different way in which
the A list was constructed—essentially, exhaustive searches
of administrative records for a particular geographical area
covered by the P list. Similarly, Zaslavsky and Wolfgang
(1990, 1993) showed that, conditional on membership in
the A list, the E and P lists are highly dependent, whereas
conditional on membership in the E or P list, the A4 list is
nearly independent of the remaining list.

5. FITTING THE MODELS

The models we have developed for p = (pooo, Poors - - - »
Di11) may be fit as conventional log-linear models log p = M6
for an appropriately chosen design matrix M and vector of
parameters 6, provided that the moment restrictions on the
7v’s are ignored. This implies a potential loss of efficiency in
estimating the model parameters (Cressie and Holland 1983).
This is less of a concern for three-list data than it would
be for more than three lists, where higher-order moment
inequalities could seriously restrict acceptable values of
the v’s.

Because most computer packages provide a list of the pa-
rameter estimates together with their standard errors, it is
convenient to arrange for log p(000) to be one of these pa-
rameters. To make log pooo = 6, it is necessary and sufficient
that we take the first row of M to be (1, 0,0, ..., 0). Then
the (conditional, given n) standard error for log fyyo can
simply be read off the computer output. For the quasi-
symmetry /no-second-order-interaction model,

10gp(jlaj2aj3)
=a + i + 282 + j3Bs + v(ii,s J2s J3),

where, recalling (14),

(20)

Y(j1, j2, J3) = v(Jy+) is symmetric and

Y+ Y100 + Yoo  Yoor = Y110 ~ Y101 — Yoir — Yooo = 0.
21

The model of Equations (20) and (21) turns out to be equiv-
alent to

log p(Ji, jo, j3) = a + iy + joBa + j3Bs + v+ (js)?  (22)

(see Darroch, Fienberg, Glonek, and Junker 1991), where
now v is a multiplicative constant. The design matrix can
be read off as

—_ e et et e e e
—_— == OO OO

—_O = O = O - O
el e S e )

As remarked in Section 4.3, the model (22) may also be
obtained by assuming a lognormal distribution for U = e”
in (11), with the additional restriction that v > 0. Our fits
of (22) to the data in Table 2 were consistent with the log
normal assumption, in that ¥ > 0 in each of the eight post-

1143

strata. For J > 3 lists, the model defined by (20) and (21) is
distinct from the model (22), and both of these are in general
distinct from the model (10) with moment restrictions on
the function y(k).

Because the model (19), in which () is replaced by
v(J1 + ja, J3), provides a plausibly better fit, we also wish to
estimate the population size based on it. We construct the
design matrix in two stages: the main effects are the same as
in the design matrix for (22), and the higher-order effects
are represented as the intersection of the column spaces for
no second-order interaction and for the additional structure
of ¥(ji + ja, j3). The resulting design matrix is

1 00 0 00
1 001 0 2
1 01 0 1 1
1 01 1 1 2
M_110011
1 1.0 1 1 2
1 11 0 1 2
1 11 1 1 2

Fitting this model to the post-strata in Table 2 produced
parameter estimates that were again consistent with the mo-
ment restrictions on y(k, /); for example, if it is assumed
that expy(k, /) = E[U*V!|j = 0] = 1 whenever k + [ < 1,
then 4(2, 0) > 2%(1, 0) and (2, 1) + (0, 1) > 24(1, 1).
The models were fit using the glim and glim.print
functions for .S (Becker, Chambers, and Wilks 1988), which
are available by electronic mail request from stat-
lib@stat.cmu.edu; see also McCullagh and Nelder
(1983). (It should be noted that for the incomplete table the
first row of each design matrix is omitted, and for gl im the
first column is also omitted.) Further details on obtaining
the design matrices and fitting the models may be found in
Darroch et al. (1991).

6. RESULTS

6.1 Some Interesting Poststrata

Tables 5 and 6 give the conditional estimates for xgg0,
given n, and goodness-of-fit statistics for the four models we
consider here:

« the no-second-order-interaction model, p = 1 in (2),
without additional restrictions

« the submodel assuming partial quasi-symmetry (19) or,
equivalently, (17)

« the submodel assuming full quasi-symmetry (10) or,
equivalently, (13)

« the model of complete independence among the three
lists (4).

We are mostly interested in the partial and full quasi-
symmetry models.

The full quasi-symmetry model provides a much better
fit to the post-strata in sampling stratum 11 than does the
complete independence model; and the partial quasi-
symmetry model provides comparable improvements in fit
over the full quasi-symmetry model. Independence, however,
does not fit very well (see Table 5). Full quasi-symmetry fits
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Table 5. Log-Linear Model Estimates for Xqgo Stratum 11 Data

Sampling Stratum 11 02 R2 o3 R3
Xooo: No second-order interaction 246.31 381.71 421.99 378.68
SE (delta method) 149.63 203.07 253.3 222.21
Fit/df —/0 —/0 —/0 —/0
Xooo: Partial quasi-symmetry 377.66 384.34 866.99 351.78
SE (delta method) 211.62 204.14 472.33 199.85
Fit/df 7.51/1 .04/1 8.27/1 2.92/1
Xooo: Full quasi-symmetry 552.83 126.34 508.44 101.83
SE (delta method) 293.87 55.32 253.56 46.23
Fit/df 11.70/2 41.09/2 25.99/2 59.31/2
Xooo: Independent lists 13.79 28.43 14.32 18.21
SE (delta method) 2.70 4.78 2.67 3.22
Fit/df 72.59/3 54.83/3 90.19/3 76.20/3

post-stratum O2 (Black males, age 20-29, living in owned
homes) the best. The partial quasi-symmetry model appears
to overfit post-stratum R2; the next best fit is to post-stratum
R3 with a model deviance of 2.92 on 1 degree of freedom.
Turning to sampling strata 11, 12, and 13 combined (see
Table 6), we see that full quasi-symmetry fits almost as poorly
as the independence model in all of the post-strata, but partial
quasi-symmetry does very well, with a marginal to poor fit
only in post-stratum R3 and evidence of overfit elsewhere.

Measures of fit and standard errors were obtained from
the glim analyses. Cormack and Jupp (1991) showed that
log-linear parameter estimates and standard errors (up to
order N~!/2) obtained under glim’s Poisson sampling as-
sumptions for the observed counts in the incomplete table
x;are the same as those obtained under the conditional mul-
tinomial sampling model (12). To obtain the standard errors
of Xogo given in Tables 5 and 6, we apply the delta method
to get SE2(Xo00|n) = X30053, where a = log Npogo, & is
the MLE of a under each given log-linear model, and o; is
the estimated standard error of &, conditional on n. Follow-
ing the development in Bishop et al. (1975, chap. 6) of Dar-
roch’s (1958) methods for obtaining asymptotic uncondi-
tional standard errors for N = n + X0, it is easy to see that
SE(N) = {SE?(Xo00|n) + Xooo + X300/ + O(1)}'/? as n
(and Xogo) tends to infinity. Standard errors for N calculated
in this manner for the four log-linear models in Tables 5
and 6 do not differ appreciably from the tabulated condi-
tional standard errors for Xy0. To the extent that a multi-
nomial sampling model is acceptable for the table x;, these

measures provide a useful way of assessing the appropriate-
ness of the dependence models we have constructed, as well
as the uncertainty in our population estimators.

6.2 Comparison with Zaslavsky and Wolfgang

Comparing these results with the estimates that Zaslavsky
and Wolfgang (1990, 1993) obtained (see App. B), we note
first that their “k; = 17 estimator is exactly the unconstrained
no-second-order-interaction model. Their “P + ALS” esti-
mator is a DSE applied to the 2 X 2 marginal table with the
P and A lists combined and produces estimates about like
the independence model estimates here. This could be ex-
pected, because this marginal 2 X 2 table and estimate would
result by assuming independence for all three lists and then
combining the P and A lists as Zaslavsky and Wolfgang did.
Their “k,” estimator is constructed in a manner similar to
the unconstrained no-second-order-interaction estimator,
except that the cross-product ratio from the A = 1 subtable
is applied to the marginal E X P table instead of to the
conditional E X P table, given 4 = (; this estimator be-
haves roughly like the unconstrained no-second-order-
interaction estimator, as also might be expected. Finally, their
“ratio r,” and “ratio r,” estimators, which are DSE’s for
particular marginal 2 X 2 tables, appear to produce estimates
intermediate between the full and partial quasi-symmetry
models examined here.

Thus, with the exception of the “ratio r,” and “ratio r,”
estimators, all of the Zaslavsky and Wolfgang estimators
correspond roughly to log-linear model-based estimators

Table 6. Log-Linear Model Estimates for Xq0 Strata 11, 12, 13 Data

Sampling strata 11, 12, 13 02 R2 03 R3
Xooo: No second-order interaction 290.06 670.47 496.83 825.97
SE (delta method) 118.96 335.01 247.31 449.62
Fit/df —/0 —/0 —/0 —/0
Xooo: Partial quasi-symmetry 291.55 669.50 489.84 767.80
SE (delta method) 119.46 334.28 24212 402.86
Fit/df 151 .01/1 A1/1 3.45/1
Xooo: Full quasi-symmetry 46.69 102.06 42.33 81.91
SE (delta method) 14.40 35.76 13.41 28.72
Fit/df 94.04/2 52.99/2 67.89/2 73.01/2
Xooo: INdependent lists 44.64 48.26 27.51 34.98
SE (delta method) 5.69 6.78 3.80 5.06
Fit/df 94.06/3 58.34/3 70.15/3 80.06/3
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being considered here. The log-linear model-based estimators
have two advantages: first, they are built from explicit con-
sideration of heterogeneity among individuals and varying
list quality; and second, they are based on models whose fit
can be formally tested.

6.3 Heterogeneity Effects

Kadane et al. (1992) explored the correlation bias effects
in dual-system estimation that result from combining strata
when the lists are independent within strata and there exists
an ordering of the strata for which the probability of inclusion
on each list increases from stratum to stratum. The same
effects are of course present in multiple-system estimation;
see, for example, Holland and Rosenbaum (1986) for related
results in educational statistics and psychological measure-
ment. The quasi-symmetry and partial quasi-symmetry
models we have used incorporate parameters for exactly the
kind of dependence explored by Kadane et al. (1992), thus
we have some confidence that our models are an appropriate
way to model unaccounted-for heterogeneity within available
post-strata.

Indeed, the principal effect they predict—that ignoring
the positive association induced by combining strata under
these assumptions negatively biases the estimated population
size—can be seen in Tables 5 and 6. Instead of post-strata,
consider for a moment the smallest possible stratum: the
individual. Our models make exactly the independence and
ordering assumptions of Kadane et al. (1992) at this level,
and then aggregate across these smallest-possible strata. Be-
cause the heterogeneity and aggregation assumptions are built
into the model, so also are parameters representing the cor-
relation bias. The population estimates (equivalently, esti-
mates of xg0) based on the heterogeneity models are much
higher than the estimates from the independent-lists model,
which ignores this correlation bias. Moreover, because the
process that aggregates data across strata is treated nonpara-
metrically in the heterogeneity models considered here, the
Rasch model and its variants should lead to a better popu-
lation estimate, even for the data aggregated across sampling
strata 11, 12, and 13.

It seems clear that when J = 3 lists are available, one
should stratify with whatever observable covariates of het-
erogeneous catchability are available and then use a model
within each stratum, such as the Rasch model, that accom-
modates possible further heterogeneity within strata. Indeed,
the models we have proposed can be combined with ob-
servable covariates, in a manner analogous to Fischer’s (1983)
linear-logistic latent trait model. This approach also requires
more than two lists, however. With only two lists, there is
simply not enough information to estimate parameters re-
flecting the unaccounted-for heterogeneity.

7. CONCLUSIONS

In this article we have reanalyzed data for undercount
estimation obtained by the U.S. Census Bureau (Zaslavsky
and Wolfgang 1990, 1993) in connection with the dress re-
hearsal for the 1990 Census. Individuals are cross-classified
according to their presence or absence in each of three lists:
a list generated from the original Census (E sample), a list
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generated from the PES (P sample) and a list generated from
the ALS (A4 sample). Although the 4-sample data were orig-
inally intended to improve the coverage of the P sample and
cross-check dual-system analyses of the undercount, it can
be combined with the P sample and E sample to allow a
triple-system analysis. Zaslavsky and Wolfgang (1990, 1993)
considered several interesting but ad hoc triple-system esti-
mators for the missing cell xgog.

The models we have built are triple-system models that
allow for heterogeneous catchability among individuals being
counted as well as for unequal coverages in the lists. They
may be viewed as approximate marginalizations to the 23
table x;, ,,, from a sparse N X 23 multinomial table recording
each individual’s “capture record” uniquely, or they may be
viewed directly as log-linear models for the cell probabilities
Dj.jrj» With fixed effects for lists and random “catchability”
effects for individuals. If we assume that the pattern of het-
erogeneity of individuals (catchability) is the same across all
three lists, then a model for the logits of the individual capture
probabilities for each list results, in which fixed list effects
and random catchability effects are additive. This is well
known as the Rasch model in educational statistics and psy-
chological measurement settings. The additive random effects
structure imposes a dependence structure, quasi-symmetry,
on the log-linear model for pj,, ;,.

To obtain an estimate for the unobserved cell xgo, from
cell estimates for the seven observed cells, we use the no-
second-order-interaction assumption for the 23 table. Stan-
dard errors of the estimates, given », may be obtained using
standard computing packages for generalized linear models.
The quasi-symmetry models have some advantages over the
unconstrained no-second-order-interaction model and the
model assuming complete independence for the three lists.
They more accurately reflect the belief that individuals have
varying catchability than does the independence model, and
they provide a framework in which no second-order inter-
action might plausibly occur. Finally, whereas the uncon-
strained no-second-order-interaction model is saturated for
the incomplete 22 table, conditional model-fit statistics, given
n, are straightforward to obtain for the quasi-symmetry
models.

Based on the observed cross-product ratios in the data
from Zaslavsky and Wolfgang (1990, 1993), we also built a
“partial quasi-symmetry” model, in which the pattern of
heterogeneity (catchability) is the same in the E and P sam-
ples but different in the 4 sample. Indeed, the radically dif-
ferent way in which the A list was constructed—essentially,
exhaustive searches of administrative records for a particular
geographical area covered by the P list—makes it plausible
that there is a low or negative association between catchability
in the A list and catchability in the E and P lists. Replac-
ing the A list with another field sample, such as a pre-
enumeration survey, would likely produce data more in line
with the basic quasi-symmetry model. This simpler model
is conceptually appealing, because its derivation from the
Rasch model allows the critical assumption of no second-
order interaction to be interpreted as a property of the dis-
tribution of catchability in the population. Alternatively, it
may be believed that having the A list independent of the
other two lists is useful from the standpoint of capturing
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individuals not otherwise caught by the E and P lists. Special
models such as partial quasi-symmetry must then be built
to accommodate this structure. But because partial quasi-
symmetry is not derived from as simple a model for catch-
ability in the population, the assumption of no second-order
interaction does not have as simple an interpretation in terms
of the catchability distribution.

We can easily extend the modeling ideas we present in
this article to J > 3 lists. We write the additive-logit (Rasch)
model as before, and it once again leads to a log-linear model
exhibiting quasi-symmetry preserving first-order marginal
totals. Averaging over the catchability effects also produces
inequality restrictions on some of the log-linear parameters:
They must behave like the log-moment sequence of a positive
random variable. If the catchability effects, conditional on
not being caught in any sample, are normally distributed,
then the resulting model also exhibits no second-order in-
teraction, with the first-order effect restricted to be nonneg-
ative; in general, the assumption of second (or higher)-order
interaction must be made separately. But as the number of
lists J grows, Holland (1990a) conjectured that these con-
ditional catchability effects will be asymptotically normal,
so that for large J the no-second-order-interaction assump-
tion may not be severe.

APPENDIX A: THE MULTINOMIAL APPROXIMATION

Consider again the larger N X 23 table w, ; with cell counts 1 if
person A has capture pattern j and O otherwise. We assume a
product-multinomial likelihood for the table wy, ;:

N
P(wi: Y h, §) =TT IT pa(i)™.

h=1 j

(A.1)

A likelihood for the table x; may be obtained by summing across
all tables w *““‘compatible” with the fixed table of counts x;:

N
> IT IT paCi) ™

{w:Zpwh, j=xVi} h=1 j

s [

)Whj}
{w: 2w, j=x¥j} h=1

> [I}p(j)X'][liIH(“”))w“] (A2)

{wW:Z pwh,j=x;Vi} p( )

P(x;:V j)=

p(J)

N! I

~ = c p(i)r, A3

T [e-p(j)] (A.3)
where p(j) = (1/N) Z¥-; ps(j). The approximate equality in (A.3)
holds as long as the last factor in braces in (A.2) is near enough to
some constant c” over all frequently occurring tables w; ;. This is
plausible, for example, if the heterogeneity of capture probabilities
is not very great (so that the factors p,(j)/p(j) are all close to 1).

In any case the approximating multinomial (A.3), with ¢ = 1,
gives exactly the same expected cell counts x = (X00, Xoo1s - - - »

Table A.1. DSE Table for r, Estimator

A list

1 0

EUP
(EUPY

X111 + X101 + Xo11
Xoo1

X100 + X100 + Xo10
Xooo = ?
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Table A.2. DSE Table for r, Estimator

A list
1 0
EAP X101 1 Xo11 X100 T Xo10
(E V] P)c X001 Xooo = ?

X11) as the exact model (A.1), as observed in Section 4.2. Moreover,
it is easy to see that under the exact model (A.1), the covariance
matrix of the cell counts is

N
N diag(p) — 2 pibh,

h=1

., pr(111)). On the other hand,

N
> [diag(ps) — pap}] =
h=1
where p;, = (p,(000), p,(001), ..
under (A.3) with ¢ = 1 we obtain
Nldiag(p) — pp'l,
where p = (1/N) Z%., ps. The difference between these two co-
variance matrices is nonnegative definite. Thus the approximating
multinomial agrees with the exact distribution on first moments
and produces standard errors that are, if anything, too large.
Alternatively, models like (10) and (19) may be obtained directly
by building a model for cell probabilities in the multinomial model
(8) for the table x; with random effects for individuals. This approach
avoids the approximation step in (A.3), but changes the sampling
model. For example, one might imagine the total population of N
individuals as being sampled from a larger superpopulation with
varying catchabilities, so that the random-effects distribution of the
capture effects is the sampling distribution in the superpopulation;
see Holland (1990b) for an analogous development in educational
testing models. In this development the last summation in (9) may
be identified as proportional to a posterior moment of the random
effects, a fact first recognized by Cressie and Holland (1983).

APPENDIX B: ZASLAVSKY AND
WOLFGANG ESTIMATORS

Zaslavsky and Wolfgang (1990) presented several triple-system
estimators of the undercount:

DSE without A source. This is the ordinary DSE, using only the
E and P lists and ignoring the A list completely:

Xoo+ = X10+Xo1+/X11+-

DSE with P + ALS. This is a DSE with the P and A sources
combined to make a single second list (this is the use originally
conceived for the 4 source):

Xooo = X100 (X104 + Xo01)/ (X114 + X101).

DSE with k,. An E X P cross-product ratio k, is calculated from
the subtable with 4 = I, and this is applied to the marginal E X P
table:

Xoo+ = koXi0+ X014/ X1143
ky = X101 X011/ X111 X001

Ratio r;. The odds ratio for coverage by the 4 source is estimated
from all the cells enumerated in the E or P source as r; = (X,
+ X101 + Xo11)/ (X110 T X100 T Xo10); then Xooo = Xoo1/71. This is a
DSE estimator, assuming independence, applied to Table A.1.

Ratio r,. The odds ratio for coverage by the A source is estimated
from all the cells enumerated in the E or P source, but not both,
as r, = (X101 + Xo11)/ (X100 + Xo10); then Xo00 = Xo01/71. This is also
a DSE estimator, assuming independence, applied to Table A.2
(where A is the symmetric difference operator).
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Table A.3. Estimates for the Unobserved Cell Counts in Various Post-Strata
Stratum 11 Strata 11, 12, and 13
Post-stratum Post-stratum
Estimator 02 R2 03 R3 02 R2 03 R3

Xoo+: DSE without ALS* —44 —24 —-23 —-33 -32 -9 -15 -20
SE (jackknife) 17 15 10 15 17 15 11 15
Xooo: DSE with P + ALS 24 26 24 17 34 42 24 33
SE (jackknife) 10 9 10 8 6 9 7 9
Xoo+: DSE with k, 130 312 254 305 285 601 458 729
SE (jackknife) 64 171 202 432 122 319 368 1039
Xooo: ratio ry 26 76 33 58 180 152 125 130
SE (jackknife) 10 27 10 29 60 52 31 58
Xooo: ratio r, 61 140 110 120 217 267 222 267
SE (jackknife) 26 53 55 83 69 95 94 170
Xooo: €stimate, k3 = 1 246 382 422 379 290 670 497 826
SE (jackknife) 182 240 489 565 129 384 430 1220

* Xoo+ < 0 indicates the number of people discovered in the A list beyond the X, estimate.
Source: From Zaslavsky and Wolfgang (1990, 1993).

Estimate, k; = 1. This is the unconstrained, no-second-order-
interaction estimate. It is equivalent to applying the odds ratio es-
timated from the:4 = 1 subtable to the 4 = 0 subtable to estimate
the missing cell:

Xooo = (X101 X011/ X111 Xo01 )(X100X010/ X110)-

Table A.3 gives Zaslavsky and Wolfgang’s (1990) estimates for
the unobserved cell counts in both Stratum 11 and the combined
Strata 11, 12, and 13. The same estimates, with somewhat different
names, were presented in Zaslavsky and Wolfgang (1993).

[Received January 1992. Revised November 1992.]
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