A few items of note

- Lasso : How to choose λ?
 Sometimes cross validation is used. For variable selection, if variables are correlated, we end up choosing more variables by using CV.

- Assumptions needed for Lasso: Strong!
 For model selection consistency, we need $\min \beta$ condition.
 $\min_{i \in \text{Supp} (\beta^*)} \beta_i$ is "Large enough",

- Restricted Eigen value (RE) condition is perhaps the strongest.
 An earlier stronger version is the Pailrove incoherence condition.
 In $C(k) \exists c > 0$ such that $1 \leq k \leq d$
 $\| X^T X/n - I_d \|_{\infty} \leq \frac{1}{ck}$
 \Rightarrow If $c = 32$, then the RE$(\alpha = 3, k = 0.5)$ is satisfied for all $S \subset \{1, ..., d\}$ such that $|S| \leq k$.
 This is satisfied if X is populated by iid sub-Gaussians.

14.1 Oracle inequalities

Model need not be correct!
Assume $Y = f(x) + \epsilon$, $\epsilon \sim SG(\sigma^2)$, f arbitrary function.
Observe $(Y_1, x_1),..., (Y_n, x_n)$. Y’s are independent. ($x_1, ..., x_n$) deterministic.
We do not assume $Y = x^T \beta + \epsilon$.

Suppose we have a dictionary of functions from \mathbb{R}^d into \mathbb{R}.
$$D = \{ f_1, ..., f_M \}$$

and we are going to estimate f with a linear combination of functions in D.

Of course if $f_j(x) = x_j$ for $j = 1, ..., M$.

Then for any vector $\theta \in \mathbb{R}^M$, $\sum_j \theta_j f_j(x) = \theta^T x$.
One possible estimator is $\hat{\theta}_{OLS}$ which minimizes

$$\frac{1}{n} \sum(Y_i - \sum_j \theta_j f_j(x_i))^2$$

and estimator of f is $f_{\theta_{OLS}} = \sum_{j=1}^M \hat{\theta}_j f_j$.

To evaluate the performance of an estimator \hat{f} we consider its risk

$$R_f(\hat{f}) = E \left[\frac{1}{n} \sum_{i=1}^n (\hat{f}(x_i) - f(x_i))^2 \right]$$

$$= E \left[\frac{1}{n} \| \hat{f} - f \|^2 \right], \hat{f} = (\hat{f}(x_1), ..., \hat{f}(x_n))^T.$$

Let $K \subset \mathbb{R}^M$.

Definition 1 The Oracle solution wrt risk R_f, D and K is the f_{θ^*} where $\theta^* \in K$

$$R_f(f_{\theta^*}) \leq R_f(f_{\theta}) \forall \theta \in K.$$

f_{θ^*} is not necessarily a good estimator of f!!

An estimator $f_{\hat{\theta}}$, $\hat{\theta} \in K$ and depend on data satisfies Oracle inequality if

$$R_f(\hat{f}) \leq cR_f(f_{\theta^*}) + \phi(n, D, f, K)$$

where $c \geq 1$ and $\phi(n, [\cdot, f, K]) \to 0$ as $n \to \infty$.

An estimator is good when it satisfies an Oracle inequality with small c and vanishing ϕ.

[If $c = 1$, this is a sharp inequality.]

Equivalently,

$$P_f \left(MSE(\hat{f}) \leq cMSE(f_{\theta^*}) + \phi(n, D, f, K, \delta) \right) \geq 1 - \delta$$

$$\delta \in (0, 1).$$

Theorem 14.1 (Oracle inequality for Least squares) Assume $(\epsilon_1, ..., \epsilon_n) \sim_{i.i.d} SG(\sigma^2)$. Then

$$P \left(MSE(f_{\hat{\theta}_{OLS}}) \leq \inf_{\theta \in \mathbb{R}^M} MSE(f_{\theta}) + c\sigma^2 M \log \left(\frac{1}{\delta} \right) \right) \geq 1 - \delta,$$

$$\delta \in (0, 1).$$

Proof: $Y = [Y_1, ..., Y_n]^T$, $f_\theta = [f_\theta(x_1), ..., f_\theta(x_n)]^T$ in \mathbb{R}^n.

Least squares is $\arg\min_{\theta \in \mathbb{R}^M} \frac{1}{n} \|Y - f_\theta\|^2$, $f_\theta = \sum_j \theta_j f_j$.

So, $\|Y - f_{\hat{\theta}_{OLS}}\|^2 \leq \|Y - f_{\theta^*}\|^2, Y = f + \epsilon$.

Thus

$$\frac{1}{n} \|f - f_{\hat{\theta}_{OLS}}\|^2 - \frac{1}{n} \|Y - f_{\theta^*}\|^2 \leq \frac{2}{n} \|f - f_{\hat{\theta}_{OLS}} - f_{\theta^*}\|^2.$$

LHS is $\frac{1}{n} \|f_{\hat{\theta}_{OLS}} - f_{\theta^*}\|^2 \geq 0$.

f_{θ^*} is projection of f onto $\text{span}\{f_1, ..., f_M\}$.

But $f_{\hat{\theta}} - f_{\theta^*} = \phi(\hat{\theta} - \theta^*)$, where $\phi_{n \times M}$ such that $\phi_{ij} = f_j(x_i)$.

Same proof used to derive consistency of OLS in Linear Regression model gives that

$$\frac{1}{n} \epsilon^T (f_{\hat{\theta}_{OLS}} - f_{\theta^*}) \in c\sigma^2 \frac{M}{n} \log \left(\frac{1}{\delta} \right)$$

with probability $\geq 1 - \delta$.

Approximation error: $R_f(f_{\theta^*})$ or $MSE(f_{\theta^*})$ can only be made small with assumptions on f.

14.2 Oracle inequality for Lasso

Theorem 14.2 Assume $(\epsilon_1, \ldots, \epsilon_n) \sim_{i.i.d} SG(\sigma^2)$ and that $RE(3, K)$ assumption holds for all $S = \{1, \ldots, M\}$ with $|s| \leq K << n$.

Then if $\lambda_n \geq \frac{2}{n} \left\| \Phi^T \epsilon \right\|_\infty$, we have

$$MSE(f_{\hat{\theta}}) \leq \inf_{\theta \in \mathbb{R}^M, \|\theta\|_0 \leq K} \left\{ \frac{1 + \alpha}{1 - \alpha} MSE(f_{\hat{\theta}}) + \frac{9}{2\alpha(1 - \alpha)} \kappa \|\theta\|_0 \lambda_n^2 \right\} \forall \alpha \in (0, 1).$$

Fix α, then

$$MSE(f_{\hat{\theta}}) \leq cMSE(f_{\theta^*}) + k \frac{\log \alpha}{n}$$

Proof: We begin with

$$\frac{1}{2n} \| Y - f_{\hat{\theta}} \|^2 + \lambda_n \| \hat{\theta} \|_1 \leq \frac{1}{2n} \| Y - f_{\theta} \|^2 + \lambda_n \| \theta \|_1 \forall \theta \in \mathbb{R}^M$$

Then we replace Y by $f + \epsilon$ to get

$$\frac{1}{n} \| f - f_{\hat{\theta}} \|^2 - \frac{1}{n} \| f - f_{\theta} \|^2 \leq 2\lambda_n \left(\| \theta \|_1 - \| \hat{\theta} \|_1 \right) + 2 \frac{\epsilon^T}{n} (f_{\hat{\theta}} - f_{\theta}) \forall \theta \in \mathbb{R}^M$$

Think of $\phi(\hat{\theta} - \theta)$ as $\lambda \hat{\Delta}$ (the proof for Lasso’s fast rate).

Let $S = \text{Supp}(\theta)$ and assume $|S| \leq k$.

Then we have 2 cases

- LHS of (*) is negative
 $$MSE(f_{\hat{\theta}}) \leq MSE(f_{\theta}).$$ Nothing to show.

- If LHS of (*) is positive, then
 $$MSE(f_{\hat{\theta}}) - MSE(f_{\theta}) \leq 2\lambda_n \| \hat{\theta} - \theta \|_1 + 2\lambda_n (\| \theta \| - \| \hat{\theta} \|_1)$$

 $$\therefore \frac{\epsilon^T \phi(\hat{\theta} - \theta)}{n} \leq \frac{\| \Phi^T \epsilon \|_\infty}{n} \| \hat{\theta} - \theta \|_1$$

Using same proof as for the fast rates for Lasso we get

$$\leq \lambda_n (3\| \Delta_S \|_1 - \| \Delta_S^c \|_1)$$
\[
\leq 3\lambda_n \sqrt{|S|} \frac{\|f_\theta - f_\theta\|}{\sqrt{n}} \frac{1}{\sqrt{\kappa}}
\]
We use the variational inequality
\[
ab \leq \frac{a^2}{2\alpha} + \frac{\alpha b^2}{2} \forall \alpha > 0, a, b \in \mathbb{R}^+
\]
Use the inequality with \(a = \frac{3\lambda_n \sqrt{|S|}}{\sqrt{K}} \) and \(b = \frac{\|f_\theta - f_\theta\|}{\sqrt{n}} \) and \(\alpha \in (0, 1) \).
\[
\leq \frac{1}{2\alpha} \frac{|S| \lambda_n^2 9}{\kappa} + \frac{\alpha}{2} \frac{\|f_\theta - f_\theta\|^2}{n}.
\]
Next, \(\|f_\theta - f_\theta\|^2 \leq 2\|f - f_\theta\|^2 m + 2\|f - f_\theta\|^2 \)
Hence we get
\[
MSE(f_\theta) - MSE(f_\theta) \leq \frac{9}{2\alpha} + \alpha \left[\frac{\|f_\theta - f_\theta\|^2}{n} + \frac{\|f - f_\theta\|^2}{n} \right]
\]
or, \(MSE(f_\theta)(1 - \alpha) \leq (1 + \alpha)MSE(f_\theta) + \frac{9|S|\lambda_n^2}{2\alpha n} \)
This concludes the proof.