4.1 Maximal Inequality

Let X_1, \ldots, X_d be centered random variables such that $\log \mathbb{E}[e^{\lambda X_i}] \leq \psi(\lambda)$ for some convex function $\psi(\cdot)$ and for all λ that satisfy $|\lambda| < \frac{b}{2}, b \geq 0$. Then

$$
\mathbb{E} \left[\max_{1 \leq i \leq d} X_i \right] \leq \inf_{\lambda \in (0, \frac{b}{2})} \left\{ \frac{\log(d) + \psi(\lambda)}{\lambda} \right\}.
$$

We proved this inequality in the previous class. Here we consider an example.

Suppose $\psi(\lambda) \leq \frac{\lambda^2 \sigma^2}{2}$ for all $\lambda \in \mathbb{R}$. This means that $X_i \in SG(\sigma^2)$. Applying the maximal inequality, we see

$$
\mathbb{E} \left[\max_{1 \leq i \leq d} X_i \right] \leq \inf_{\lambda > 0} \left\{ \frac{\log(d) + \frac{\lambda^2 \sigma^2}{2}}{\lambda} \right\}.
$$

setting $\lambda = \sqrt{\frac{2 \log(d)}{\sigma^2}}$ (optimal)

$$
= \frac{2 \log(d)}{\sqrt{2 \log(d)}} = \sqrt{2 \sigma^2 \log(d)}.
$$

This tells us that when we have sub-Gaussian X_1, \ldots, X_d, $\mathbb{E} \left[\max_{1 \leq i \leq d} X_i \right]$ grows on the order of $\sqrt{\log(d)}$.

Also, by the union bound,

$$
\mathbb{P} \left(\max_i X_i \geq t \right) \leq \sum_{i=1}^d \mathbb{P}(X_i \geq t) \leq de^{-t^2/(2\sigma^2)} = e^{-t^2/(2\sigma^2)+\log(d)}.
$$

This probability goes to 0 if $\frac{t^2}{2\sigma^2} \gg \log(d)$.

A maximal inequality for another characterization of the X_is comes from Lemma 2.1 from [M07]:

4-1
Definition 4.2 (Martingale.) Let $\{X_t\}$ be a sequence of centered random variables such that $\log \mathbb{E}[e^{\lambda X_t}] \leq \psi(\lambda)$, $|\lambda| < \frac{1}{b}$, $b \geq 0$ for some function $\psi(\cdot)$ that satisfies

- $\psi(\cdot)$ is convex
- $\psi(\cdot)$ is continuously differentiable on $[0, \frac{1}{b}]$
- $\psi(0) = \psi'(0) = 0.$

Let $\psi^*(t) = \sup_{\lambda \in (0, \frac{1}{b})} \{\lambda t - \psi(\lambda)\}$. Then for all $\mu > 0$, $\psi^{-1}(\mu) = \inf_{\lambda \in (0, \frac{1}{b})} \left\{ \frac{\mu + \psi(\lambda)}{\lambda} \right\} = \inf \{ t \geq 0 : \psi^*(t) > \mu \}$. This expression $\psi^{-1}(\mu)$ is called the generalized inverse of ψ^*. For more details, see [M07] or [BLM13].

Example: Suppose X_1, \ldots, X_n satisfy the conditions of Lemma 4.1, where $\psi(\lambda) = \frac{\lambda^2 \nu^2}{2(1 - \lambda^2)}$, $\lambda \in (0, \frac{1}{b})$. Then $\psi^{-1}(\mu) = \sqrt{2\nu^2/\mu} + b \mu$ for $\mu > 0$, and

$$
\mathbb{E} \left[\max_{i=1}^n X_i \right] \leq \inf_{\lambda \in (0, \frac{1}{b})} \left\{ \frac{\log(\lambda^2 \nu^2) + \psi(\lambda)}{\lambda} \right\} = \psi^{-1}(\log(\nu^2)) = \sqrt{2\nu^2 \log(\nu^2)} + b \log(\nu^2).
$$

4.2 Bounded Differences

Suppose X_1, \ldots, X_n are independent random variables. So far, most of the concentration inequalities that we have considered have worked with $\sum_{i=1}^n X_i$. More generally, we may be interested in concentration inequalities on arbitrary functions $f(X_1, \ldots, X_n)$. That is, if we let $Z = f(X_1, \ldots, X_n)$, can we place a useful upper bound on $P(|Z - \mathbb{E}(Z)| \geq t)$ for $t > 0$?

We begin by considering the expression $Z - \mathbb{E}(Z)$. Set

$$
Z_0 = \mathbb{E}[f(X_1, \ldots, X_n)]
$$

$$
Z_k = \mathbb{E}[f(X_1, \ldots, X_n) \mid X_1, \ldots, X_k] \quad \text{for } 1 \leq k \leq n - 1
$$

$$
Z_n = \mathbb{E}[f(X_1, \ldots, X_n) \mid X_1, \ldots, X_n] = f(X_1, \ldots, X_n).
$$

Then we can re-write

$$
Z - \mathbb{E}(Z) = Z_n - Z_0 = \sum_{k=1}^n (Z_k - Z_{k-1}) = \sum_{k=1}^n D_k,
$$

where $D_k = Z_k - Z_{k-1}$ for $1 \leq k \leq n$. These terms D_k are not independent, but they are an example of a martingale difference. Martingales can be considered as a first step away from independence. We now turn our attention to martingales.

4.3 Martingales

We begin by defining a martingale.

Definition 4.2 (Martingale.) Let (Ω, \mathcal{F}) be a measurable space, and let $\mathcal{F}_0 = \{\emptyset, \Omega\}$. Let $\mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \cdots \subseteq \mathcal{F}$ be a sequence of sub-σ-fields. Let $\{Y_k\}_{k=0,1,2,\ldots}$ be a sequence of random variables such that Y_k is \mathcal{F}_k-measurable.
Then the sequence \(\{Y_k\}_{k=0,1,2,...} \) is a martingale adapted to the filtration \(\{\mathcal{F}_k\}_{k=0,1,2,...} \) if \(\mathbb{E}[|Y_k|] < \infty \) and \(\mathbb{E}[Y_k|\mathcal{F}_{k-1}] = Y_{k-1} \) for all \(k \).

Example: Doob construction.

One way to create a martingale is through the process of Doob construction. Suppose \(X_1, \ldots, X_n \) are random variables. Let \(Z = f(X_1, \ldots, X_n) \) for some function \(f \), subject to the condition that \(Z \) is integrable. Define the generated \(\sigma \)-fields \(\mathcal{F}_k = \sigma(X_1, \ldots, X_k) \) for \(k \geq 1 \). Let \(Y_k = \mathbb{E}[Z|\mathcal{F}_k] \). Then the sequence \(\{Y_k\}_{k=1,2,...} \) is a martingale.

Proof: We see that \(\mathbb{E}[|Y_k|] = \mathbb{E}[\mathbb{E}[|Z||\mathcal{F}_k]] < \infty \) because \(Z \) is integrable. Also, for \(k \geq 1 \),

\[
\mathbb{E}[Y_k|\mathcal{F}_{k-1}] = \mathbb{E}[\mathbb{E}[Z|\mathcal{F}_k]|\mathcal{F}_{k-1}] = \mathbb{E}[Z|\mathcal{F}_{k-1}] = Y_{k-1},
\]

where the second equality holds by the Tower Property. We conclude that \(\{Y_k\}_{k=1,2,...} \) is a martingale. ■

Exercise: Martingale difference.

Sometimes we work with the difference of consecutive terms of a martingale. Suppose \(\{Y_k\}_{k=0,1,2,...} \) is a martingale adapted to the filtration \(\{\mathcal{F}_k\}_{k=0,1,2,...} \). Let \(\{D_m\}_{m=1,2,...} \) be the sequence defined by \(D_m = Y_m - Y_{m-1} \). Then \(\mathbb{E}[D_m|\mathcal{F}_{m-1}] = 0 \) for all \(m \) and \(\{D_m\}_{m=1,2,...} \) is adapted to the filtration \(\{\mathcal{F}_m\}_{m=1,2,...} \).

Proof: We see that

\[
\mathbb{E}[D_m|\mathcal{F}_{m-1}] = \mathbb{E}[Y_m - Y_{m-1}|\mathcal{F}_{m-1}] = \mathbb{E}[Y_m|\mathcal{F}_{m-1}] - \mathbb{E}[Y_{m-1}|\mathcal{F}_{m-1}] = Y_{m-1} - Y_{m-1} = 0.
\]

\(D_m \) is \(\mathcal{F}_m \)-measurable because \(D_m = Y_m - Y_{m-1} \), and \(Y_m \) and \(Y_{m-1} \) are both \(\mathcal{F}_m \)-measurable. ■

Now we relate martingale differences to the concept of sub-exponential variables.

Theorem 4.3 Let \(\{D_k\}_{k=1,2,...} \) be a martingale difference with respect to \(\{\mathcal{F}_k\}_{k=1,2,...} \) such that \(\mathbb{E}[e^{\lambda D_k}|\mathcal{F}_{k-1}] \leq e^{\lambda^2 \nu_k^2/2} \) a.s. for \(|\lambda| < \frac{1}{\max \alpha_k} \) and \(\nu_k, \alpha_k > 0 \). Then

1. \(\sum_{k=1}^{n} D_k \in SE \left(\sum_{k=1}^{n} \nu_k^2, \max \alpha_k \right) \)

2. Where \(\nu_\ast^2 = \sum_{k=1}^{n} \nu_k^2, \alpha_\ast = \max \alpha_k \), and \(t \geq 0 \),

\[
\mathbb{P} \left(\left| \sum_{k=1}^{n} D_k \right| \geq t \right) \leq \begin{cases} 2e^{-t^2/(2\nu_\ast^2)} & : t \leq \frac{\nu_\ast^2}{\alpha_\ast} \\ 2e^{-t/(2\alpha_\ast)} & : t > \frac{\nu_\ast^2}{\alpha_\ast} \end{cases}
\]

Proof: To prove statement 1, we see that for \(|\lambda| < \frac{1}{\max \alpha_k} \),

\[
\mathbb{E}\left[e^{\lambda \sum_{k=1}^{n} D_k} \right] = \mathbb{E}\left[e^{\lambda \sum_{k=1}^{n} D_k} | \mathcal{F}_{n-1} \right]
\]

\[
= \mathbb{E}\left[e^{\lambda \sum_{k=1}^{n} D_k} \mathbb{E}\left[e^{\lambda D_n} | \mathcal{F}_{n-1} \right] \right]
\]

\[
\leq e^{\lambda^2 \nu_{n-1}^2/2} \mathbb{E}\left[e^{\lambda \sum_{k=1}^{n-1} D_k} \right]
\]

\[
\leq e^{\lambda^2 \sum_{k=1}^{n} \nu_k^2/2}
\]

(4.1) holds by the Tower Property. (4.2) holds because \(e^{\lambda \sum_{k=1}^{n-1} D_k} \) is \(\mathcal{F}_{n-1} \)-measurable. (4.3) holds by the assumptions of Theorem 4.3. (4.4) can be derived by iterating the process of (4.1)-(4.3) \(n - 1 \) more times. This shows that \(\sum_{k=1}^{n} D_k \in SE \left(\sum_{k=1}^{n} \nu_k^2, \max \alpha_k \right) \).
Suppose a (Bounded Difference Inequality, or McDiarmid’s Inequality.) Let Theorem 4.6
sub-Gaussian behavior when f satisfies the Bounded Difference Property if for all $k = 1, \ldots, n$,

$$
\sup_{y \in \mathbb{R}^n} \left| f(x_1, \ldots, x_k-1, y, x_{k+1}, \ldots, x_n) - f(x_1, \ldots, x_k-1, x_{k+1}, \ldots, x_n) \right| \leq L_k
$$

for some positive constants L_1, \ldots, L_n. This can be seen as a Lipschitz condition with respect to Hamming distance.

The following theorem uses the Bounded Difference Property to conclude that $Z = f(X_1, \ldots, X_n)$ exhibits
sub-Gaussian behavior when f satisfies the Bounded Difference Property.

Theorem 4.6 (Bounded Difference Inequality, or McDiarmid’s Inequality.) Let (X_1, \ldots, X_n) be an n-
dimensional random vector with independent components. Suppose $f : \mathbb{R}^n \to \mathbb{R}$ satisfies the Bounded Difference Property with constants L_1, \ldots, L_n. Let $Z = f(X_1, \ldots, X_n)$. Then for all $t \geq 0$,

$$
\mathbb{P}(\left| Z - \mathbb{E}[Z] \right| \geq t) \leq 2 \exp \left\{ - \frac{2t^2}{\sum_{k=1}^{n} L_k^2} \right\}.
$$

Proof: Recall that we can construct a martingale difference with terms $D_k = \mathbb{E}[Z | X_1, \ldots, X_k] - \mathbb{E}[Z | X_1, \ldots, X_{k-1}]$ for $1 \leq k \leq n$, and set $D_0 = \mathbb{E}[Z]$. Recall from Section 4.2 that $\sum_{k=1}^{n} D_k = Z - \mathbb{E}[Z]$. For $k = 1, \ldots, n$,
define

\[A_k = \inf_x \mathbb{E}[Z | X_1, \ldots, X_{k-1}, X_k = x] - \mathbb{E}[Z | X_1, \ldots, X_{k-1}] \]

\[B_k = \sup_x |\mathbb{E}[Z | X_1, \ldots, X_{k-1}, X_k = x] - \mathbb{E}[Z | X_1, \ldots, X_{k-1}]| . \]

Then \(A_k \leq D_k \leq B_k \) a.s. for \(k = 1, \ldots, n \). We apply the Azuma inequality to show that for \(t \geq 0 \),

\[
\mathbb{P}(|Z - \mathbb{E}[Z]| \geq t) = \mathbb{P} \left(\left| \sum_{k=1}^{n} D_k \right| \geq t \right) \leq 2 \exp \left\{ - \frac{2t^2}{\sum_{k=1}^{n} (B_k - A_k)^2} \right\} \leq 2 \exp \left\{ - \frac{2t^2}{\sum_{k=1}^{n} L_k^2} \right\}
\]

since \(|B_k - A_k| \leq L_k \) for all \(k \).

Example: Density estimation in \(L_1 \).

Assumptions:

- \(X_1, \ldots, X_n \overset{iid}{\sim} P \), where \(P \) has Lebesgue density \(p \).
- Let \(K \) be a kernel. So \(K : \mathbb{R} \to \mathbb{R}_{\geq 0} \) and \(\int K(x) dx = 1 \).

Our goal is to estimate the density \(p \), which is a function on \(\mathbb{R} \).

Define a random function \(\hat{p}_h \) by

\[
\hat{p}_h(x) = \frac{1}{n h} \sum_{i=1}^{n} K \left(\frac{X_i - x}{h} \right)
\]

where \(h > 0 \) is the bandwidth. We use \(\hat{p}_h \) as an estimator of \(p \). To see why this is a reasonable choice, let \(p_h(x) = \mathbb{E}[\hat{p}_h(x)] \) for all \(x \in \mathbb{R} \). Then \(p_h(x) \geq 0 \) and \(\int p_h(x) dx = 1 \). That means that \(p_h(x) = \mathbb{E}[\hat{p}_h(x)] \) is a valid density on \(\mathbb{R} \).

The total variation distance between \(\hat{p}_h \) and \(p \) is defined as \(L_1(\hat{p}_h, p) = \int_{\mathbb{R}} |\hat{p}_h(x) - p(x)| dx \). We would like to show that \(L_1(\hat{p}_h, p) \to 0 \), but this is a challenging problem. However, we can at least show that \(L_1(\hat{p}_h, p) \) satisfies the Bounded Difference Property.

The total variation distance \(L_1(\hat{p}_h, p) \) is a function of the random variables \(X_1, \ldots, X_n \). Thus, define \(L_1(\hat{p}_h, p) = f(x_1, \ldots, x_n) \). Define \(X^{(1)} = (x_1, \ldots, x_{k-1}, x, x_{k+1}, \ldots, x_n) \) and \(X^{(2)} = (x_1, \ldots, x_{k-1}, y, x_{k+1}, \ldots, x_n) \).

We see that

\[
|f(x_1, \ldots, x_{k-1}, x, x_{k+1}, \ldots, x_n) - f(x_1, \ldots, x_{k-1}, y, x_{k+1}, \ldots, x_n)|
\]

\[
= \left| \int_{\mathbb{R}} \left[\frac{1}{n h} \sum_{i=1}^{n} K \left(\frac{X^{(1)}_i - x}{h} \right) - p(x) \right] dx - \int_{\mathbb{R}} \left[\frac{1}{n h} \sum_{i=1}^{n} K \left(\frac{X^{(2)}_i - x}{h} \right) - p(x) \right] dx \right|
\]

\[
\leq \frac{1}{n h} \int_{\mathbb{R}} K \left(\frac{x - z}{h} \right) - K \left(\frac{y - z}{h} \right) dz
\]

\[
\leq \frac{1}{n h} \int_{\mathbb{R}} K \left(\frac{x - z}{h} \right) dz + \int_{\mathbb{R}} K \left(\frac{y - z}{h} \right) dz
\]

Setting \(w = \frac{x - z}{h} \) and \(w' = \frac{y - z}{h} \),

\[
= \frac{1}{n h} \int_{\mathbb{R}} K(w) dw + h \int_{\mathbb{R}} K(w') dw'
\]
Since K is a density, both integrals equal 1, so this final expression equals $\frac{2}{n}$.

This shows that $L_1(\hat{p}_h, p)$ satisfies the bounded difference property with constant $\frac{2}{n}$ for each of the n components. Applying the Bounded Difference Inequality (McDiarmid’s Inequality), we determine that for $t \geq 0$,

$$\mathbb{P}\left(\left|L_1(\hat{p}_h, p) - \mathbb{E}[L_1(\hat{p}_h, p)]\right| \geq t\right) \leq 2 \exp\left\{-\frac{2t^2}{n \left(\frac{2}{n}\right)^2}\right\} = 2 \exp\left\{-\frac{nt^2}{2}\right\}.$$

This bound does not depend on the bandwidth h.

Example: Uniform deviation.

Let $X_1, \ldots, X_n \overset{iid}{\sim} P$ in \mathbb{R}^d. Let \mathcal{A} be a collection of subsets in \mathbb{R}^d. Construct an empirical measure $P_n(B) = \frac{1}{n} \sum_{i=1}^{n} I\{X_i \in B\}$, where the sets B are Borel. Often we are interested in $\sup_{A \in \mathcal{A}} |P(A) - P_n(A)|$. As an example, let $d = 1$ and $\mathcal{A} = \{(-\infty, x] : x \in \mathbb{R}\}$. Then $\sup_{A \in \mathcal{A}} |P(A) - P_n(A)| = \sup_x |F(x) - F_n(x)|$, where $F(x)$ is the CDF of P and $F_n(x)$ is the empirical CDF.

$P_n(A)$ satisfies the Bounded Difference Property with constants $\frac{1}{n}$ because changing one of the X_is will change $P_n(A)$ by at most $\frac{1}{n}$. So changing one of the X_is will change $\sup_{A \in \mathcal{A}} |P(A) - P_n(A)|$ by at most $\frac{1}{n}$. Applying the Bounded Difference Inequality,

$$\mathbb{P}\left(\sup_{A \in \mathcal{A}} |P(A) - P_n(A)| - \mathbb{E}\left[\sup_{A \in \mathcal{A}} |P(A) - P_n(A)|\right] \geq t\right) \leq 2 \exp\left\{-\frac{2t^2}{\sum_{i=1}^{n} \left(\frac{1}{n}\right)^2}\right\} = 2e^{-2t^2n}.$$

The choice of set \mathcal{A} is nowhere in this bound.

References
