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1 Introduction

This document contains the supplementary material to the article “Maximum Likelihood Estimation in
Log-Linear Models” by S.E. Fienberg and A. Rinaldo, which henceforth we will refer to as FR.

We use the theory developed in FR to derive efficient algorithms for extended maximum likelihood
estimation in log-linear models under Poisson and product multinomial schemes. The restriction to these
sampling schemes is motivated by a variety of reasons. First, these schemes encode sampling constraints that
arise most frequently in practice. In particular, these are the sampling schemes practitioners use in fitting
hierarchical log-linear models, and especially the class of graphical models. Second, for these particular
sampling schemes the log-partition function has a closed form expression and we can easily optimize the
associated log-likelihood. Finally, as shown in theorem 9 of FR, the extended MLE of the cell mean value
is identical in the two sampling schemes and, for the product multinomial scheme, the estimator is in
fact the conditional MLE of the cell means given the sample constraints. Thus these estimates are highly
interpretable. Some of the algorithms described in this document are implemented in a MATLAB toolbox
available at http://www.stat.cmu.edu/~arinaldo/ExtMLE/.

We begin with a high-level overview of extended maximum likelihood estimation, summarizing the theo-
retical contributions from the previous section and laying down the rationale for the algorithm we propose.
To simplify the exposition, we initially develop our result for the simpler case of a Poisson sampling scheme,
and later treat the more complex case of product multinomial schemes.

Consider a log-linear model with associated d-dimensional log-linear subspace M and design matrix A,
which for simplicity we assume to be of full-rank d. (When A is not of full rank, we need only minor changes
to the arguments.) We focus on the problem of estimating the cell mean values of the corresponding extended
exponential family based on the observed table n. From the results described in section 3.1 of FR, we know
that the MLE of µ and, therefore, of m, exists if and only if the observed sufficient statistics t � AJn lie
in the interior of the d-dimensional marginal cone CA. In this case, the log-likelihood, parametrized either
using the log-linear parameters µ P M or the natural parameters θ P Rd is a concave function admitting
a unique optimizer with finite norm, the maximum likelihood estimate. The MLE does not existent if and
only if t P ripF q, for some face F of CA of dimension dF   d with associated facial set F . Notice that
F , dF and F are random, since they depend on t. Nonexistence of the MLE implies non-estimability of
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both the log-linear and natural parameters, as formalized in theorem 7 of FR. The log-likelihood function is
still concave, though not strongly so (see remarks in section 3.1), and, under the natural parametrization,
it contains directions of recession, given by the normal cone to the face of the marginal cone containing in
its relative interior the observed sufficient statistics (see Rinaldo et al., 2009, corollary 2.8 ). While this
is an issue that cannot be resolved unless more data become available or we consider a different model, of
dimension no larger than dF , the theory of extended exponential family provides the theoretical justification
for identifying a subset of size dF of the original parameters that are in fact estimable. For the log-linear
parameters, we can construct this subset as follows. Let AF denote the matrix obtained by considering only
the rows of A with coordinates in F , so that rankpAF q � dF . Then, the columns of AF span MF , the
dF -dimensional linear subspace of RF obtained as the coordinate projection of M. The set MF is the set of
log-linear parameters for the extended exponential family describing the restriction of the log-linear model
M to the cells in F . Within this restricted family, the MLE of the log-linear parameter exists and is given
by a unique point pµF PMF , with the corresponding MLE for the cell mean value given by pmF � expppµF q,
so that τF p pmF q PM . For the natural parametrization of the restricted family, it is sufficient to replace the
|F |�d design matrix AF , which is not of full-rank, with any another matrix A�

F of full rank dF and identical
column range, i.e., to use a minimal representation. Then the natural parameter space for the restricted
model becomes RdF .

Once we identify the random facial set F corresponding to the observed sufficient statistic t, extended
maximum likelihood estimation is a relatively straightforward problem from the computational standpoint.
Indeed, under natural parametrization and using a full-rank design matrix, the extended log-likelihood is a
strictly concave function on RdF with no direction of recessions, thus admitting a unique minimizer, which
we can compute efficiently using Newton-Raphson procedure (see section 3 below). The computational
difficulties in extended maximum likelihood estimation rest mainly in isolating the coordinates comprising
F . Due to the combinatorial complexity of the face lattice of CA, facet enumeration is computationally
infeasible, even for small models, such as those in the examples in section 4 of FR. Thus, we need algorithms
for isolating F that are applicable to large tables and complex models.

The computational procedure we propose for maximum likelihood estimation proceeds in two fundamental
steps, described in detail below and summarized in Table 1. The input to the procedure is the design matrix
A and the observed table n.

1. Identification of the facial set (section 2). Computing the facial set is a task that corresponds
to:

Given a conic integer combination t � AJn of the columns of A, determine the set F of those columns
which span the face of CA containing t in its relative interior.

For this task, the design matrix does not have to be of full rank, even though this is preferable.

2. Log-likelihood optimization (section 3).
After we obtain the appropriate facial set F , if F � I, then the MLE exist and can be obtained aspθ � argmaxθPRd`

P pθq � argmaxθPRd tJθ � 1J exppAθq. (1)

We have slightly abused our notation by writing `P pxq, x P Rd in lieu of `P pµq, µ P M, as originally
defined in equation (2) of RF. Since Rd and M are isomorphic, this is inconsequential. We can carry
out the optimization of `P using the Newton-Raphson method, but A must be of full rank in order for
`P to have a unique optimizer. The MLE of the cell mean vector is pm � exppApθq.
If F � I, and thus t the MLE does not exist, a new, we can compute a reduced design matrix A�

F
of rank dF by selecting any subset of linearly independent rows from AF , e.g., using in proposition
5.1 from section 5. The extended likelihood is strictly concave and admits a unique optimizer, the
extended MLE: pθe

� argmaxθPRdF
`PF pθq � argmaxθPRdF

tJFθ � 1J exppA�
Fθq, (2)

where tF � pA�
F q

JnF . Our primary approach uses the Newton-Raphson procedure, but we could
substitute alternatives for specific purposes, as we note below. Note that we use only the observed
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Table 1: Pseudo-code for extended maximum likelihood estimation under Poisson sampling.

Input: A and t

Identification of the facial set

Compute F
Log-likelihood optimization

if F � I
compute pθ P Rd as in (1)

return pθ and pm � exppApθq
else

find A�
F such that RpA�

F q �MF and rankpA�
F q � dimpMF q � dF

compute pθ P RdF as in (2)

return pθ and pm � τF

�
exppA�

F
pθq	

end

counts corresponding to cells in F in the optimization of the extended likelihood. In fact, the mean
values for the cells in Fc, the likelihood zeros, are not estimable and, therefore, we set them to zero.
The extended MLE of the cell mean vector is

pme � τF

�
exppA�

F
pθe
q
	
PM.

As a by-product of this procedure, we obtain a basis for the subspace MF , whose dimension is also
the dimension of the boundary log-linear model, or the order of the reduced exponential family corre-
sponding to F .

We close this introductory section with a remark about detecting existence of the MLE. If we only need
to decide whether the MLE exists or not, then it is sufficient to set up the following linear program:

max s
s.t. Ax � t

xi � s ¥ 0, @i
s ¥ 0.

The MLE does not exists if and only if the optimum s� is zero, because that implies that there does not exist
any strictly positive vector x with t � Ax, which is equivalent to t lying on the boundary of CA. Clearly,
this procedure cannot be used to detect parameter estimability or evaluate the effective dimension of the
model under a nonexistent MLE.

Maximum Likelihood Estimation and Cuts

Maximum likelihood estimation under general conditional Poisson sampling scheme is typically computa-
tionally intractable. Indeed, unless the log-partition function ψ has a known closed form, its evaluation
requires summing over all the points in SpVq, a task that becomes computationally too expensive to carry
out even in models of small dimension.

In the special case where VJn is a cut (see Bardorff-Nielsen, 1978) for the exponential family arising
from the unrestricted Poisson scheme, there exists a strategy for maximum likelihood estimation that is
computationally feasible. In fact, suppose that A has the form given in equation (8) of RF, and partition the
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vector of natural parameters θ � pθp1q,θp2qq and of sufficient statistics t � AJn � ptp1q, tp2qq accordingly,

where θp1q, tp1q P Rd�m and θp2q, tp2q P Rm. It follows from lemma 1 of RF and the subsequent remarks
that tp1q is the vector of sufficient statistics and that only θp1q is estimable. In practice, one could always
maximize the Poisson likelihood, using ptp1q,1q as the sufficient statistics, where 1 P Rm. Effectively, this is
equivalent to disregarding the fact that some of the sufficient statistics, namely the entries of tp2q, are fixed
by design, treating them as random instead, and optimizing the Poisson likelihood function with respect

to θ, which is computationally tractable. Let θ̃ � pθ̃
p1q
, θ̃

p2q
q denote the optimum value, assumed finite

and partitioned in the fashion described above. Furthermore, let θ̂
p1q

the actual MLE of θp1q, once again
assumed it exists. Then, the arguments described on page 128 of Bardorff-Nielsen (1978) yield that, if tp2q is

a cut, θ̂
p1q

� θ̃
p1q

. These results generalize to the extended maximum likelihood estimation. In the interest
of space, we omit the details, but, as a concrete example, we point out that, when V is the sampling matrix
encoding the product multinomial scheme constraints, it is easy to see that VJn is a cut. Thus we can view
theorem 7 of RF as a special case of this more general phenomenon.

2 Determination of the Facial Sets

We derive two methods for determining facial sets, one based on linear programming and the other on the
maximization of a non-linear function via Newton-Raphson procedure. We describe alternative methodolo-
gies in section 6. Throughout this section, we denote with A� and A0 the sub-matrices obtained from A by
considering the rows indexed by I� :� supppnq and I0 :� supppnqc, respectively.

Recall that each face F of the marginal cone CA is uniquely identified by the associated facial set F � I,
which is determined by the conditions that"

aJi c � 0 if i P F
aJi c ¡ 0 if i P Fc,

(3)

where ai denotes the i-th row of U and �c is any point in the interior of the normal cone to the face
F corresponding to F . For simplicity we call the set Fc � IzF the co-facial set of F . Without loss of
generality, we have switched the sign of the inequalities from the original definition given in equation (10)
of RF.

Equation (3) implies that the observed sufficient statistics t � AJn belong to the relative interior of
some proper face F of the marginal cone if and only if the associated co-facial set Fc satisfies the inclusion
Fc � I0. This, in turn, is equivalent to the existence of a vector c satisfying:

1. A�c � 0;

2. A0c ­ 0;

3. the set supppAcq has maximal cardinality among all sets of the form supppAxq with Ax ­ 0.

Therefore, any solution x� of the non-linear optimization problem

max |supppAxq|
s.t. A�x � 0

A0x ¥ 0
(4)

will identify the required co-facial set Fc � supppAx�q. In particular, the MLE exists if and only if Fc � H.
It is worth pointing out that the non-existence of the MLE only depends on the location of the sampling
zeros, not on the magnitude of the non-zero cells. Thus we can simplify all calculations using a table of 0s
and 1s.

The problem (4) can be simplified making use of the following, simple fact.

Lemma 2.1. The MLE exists if rankpA�q � rankpAq.
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Proof. If rankpA�q � rankpAq, every row of A0 is a linear combination of the rows of A�. Thus, for any
vector c with A�c � 0, it must be that A0c � 0 as well. This implies that the feasible set for the problem
(4) is kernelpAq, hence Fc � H, so the MLE exits. �

The condition of lemma 2.1 is only sufficient, as in the following example demonstrates.

Example 2.2. If rankpA�q   rankpAq, the MLE may still exist. Indeed, consider the 3-way table

0 0
0 0

0 0
0 0

0

where the empty cells correspond to positive counts. For the hierarchical model r12sr13sr23s, the MLE is
well-defined but rankpA�q � 18 and rankpAq � 19. �

In light of lemma 2.1, it is necessary to look for a facial set only when rankpAq ¡ rankpA�q. If this is in
fact the case, define the matrix B � A0Z, where the columns of Z form a basis for kernelpA�q. Note that
rankpBq � q, with q � codimpRpA�qq � d � rankpA�q and that B is of full rank. Next, observe that (the
permutation of the elements of) any vector y P RpAq with yI0

� 0 can be written as

y � AZx �

�
A�Zx
A0Zx



�

�
0

Bx



,

for some x P Rq. The nonzero rows of B are indexed in a natural way by the corresponding subset of I0,
denoted with IB. In the remainder of the section it is assumed, without loss of generality, that B does not
have any zero rows, namely B � BIB

. Then, another condition for existence of the MLE follows readily.

Corollary 2.3. Consider the non-linear optimization problem

max |supppBxq|
s.t. Bx ¥ 0.

(5)

The MLE exists if and only if the system Bx ­ 0 is infeasible. Any optimal solution x� of (5) will identify
the co-facial set Fc � supppBx�q

In order to compute the matrix B, we need to determine a basis for kernelpU�q, if it is different than the
trivial subspace t0u, e.g., using the results discussed in section 5, and, in particular, equation (22).

We consider two methods for finding a solution to problem (5), one based on linear programming, the
second one on non-linear optimization. See section 6 for alternative procedures.

2.1 Linear Programming

Although the optimization problem (5) is highly non-linear, we can still use linear programming (LP) methods
to compute its solution. The non-linearity is in fact problematic to the extent that it typically requires
repeated implementations of LP algorithms, whose complexity, however, decrease at each iteration.

A linear relaxation of problem (4) leads to the linear program

max
�
1J0 A0

�
x

s.t. A�x � 0
A0x ¥ 0
A0x ¤ 1,

(6)

where the third constraint is required to bound the value of the objective function. The feasible set contains
kernelpAq and is contained in the dual cone of CA. If x P kernelpAq, the objective function takes on its
maximum value 0. In fact, the MLE exists if and only if the feasible set reduces to kernelpAq.
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It is convenient to take advantage of the simplified problem (5) to re-formulate (6) more compactly as

max 1Jy
s.t. y � Bx

y ¥ 0
y ¤ 1.

(7)

If px�,y�q is a pair of optimal solutions, 1Jy� � 0 if and only if the MLE exist, which happens if and
only if 0 is the only point in the feasible set. When the MLE does not exist, the optimal solution y� is not
necessarily the one with maximal support and, consequently, it would not identify the correct facial set, but
instead a larger facial set corresponding to a face of CA which contains t on its relative boundary. This is
illustrated in the next example.

Example 2.4. For the case of 43 tables and the hierarchical log-linear model of no-3-factor effect r12sr23sr13s,
consider the following table

0 0 0 0
2 0 0 2
5 1 0 0
0 1 0 0

0 4 1 0
1 0 1 0
0 0 0 0
0 2 4 0

0 0 0 3
0 0 0 0
3 5 3 5
0 0 0 0

0 2 0 5
3 0 0 1
0 0 0 0
0 4 0 0

,

in which the zeros are likelihood zeros obtained by taking the union of two among the 113,740 possible
patterns of likelihood zeros characterizing the facets of the corresponding marginal cone. Using the MATLAB

routine linprog1, one application of the LP procedure identifies only a subset of likelihood zeros, namely

0 0

0 0

0
0

0

0
0 0

0

,

and to correctly determine the complete pattern, we need to use a second iteration, after removing the
likelihood zeros found in the first one. �

The above example suggests that repeated applications of (7) will eventually produce the required co-
facial set: replace B with BsupppBx�qc , where supppBx�qc � IBzsupppBx�q (so that IB becomes smaller)
and iterate, until either the objective function is 0 or supppBx�qc � H. Table 2 provides the details of the
algorithm, which consists of a sequence of linear programs of decreasing complexity, while the next result
shows its correctness.

Lemma 2.5. Let px1,y1q an the optimal solution for the first iteration of the algorithm described in Table
(2). Then 1Jy1 � 0 if and only if the MLE exist. If the MLE does not exist, the algorithm will return F in
a finite number of iterations.

Proof. In the first round of the procedure, 1Jy1 ¡ 0 if and only if the system Bx ­ 0 is feasible, which is
equivalent to the existence of the MLE by corollary (2.3).

As for the second claim, suppose that the MLE does not exist, that is t P ripF q for some face F of CA.
Then, let pxk,ykq be the optimal solutions returned based on the coefficient matrix Bk at the k-th round of
the algorithm, k ¥ 2, so that B � B1. Explicitly, Bk is the submatrix of Bk�1 obtained by considering only
the rows indexed by the coordinates ti : yk�1

i � 0u.

1The default optimization options for linprog were used: options=optimset(’Simplex’,’off’,’LargeScale’,’on’).
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Table 2: Pseudo-code for the LP procedure to compute the facial set F . Recall that the rows of B are
indexed by the set IB. At each round of the algorithm, only the rows of B with indexes in supppy�q � IB
are retained.

F = I
do repeat

compute a solution py�,x�q of (7)

if 1Jy� = 0
return F

else

F = Fzsupppy�q
if supppy�qc = H

return F
else

B = Bsupppy�qc

end

end

end

Suppose that 1Jyk ¡ 0. Notice that, while, necessarily, yk � Bkxk ¥ 0, the coordinates of Bxk are not
guaranteed to be non-negative. Below, we will rescale xk appropriately so that the resulting vector x̃k is
such that supppBkx̃kq � supppBkxkq and, at the same time,

B

�
ķ

j�1

x̃j

�
­ 0.

To this end, for a generic vector w, let

smaxpwq � max t|wi| : i P supppwqu and sminpwq � min t|wi| : i P supppwqu .

Next, set x̃1 � x1 and

x̃k �
1

smaxpBxkq

sminpBx̃k�1q

2
xk, k ¡ 1.

Because the entries of x̃k are proportional to the entries to xk, is clear that supppBkx̃kq � supppBkxkq.
Furthermore, due to the recursive nature of the normalizations described above, we also obtain

Bzk ­ 0.

where

zk �
ķ

j�‘

x̃j ,

as claimed. Thus, �zk is a vector in the normal cone to the face of F containing the observed sufficient
statistics in its relative interior and, therefore, supppBzkq is the co-facial set corresponding to a face containing
F , possibly to F itself.

If, on the other hand, yk � 0, then supppBzk�1q is maximal and, therefore, identifies the co-facial set
corresponding to F (that is, �zk�1 must also be a point in the relative interior of the normal cone to F ).

Finally, if supppykqc � H, then IB itself is found to be the co-facial corresponding to F . �
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Remark.
An equivalent but much less efficient way to computing the facial set based is to solve I linear programs,
one for each row of the design matrix A:

max aJi x
s.t. xJt � 0

Ax ¥ 0
�1 ¤ x ¤ 1

where ai denotes the i-th row of A. Letting xi denote the optimal solution to the i-th program, the MLE
does not exist if and only if aJi xi ¡ 0 for some i, in which case the facial set associated with t is given by

ti : aJi xi � 0u.

Geyer (2009) discusses a similar algorithm.

2.2 Newton-Raphson Procedure

We now describe a non-linear optimization approach to solve (5) using the Newton-Raphson method. While
this procedure is also guaranteed to correctly return the appropriate facial set, it needs to be run only once,
unlike the LP method presented above.

Let the function f : Rq Ñ R be defined as

fpxq � �1J exppBxq, (8)

with gradient ∇fpxq � �BJ exppBxq and Hessian ∇2fpxq � �BJ exppBxqB. The following proposition
relates the problem of optimizing f with the existence of the MLE. In addition, when the MLE is nonexistent,
the sequence of points txnu realizing the supremum of f is not only diverging, but it is guaranteed to
eventually identify the appropriate co-face.

Proposition 2.6. Let f be as in (8) and consider the optimization problem

sup
xPRk

fpxq. (9)

The MLE exists if and only if the maximum of the problem (9) is attained for a finite vector x� P Rk. If the
MLE does not exist, for any optimizing sequence tx�nu such that supxPRk fpxq � limn fpx

�
nq,

IBzsuppplim
n

exppBx�nqq � Fc.

Proof. The function fpxq is bounded from above and, since the Hessian is negative definite for each x P Rq
(due to the fact that rankpBq � q), concave on Rq. Thus, the optimum is unique and furthermore, it
is enough to consider the first order optimality conditions. Suppose the optimum occurs for some vector
x� P Rk, so that ∇fpx�q � 0. Letting y� � exppBx�q ¡ 0, the optimality condition on the gradient implies
that BJy� � 0. By Stiemke’s theorem 6.3, the system Bx ­ 0 has no solutions hence the MLE exists. To
show the reverse, assume the MLE exists, so the system Bx ­ 0 is unfeasible. Then, by Stiemke’s theorem
again, the system BJy � 0 does not admit any positive solutions, which implies that ∇fpxq � 0, for all
x P Rq.

To prove the second claim, suppose the MLE does not exists. Denote with bi the i-th row of B. Then,
there exists a subset (possibly improper) Fc of the row indices IB and a sequence twun such that bJi wn   0
for each n and bJi wn Ó �8 if i P Fc, while bJi wn � 0 for each n if i R Fc. By concavity of f , there exists
an optimizing sequence tx�nu � Rq such that

lim
n
fpxnq � sup

xPRq

fpxq, (10)
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where limn }x
�
n} � 8. Let y� � limn exppBx�nq. It is easy to see that y� does not depend on the choice of the

optimizing sequence. Hence it is unique. We show that supppy�qc � IBzsupppy�q � Fc, which will prove
the claim. For any i P supppy�qc, it must be the case that bJi x�n   0 for all n big enough. This implies that
i P Fc. Thus, we have established that supppy�qc � Fc. To show the opposite inclusion Fc � supppy�qc,
suppose there exists an index i P Fc which does not belong to supppy�qc. Then, letting twun be defined as
above, bJi wn Ó �8 but limn |b

J
i x�n|   8, so that

lim
n
fpx�n �wnq ¡ lim

n
fpx�nq � sup

xPRq

fpxq,

which contradicts (10). Thus, Fc � supppy�qc. �

Remark.
If the MLE does not exist and IB � Fc, then supxPRk fpxq � 0.

As we already mentioned, we can optimaze the function (8) using Newton-Raphson method. In fact, when
the MLE exists, (8) satisfies the conditions guaranteeing quadratic convergence (see Boyd and Vandenberghe,
2004, Chapter 9). When the MLE does not exists, we can still apply the Newton-Raphson procedure and it
will return the correct facial set by producing a divergent Newton sequence, as we show in our next result.

Theorem 2.7. Let f : Rn Ñ R be a strictly concave function of class C3, strongly concave on any bounded
ball and having no maximum on the closure of the open ball B. For any x P B let dx be the Newton direction
corresponding to x. Then, there exists a positive number α ¤ 1 such that such that

fpx� αdxq � fpxq ¥ γ, (11)

for all x P B, where γ � τ
�
infxPB ||∇fpxq||2

�
for some number τ depending on α and B only.

Proof. Let B1 be the smallest ball containing the bounded set

B Y tx� dx, : x P B,dx � �∇2fpxq∇fpxqu.

Using strict concavity on B1 of f , there exist positive constants K and L such that

K ¤ �yJ∇2fpxq�1y ¤ L (12)

for all x P B̄ and all unit vectors y. Since, for any x P B,

dx � �∇2fpxq�1∇fpxq,

it follows that
K||∇fpxq|| ¤ ||dx|| ¤ L||∇fpxq||. (13)

Let β P p0, 1s, to be chosen below. Using Taylor’s expansion,

fpx� βdxq � fpxq � β∇fpxqJdx �
β2

2
dJx∇2fpx� cβdxqdx, (14)

for some 0   c   1. Using (12) and (13), we can bound the right hand side of (14). In fact,

β∇fpxqJdx � �β ∇fpxqJ
}∇fpxq}∇

2fpxq ∇fpxq
}∇fpxq}}∇fpxq}

2

¥ βK}∇fpxq}2

and
β2

2 dJx∇2fpx� cβdxqdx � β2

2
dJx
}dx}

∇2fpx� cβdxq
dx

}dx}
}dx}

2

¥ �β2

2 L}dx}
2

¥ �β2

2 L
2}∇fpxq}2.
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Therefore,

fpx� βdxq � fpxq ¥

�
βK �

β2

2
L2



}∇fpxq}2.

The term
�
βK � β2

2 L
2
	

is positive provided β   2K
L . Choose any 0   β   2K

L and set α � mint1, βu

and τ �
�
αK � α2

2 L
2
	

. Next, the term γ � τ
�
infxPB ||∇fpxq||2

�
is strictly positive, as τ ¡ 0, f has no

maximum on the closure of B. Therefore, for such a choice of α and γ, fpx�αdxq�fpxq ¥ γ, as desired. �

3 Maximization of the Extended Log-Likelihood Function

We describe the use of the Newton-Raphson algorithm to optimize of the log-likelihood function under natural
parametrization (see also Haberman, 1974, Chapter 3). Provided the MLE exists, it is well known (see, for
example, Agresti, 2002) that Newton-Raphson method for maximum likelihood estimation of the natural
parameters eventually achieves a quadratic rate of convergence to its unique optimizer. However, when MLE
fails to exist, the procedure becomes highly unstable. Indeed, in this case the negative log-likelihood function
has directions of recessions and its optimum is realized as the limit of sequences with norms exploding to
infinity. Furthermore, the Fisher information matrix evaluated along any optimizing sequence will converge
to a singular matrix (as shown the remarks following corollary 8 of RF). However, as we explained above,
these issues disappear once we optimize the extended log-likelihood function, as described below.

For hierarchical log-linear models and, in fact, for more general log-linear models, iterative algorithms
such as the iterative proportional fitting or scaling (IPS), are popular, e.g., see Fienberg (1970), Bishop et al.
(1975), Darroch and Ratcliff (1972), Csiszár (1975, 1989), Lauritzen (1996) and Ruschendorf (1995). See
also Hunter (2004) for the variation known as MM algorithms. Typically, these alternative algorithms are
very simple to implement and do not require matrix inversion, resulting in a much lower space complexity
compared with the Newton-Raphson procedure. Furthermore, since they carry out optimization in the
mean value space, convergence to the unique optimum occurs regardless of the existence of the MLE. These
algorithms suffer from serious drawbacks, however, that do not affect the Newton-Raphson procedure. First,
the rate of convergence is often unknown and can be extremely slow, especially if the MLE fails to exist.
Secondly, it is typically hard to detect whether the MLE exists or not, other than by monitoring the (usually
slow) rate to convergence. As a result, computing the number of estimable parameters (i.e. the dimension of
the extended model) is rather difficult. Finally, these algorithms are suitable for estimating the mean-value
parameters parameters, but not the natural parameters.

We cannot recommend one type of algorithm over the other for all practical purposes: this choice nec-
essarily depends on a various factors, such as the dimension of the problem, the computational resources
available and the time constraints, all of which contributing to the trade-off between space complexity (low
for IPS and large for Netwon-Raphson) versus time complexity (high for IPS and low for Netwon-Raphson).
For very high-dimensional problems, however, IPS algorithms may be the only feasible way.

A notable instance where IPS confers computation simplifications is for decomposable log-linear models,
for which the MLE and extended MLE are rational functions of the table margins (see, e.g., Haberman,
1974; Lauritzen, 1996; Geiger et al., 2006). For these models, the IPS algorithm is known to converge in very
few iterations; in fact, provided that the IPS updates are carried out according to a perfect ordering of the
graph cliques, convergence is achieved in just one pass. Furthermore, explicit formulae for computing the
number of estimable parameters even with a nonexistent MLE are available (see Lauritzen, 1996). Thus, for
decomposable log-linear models, we can carry out extended maximum likelihood estimation very efficiently.

For non-decomposable models, there are a number of modifications of the IPS algorithm that guarantee
in some cases a considerable reduction in computational complexity. Most of these improvements rely on
graph theoretical properties of the log-linear models and on some form of approximation of the original
model by decomposable models. See, in particular, Jiroušek and Přeučil (1995); Jiroušek (1991), Badsberg
and Malvestuto (2001) and Endo and Takemura (2009).
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We can optimize the Newton-Rapshon algorithm for hierarchical log-linear models, through a careful
handling of the design matrices. Indeed, we can construct these matrices to be sparse or have rather special
structures, properties that can be exploited to significantly reduce the computational burden associated with
matrix multiplication and inversion (see Fienberg et al., 1980).

3.1 Poisson Sampling Scheme

Using a full-rank design matrix A, the MLE of the natural parameter and the mean-value parameters for
the corresponding log-linear model can be found by optimizing the function

sup
xPRd

`P pxq,

where `P pxq � nJAx � 1J exppAxq. If the MLE exists, the optimum will be attained by a unique vectorpθ of finite norm, the MLE of the natural parameter. The MLE of the mean value parameter is thenpm � exppApθq ¡ 0.
The gradient and Hessian of `P , needed by Newton-Raphson algorithm, are easy to evaluate. Indeed,

setting µx � Ax and mx � exppµxq, it can be seen that

`P pxq � nJµx � 1Jmx

∇`P pxq � AJpn�mxq
∇2`P pxq � �AJDmxA,

(15)

where Dmx is a diagonal matrix whose diagonal elements are mx. Since mx ¡ 0 for each x P Rd, the
Hessian is negative definite on all Rd which implies that ∇`P is strictly concave, but not strongly concave,
as µpiq Ñ �8 for any i P I implies mpiq Ñ 0. It is this “weaker” degree of convexity that permits the
occurrence of the extended maximum likelihood estimates.

If the MLE exists, Newton-Raphson method will convergence from any starting approximation x0 to
the unique optimum x�. To see this, we note that the existence and uniqueness of the extended MLE
for the restricted exponential family, along with the strict concavity of `P , imply that the contour of `P

corresponding to the value of `P px0q is a simple closed curve bounding a compact set B. Since the step size
algorithm increases the value of `P with each iteration, the sequence of iterations txjuj¥0 all lie inside B.
By strong convexity on B, the iterates must converge to a maximum.

At the k-th step of the Newton Raphson algorithm, we can use the current approximation xk, along with
Equation (15), to compute the Newton direction dk by solving the system

∇2`P pxkqdk � ∇`P pxkq. (16)

The Cholesky factorization of ∇2`P pxkq is useful for solving the above system.
After we compute the new direction by solving the system (16), we must determine the stepsize αk. To

this end, we consider the scalar function

φkpαq � `P pxk � αdkq,

and set ck � Adk, so that

φkpαq � nJµk � αnJck � 1J pmk � exppαckqq ,

where µk � Axk, mk � exppµkq and the dot product operator between two vectors x and y is defined as
z � px � yq, with zpiq � xpiqypiq for each i. The first and second derivative of φk are easily computed as

φ1kpαq � cJk pn� pmk � exppαckqqq and φ2kpαq � �
¸
i

c2kpiqmkpiq exppαckpiqq.

With this information, we can compute the step-size αk using any of the usual strategies (see, for instance
Boyd and Vandenberghe, 2004, Chapter 9).
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After we have evaluated αk, we set xk�1 � xk � αkdk, so that µk�1 � µk � αkck P M, since ck P M.

As a starting point x0 we can take, for example, x0 �
�
AJA

��1
AJµ̃, with µ̃ � log pmaxpn, 1qq.

When the MLE does not exist because t belongs to the relative interior of a face F of CA of dimension
dF , and the extended MLE corresponds to a facial set F , the extended log-likelihood optimization problem
becomes

sup
wPRdF

`PF pxq, (17)

where `PF pxq � nJA�
Fx�1J exppA�

Fxq and A�
F is a |F |�dF full-column rank design matrix consisting of any

set of linearly independent columns from AF . In order to compute A�
F from AF proposition 5.1 in section 5

could be used, for instance. The optimum x� for (17) is the extended MLE of the natural parameters, while
the extended MLE for the cell mean values is the non-negative vector

pme � τF pexppA�
Fx�qq .

3.2 Product Multinomial Sampling Scheme

We now provide the details for carrying out maximum likelihood estimation under product multinomial
setting. When the product multinomial sampling scheme applies, two strategies for maximum likelihood
estimation are available. One possibility is to take advantage that the extended MLE of the cell mean
values are identical under Poisson and product multinomial scheme, and, provided the sampling subspace
N is contained in the log-linear subspace M, proceed as if Poisson sampling were in fact used. On the one
hand, this approach is appealing because, as we just saw, the computations for the Poisson log=likelihood
are relatively straightforward and computationally inexpensive; on the other hand, those computations are
carried out over d-dimensional space, while the effective number of parameters is d � m � dimpM a N q.
The second possibility is to use lemma 2 of RF and thus optimize the log-likelihood function parametrized in
minimal form by any full-rank design matrix for MaN . This second approach is more elaborated because,
as we will see below, the gradient and Hessian of the re-parametrized log-likelihood are more complicated
and harder to evaluate numerically. When dimpN q is very large relative to to d, however, we can achieve
a considerable reduction in the dimensionality, more than offsetting the computational ease of the Poisson
case, despite the increase in complexity needed to obtain the Newton steps.

Before we proceed, we show how to obtain a design matrix for M. Let A1 be the I �m matrix whose
j-column is χj (see section 2 of RF), so that D � AJ

1 A1 is a m-dimensional non-singular diagonal matrix.
Let A � rA1 A2s be such that RpAq �M.

Lemma 3.1. The columns of the matrix W � A2 �A1D�1AJ
1 A2 form a basis for MaN .

Proof. Orthogonality of RpWq and RpA1q follows from the chain of equalities

AJ
1 W � AJ

1 A2 �AJ
1 A1D�1AJ

1 A2

� AJ
1 A2 �DD�1AJ

1 A2

� 0.
(18)

It only remains to show that pA1 Wq span M. Let µ � A1b1 �A2b2 be any vector in M. Then,

µ � A1b1 � pW �A1D�1AJ
1 A2qb2

� A1pb1 �D�1AJ
1 A2b2q �Wb2,

so that µ is a linear combination of the columns of A1 and of W. �

Determination of the facial set

As we described in section 2, we can determine the facial set by solving (5). Under a product multinomial
scheme,we modify the procedure to obtain matrix B as follows. Assume that the design matrix for M has
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the form A � rA1 A2s described above and set

W � A2 �A1D�1
� AJ

1,�A2,�,

where A1,� and A2,� are the submatrices of A1 and A2 obtained considering only the rows indexed by I�,
respectively, and D� � AJ

1,�A1,� � D, diagonal and invertible. Using the very same arguments from the
proof of lemma 3.1, we see that the columns of rA1 Ws span M and that the columns of W� are orthogonal
to the columns of A1,�. It follows from the independence of the columns of A1,� that any basis for the null
space of rA1 Ws� must have the form �

0
Z



,

i.e. the entire dependency resides in the columns of V�. We can now use the matrix

B � pA1,Wq�

�
0
Z



� W�Z,

to set up the optimization problem (5) for the determination of facial sets, after the elimination of possible
redundant zero rows.

Optimization of the extended log-likelihood

According to lemma 2 of RF, we can parametrize the log-likelihood using the vectors β P MaN . In fact,
with a slight abuse of notation, we can write the log-likelihood function as

`M pxq � nJWx�
m̧

j�1

Nj logχJ
j exppWxq, (19)

where, in Poisson sampling case, `M pxq is in fact identical to `M pβq from equation 9 of RF, with β � Wx.
For x P Rd�m, let bx � exppβxq, where βx � Wx (in fact, W is a homeomorphism between MaN and

Rd�m). The proof of lemma 2 of RF shows that, for each βx there exists a corresponding νx P N such that
the vector cx � exppνxq satisfies

1. cxpiq � cj :�
Nj

χJ
j bx

, i P χj , j � 1, . . . , r;

2. bxpiqcxpiq � mxpiq, i P I, , with mx being the conditional mean cell vector.

Then, some algebra yields that the gradient at x is

∇`M pxq � WJn�WJ

�����
�

N1

χJ
1 bx

	
b1
x

...�
Nr

χJ
r bx

	
bmx

����
� WJn�WJmx.

while the Hessian is
∇2`M pxq � �Dmx �

°m
j�1

1
Nj

mj
xpm

j
xq

J

� �Dmx pI�Πmx

N q ,

where mj
x � tmxpiq : i P χju for j � 1, . . . ,m and Πm

N is the (oblique) orthogonal projection matrix onto

N relative to the inner product r�, �sm on RI defined by rx,ys � xJDmy (see equation 2.28 in Haberman,
1974). For a characterization of maximum likelihood estimation in terms of oblique projections on MaN ,
see Haberman (1977). Note that ∇2`M is negative definite on Rd�m but not strongly concave on it. As in
the Poisson case, this feature allows for the possibility of a non-existent MLE. An equivalent expression for
the Hessian is

∇2`M pxq � �
m̧

j�1

WJ
j Hj

xWj ,
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where Wj denotes the submatrix of W obtained by considering only the rows indexed by supppχjq and

Hj �
Nj

χJ
j bx

�
Dbj

x
�

�
1

χJ
j bx

�
bjxpb

j
xq

J

�
.

When the MLE does not exist and the extended MLE corresponding to for a given facial set F , the
procedure is identical to the Poisson case. Specifically, we re-define the restricted log-likelihood function
(19) with domain RdF , dF   d�m, as

`MF pwq � nJW�
Fw �

m̧

j�1

Nj logχJ
j exppW�

Fwq,

where W�
F is the full-column-rank |F | � dF dimensional matrix consisting of any set of linearly independent

columns of WF , isolated using any of the procedures described in section 5. As usual, dF is the dimension
of the face of the convex support of the associated family containing the observed sufficient statistics AJn
in its relative interior (see theorem 3 of RF). The extended MLE of the natural parameters is the unique
solution x� to the optimization problem

sup
xPRdF

`MF pxq.

The extended MLE for the cell mean vectors is then vector pme P RI¥0 with coordinates

pmepiq �

"
bx�piqcx�piq if i P F

0 otherwise.

where bc� � exppW�
Fx�q and cx� is the vector RI with coordinates cx�piq �

Nj

χJ
j bx�

, for i P χj , j � 1 . . . ,m.

4 The case N �M
We have followed the convention, suggested by Haberman (1974), that N � M. In practice, there are
certainly log-linear models for which this assumption fails, such as the Rasch model or variations on the
Bradley-Terry paired comparisons model. For simplicity we consider only the case that N is the sampling
subspace generated by a product multinomial sampling scheme and that N XM � t0u.

In order to check for the existence of the MLE and to determine the appropriate facial sets, we can use
the following trick, which consists in building a larger model for which the calculations are simpler. Set
M1 �M�N � RI and consider a new, pd�mq-dimensional log-linear model with log-linear subspace M1

and product multinomial sampling scheme with sampling subspace N . Then, if A is a design matrix for M
of dimension I � d and V the sampling matrix for N of dimension I �m, A1 � pA, Vq and CA1 are the
design matrix for M1 and its marginal cone, respectively. Thus, if t P Rd is the observed sufficient statistics
for M, t1 � pt,1q is also sufficient. Then, by theorem 3 of RF, the MLE for the parameters of M exists if
and only if t1 P ripCA1q and, furthermore, the facial set associated with t is precisely the facial set of CA1

associated with t1. For these tasks, we can use the algorithms of section 2.
The reason why it is simpler to work with the enlarged model M1 is that we do all the calculations on the

corresponding marginal cone, and not on the convex support for the original log-linear model M. Indeed,
under product multinomial scheme, this convex support takes the form of a Minkwoski sum of polytopes,
which is computationally very hard to manage. In contrast, the marginal cone C 1

A, though having larger
dimension, is much simpler to handle both theoretically and computationally. In polyhedral geometry, this
trick goes under the name of Cayley embedding. See Rinaldo et al. (2011) for a detailed application of this
trick to the problem of existence of the MLE for generalized Bradley-Terry and Rasch models and for the
determination of the relevant facial sets.

For the maximization of the extended likelihood, there are two options. The first is to optimize directly
the extended product multinomial log-likelihood for the model M (see section 3.2 for details), and the other
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option is to optimize the extended Poisson log-likelihood of the enlarged model M1. By theorem 7 of RF, the
resulting estimates coincide. The advantage of the first method is that is has a smaller number of parameters
to optimize, while the advantage of the second method is that the likelihood itself, though depending on a
larger set of parameters, is simpler to optimize.

5 Detecting Rank Degeneracies

The present section describes a method for isolating a set of independent columns from a matrix U based
on the Cholesky decomposition with pivoting. See Stewart (1998) for detailed descriptions and properties of
algorithms we use below.

For a given squared, positive definite p-dimensional matrix U, the Cholesky decomposition is an upper
triangular matrix R with positive diagonal elements, called the Cholesky factor, such that U can be uniquely
decomposed like

U � RJR.

The computation of R is simple, numerically stable and can be performed quite efficiently. It encompasses
a sequence of p operations such that at the k-th step of the algorithm, the k � p matrix Rk is obtained,
satisfying

U� RJ
k Rk �

�
0 0
0 Uk



, (20)

where Uk is positive definite of order p�k and Rk �

�
Rk�1

rJk



, so that R � Rp. The first pk�1q coordinates

of the vector rk are 0, the k-th coordinate is equal to rk �
b
a
pk�1q
1,1 and the last pp� k � 1q coordinates are

a
pk�1q
1,j

rk
, j � k � 1, . . . , p.

A simple modification of the algorithm described above allows us to consider matrices that are only
positive semidefinite. In fact, it is not necessary to accept diagonal elements as pivots (i.e. as determining the
diagonal elements of R). Specifically, suppose that, at the k-th stage of the reduction algorithm represented

by equation (20), the pivoting for the next stage is obtained using another diagonal entry of Uk, say a
pkq
l,l ,

l � 1, instead of a
pkq
1,1. Let J1k�1,l be a permutation matrix obtained by exchanging the first and l-th rows of

the identity matrix of order p� k so that
J1k�1,lUkJ1k�1,l

is a symmetric matrix with a
pkq
l,l in its leading position and set

Jk �

�
Ik 0
0 J1k�1,l



.

Then, from (20),

JkUJk � JkRJ
k RkJk �

�
0 0
0 J1k�1,l Uk J1k�1,l



. (21)

The matrix RkJk differs from Rk only in having its pk � 1q-th and pk � lq-th columns interchanged. Con-

sequently, (21) represent the k-th step of the Cholesky decomposition of JkUJk in which a
pkq
1,1 has been

replaced by a
pkq
l,l . If interchanges of leading terms are made at each step, with the exception of the last one,

the Cholesky factorization will produce an upper triangular matrix R such that

Jp�1Jp�2 . . . J1 U J1 . . . Jp�2Jp�1 � RJR.

That is, R is the Cholesky factor of the matrix U with its rows and columns symmetrically permuted
according to J � Jp�1Jp�2 . . . J1.
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If U is positive semidefinite and we carry the algorithm to its k-th stage, we can show that Uk is also
positive semidefinite. Unless Uk is zero, it will have a positive diagonal element, which we can exchange
into the pivot to initiate the pk � 1q step. Among the possible pivoting strategies, one that is particularly
well-suited to problems of rank detection is taking as pivot element the largest diagonal element of Uk, for
every stage k of the reduction. This will result in a matrix R such that

r2k,k �
j̧

i�k

r2i,j j � k, . . . , p,

so that the diagonal elements of R satisfy r1,1 ¥ r2,2 ¥ . . . ¥ rp,p. Moreover, if rk�1,k�1 � 0 for some k,
then the Cholesky factor of U will be of the form

R �

�
R11 R12

0 0



,

where R11 has order k � rankpUq.

The following result show how we can the Cholesky decomposition with pivoting of a positive semidefinite
matrix to isolate a set of independent columns from a matrix A

Proposition 5.1. Let A be a matrix with p columns and J be a permutation matrix such that AJ � rA1 A2s
with A1 having k columns. If

pA1,A2q
JpA1,A2q �

�
R11 R12

0 0


J�
R11 R12

0 0



,

where R11 is non-singular of order k, then:

i. the columns of A1 are linearly independent;

ii. A2 � A1R�1
11 R12;

iii. the columns of the matrix �
�R�1

11 R12

Ip�k



(22)

form a basis for the null space of UJ.

Proof. Since AJ
1 A1 � RJ

11R11, and R11 is non-singular and positive definite, A1 has independent columns,
proving i.. To establish ii., note that

rank pA1 U2q � rank

�
R11 A12

0 0



� k,

so we can obtain A2 as a linear combination of columns of A1:

A2 � A1X. (23)

Then, after pre-multiplying both sides by AJ
1 ,we get

X � pAJ
1 A1q

�1AJ
1 A2 � R�1

11 R12.

To show iii, we observe that the matrix (22) has p� k independent columns and, by i, it satisfies

pA1,A2q

�
�R�1

11 R12

I



� �A1R�1

12 R12 �A2 � 0,

where we justify the last inequality by (23). Since the null space of pA1 A2q has dimension p�k, the columns
of (22) form a basis for it. �
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6 Alternative Methods for Determining Facial Sets

This section describes various methods for identifying the facial sets that are alternative to the LP and
non-linear optimization procedures we described above.

6.1 Maximum Entropy Approach

We can carry out identification of the appropriate facial set by replacing the linear objective function of the
optimization problem (7), with Shannon’s entropy function. The new problem is

max�
°
iPIB

ypiq log ypiq
s.t. y � Bx

y ¥ 0
1Jy � 1.

(24)

The strictly concavity of the entropy function and the fact that limxÓ0 x log x � 0 guarantee that, for the
unique maximizer y� of 24, supppy�q is maximal with respect to inclusion. In fact, letting ∆0 denote the
simplex in RIB , we maximize the entropy function over the convex polytope DC1

B :� DCB X ∆0. Such
intersection is trivial when the MLE exists and is the point 0. In this case, the problem is infeasible.
Otherwise, due to the strict concavity of the entropy function, the optimum occurs inside ri

�
DC1

B

�
, which

corresponds to the maximal co-face. Note that DC1
B is typically not of full dimension (unless IB � Fc), in

which case the maximizer belongs to a relatively open neighborhood inside DC1
B.

If we denote the i-th row of B by bJi , we can rewrite the problem (24) in a more compact form by making
the constraint y � Bx implicit. Then

maxHpxq
s.t. Bx ¥ 0

1JBx � 1,

where, for Bx ¡ 0, Hpxq � �
°
iPIB

bJi x logpbJi xq, with gradient

∇Hpxq � �BJ p1� logpBxqq

and Hessian

∇2Hpxq � �BJdiag pBxq
�1

B � �
¸
i

1

bJi x
bib

J
i .

6.2 Maximum Entropy and Newton-Raphson

By taking the log of the negative of the function f of Equation (8), we can represent the optimization
problem (9) as an unconstrained geometric program

min log
�°

iPIB
exppbJi xq

�
,

which is equivalent to a linearly constrained one,

min log
�°

iPIB
exppypiqq

�
s.t. Bx � y,

(25)

with feasible set given by the kernel of the matrix pI � Bq. See also Borwein and Lewis (2000, theorem
2.2.6). If x� is the maximizer of the original problem (9), then this is also the minimizer for the geometric
program (25), where the infimum can possibly be �8, but only when supxPRk fpxq � 0).
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The conjugate of the log-sum-exp function appearing in (25) is the negative entropy function restricted
to the simplex, given by " °

i νpiq log νpiq ν ¥ 0 1Jν � 1
8 otherwise,

so the dual of the reformulated problem (25) is

max �
°
iPIB

νpiq log νpiq
s.t. 1Jν � 1

BJν � 0
ν ¥ 0.

(26)

Proposition 6.1. If the MLE exists, the problem (26) admits a unique strictly positive solution ν�. If the
MLE does not exist:

a) if the zeros IB � Fc, then (26) is infeasible;

b) otherwise, the problem (26) is feasible and admits a unique solution ν� such that the co-face is given
by the coordinates not in supppν�q.

Proof. Note that, by the properties of the entropy function, any solution ν� to the above problem has
maximal support among all the non-negative vectors satisfying the equality constraint. Next, by strict
concavity of the entropy function, if the problem is feasible, then it admits a unique solution. If the MLE
exists, the maximum occurs at a strictly positive point ν� ¡ 0 by Stiemke’s theorem 6.3.

Suppose instead that the MLE does not exist. If the system Bx ¡ 0 admits a solution, then, by Gordan’s
theorem 6.2, there is only one vector ν� satisfying the matrix equality constraint: ν� � 0. Therefore, in
this case the problem is infeasible. This proves a). Otherwise, the solution is given by a vector ν� ­ 0.
In this case, the coordinates in supppν�qc give the appropriate co-face. In fact, 0 � pν�qJB � pν�qJA0X
implies that every d P kernelpA�q will be orthogonal to a strictly positive convex combination of the rows
of A0 corresponding to the coordinates in supppν�q. Since the MLE does not exist, there exists a vector
d� P kernelpA�q such that dJ�ui � 0 for all i P F and dJ�ui ¡ 0 for all i P Fc, that is, d� is orthogonal to
all strictly positive combinations of rows of A indexed by F . By maximality of supppν�q, these rows are the
ones in A� and the ones in supppν�q. Hence the result in b). �

Appendix: Theorems of Alternatives

Theorem 6.2 (Gordan’s Theorem of Alternatives). Given a matrix A, the following are alternatives:

1. Ax ¡ 0 has a solution x.

2. AJy � 0, y ­ 0, has a solution y.

Theorem 6.3 (Stiemke’s Theorem of Alternatives). Given a matrix A, the following are alternatives:

1. Ax ­ 0 has a solution x.

2. AJy � 0, y ¡ 0, has a solution y.

Schrijver (1998) provides proofs of both theorems.
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