In this lecture we review the equalizer rule for exact minimax estimation and then proceed to minimax hypothesis testing (also known as minimax detection). Finally we consider a high-dimensional detection example, where we want to decide whether there is signal in the underlying model.

9.1 The equalizer rule

Suppose Θ is the parameter space and let $d : \Theta \times \Theta \rightarrow \mathbb{R}^+$ be a specific loss function (e.g., the ℓ_2 loss $d(\theta, \theta') = \|\theta - \theta'\|_2^2$). The risk of an estimator $\hat{\theta}$ is defined as $\mathbb{E}_{\theta}[d(\hat{\theta}, \theta)]$, where the expectation is taken over i.i.d. sampled from the underlying distribution parameterized by the true parameter θ. Let π be a prior distribution over the parameter space Θ. The Bayes risk of an estimator $\hat{\theta}$ with respect to prior π is defined as

$$R(\hat{\theta}, \pi) = \int_{\Theta} \mathbb{E}_{\theta}[d(\hat{\theta}, \theta)]d\pi(\theta).$$

The posterior risk of an estimator $\hat{\theta}$ with respect to prior π and data X is defined as

$$r(\hat{\theta}|X) = \mathbb{E}_{\theta \sim X}[d(\hat{\theta}, \theta)|X].$$

A simple observation is that $R(\hat{\theta}, \pi)$ can also be expressed as an integration over posterior risk of $\hat{\theta}$, as shown below:

$$R(\hat{\theta}, \pi) = \int_{X} r(\hat{\theta}|X)d\mu_{X}(X). \quad (9.1)$$

The Bayes rule estimator with respect to prior π is the estimator $\hat{\theta}$ that minimizes the posterior risk $r(\hat{\theta}|X)$ at every X. It is known that when ℓ_2 loss is used, the Bayes rule is the posterior mean $\mathbb{E}[\theta|X]$.

The equalizer rule asserts that an estimator is minimax if it is the Bayes rule with respect to some prior π and achieves constant risk for all underlying parameter θ. More specifically, we have the following proposition:

Proposition 9.1 (The equalizer rule) Let $\hat{\theta}(\pi)$ be the Bayes rule with respect to some prior π. If

$$\mathbb{E}_{\theta}[d(\hat{\theta}(\pi), \theta)] = C, \quad \forall \theta \in \Theta$$

for some constant C, then $\hat{\theta}(\pi)$ is minimax:

$$\sup_{\theta \in \Theta} \mathbb{E}_{\theta}[d(\hat{\theta}(\pi), \theta)] = \inf_{\hat{\theta}} \sup_{\theta} \mathbb{E}_{\theta}[d(\hat{\theta}, \theta)].$$
Example: Binomial distribution. Suppose $X \sim B(n, \theta)$ for $\theta \in \Theta = [0, 1]$. Consider the Beta prior $\theta \sim \text{Beta}(\alpha, \beta)$. The posterior distribution of θ conditioned on X is then

$$\theta | X = x \sim \text{Beta}(\alpha + x, \beta + n - x).$$

Under the ℓ_2 loss function $d(\hat{\theta}, \theta) = (\hat{\theta} - \theta)^2$, the Bayes rule is the posterior mean:

$$\hat{\theta}(\pi) = \frac{\alpha + x}{\alpha + \beta + n} = \frac{\alpha + \beta}{\alpha + \beta + n} \cdot \frac{\alpha}{\alpha + \beta + n} \cdot \frac{x}{n}.$$

Taking $\alpha = \beta = \sqrt{n}/2$, we have

$$R(\hat{\theta}(\pi), \theta) = \frac{1}{4(1 + \sqrt{n})^2}, \quad \forall \theta \in \Theta,$$

which is a constant function with respect to the underlying parameter θ. Subsequently, by the equalizer rule, we claim that the minimax estimator for θ is

$$\hat{\theta} = \frac{1}{1 + \sqrt{n}} \cdot \frac{1}{2 + \frac{\sqrt{n}}{1 + \sqrt{n}}} \cdot \frac{X}{n}.$$

9.2 General hypothesis testing theory

Consider distribution class $\mathcal{P} = \{p_\theta : \theta \in \Theta\}$ for some parameter space $\Theta \subseteq \mathbb{R}^d$. Suppose $X_1, \ldots, X_n \overset{i.i.d.}{\sim} p_\theta$ for some $\theta \in \Theta$. We want to test:

$$H_0 : \theta \in \Theta_0; \quad H_1 : \theta \in \Theta_1;$$

for some $\Theta_0, \Theta_1 \subseteq \Theta$. Conventionally we also assume that $\Theta_0 \cap \Theta_1 = \emptyset$. We call a hypothesis testing problem *simple* if each one of Θ_0, Θ_1 only has one parameter; that is, $\Theta_0 = \{\theta_0\}$ and $\Theta_1 = \{\theta_1\}$. A test function ψ is a function from \mathcal{X} to $\{0, 1\}$ such that

$$\psi(X) = \begin{cases}
1, & \text{reject } H_0; \\
0, & \text{fail to reject } H_0.
\end{cases}$$

The type-I error of a testing function ψ is defined as $\sup_{\theta \in \Theta_0} E_\theta \psi$, while the type-II error if defined as $\sup_{\theta \in \Theta_1} (1 - E_\theta \psi)$.

From now on we shall consider the simple hypothesis testing case, where $\Theta_0 = \{\theta_0\}, \Theta_1 = \{\theta_1\}$ for some distinct $\theta_0, \theta_1 \in \Theta$. There are two standard ways of defining the “risk” of the simple hypothesis testing problem:

1. The risk of ψ is defined as

$$R(\psi) = R(\psi, \theta_0) + R(\psi, \theta_1),$$

where

$$R(\psi, \theta) = c_0 E_\theta \psi \cdot 1[\theta = \theta_0] + (1 - E_\theta \psi) \cdot 1[\theta = \theta_1]$$

for some constant $c_0 > 0$.

2. Neyman-Pearson’s approach (“bi-criteria”). First define

$$\Psi_\alpha = \{\psi : E_{\theta_0} \psi \leq \alpha\}$$

to be all tests that have type-I error controlled by some constant $\alpha \in (0, 1)$. The risk of a test $\psi \in \Psi_\alpha$ is then defined as

$$R_\alpha(\psi) = E_{\theta_1} [1 - \psi].$$
The following lemma (usually referred to as *Neyman-Pearson lemma*) asserts that the optimal test for both risk formulations are likelihood ratio tests.

Lemma 9.2 (Neyman-Pearson) *For both risk formulations the optimal test \(\psi^* \) takes the form*

\[
\psi^*(X) = \begin{cases}
1, & \text{if } p_1(X)/p_0(X) \geq c; \\
0, & \text{otherwise.}
\end{cases}
\]

Here we assumed that \(p_1(X)/p_0(X) = c \) with probability zero. Note that for risk formulation 1, set \(c = c_0 \) and for risk formulation 2, set \(c \) such that \(E_{\theta_0} \psi^ = \alpha \).*

The two risk formulations can also be generalized to the composite hypothesis case:

1. For the first formulation, define
 \[
 R(\psi, \Theta_0, \Theta_1) = c_0 \cdot \sup_{\theta_0 \in \Theta_0} E_{\theta_0} \psi + \sup_{\theta_1 \in \Theta_1} E_{\theta_1}[1 - \psi]
 \]
 for some constant \(c_0 > 0 \).

2. For the second formulation with constant \(\alpha \in (0,1) \), define
 \[
 R_\alpha(\psi, \Theta_0, \Theta_1) = \sup_{\theta_1 \in \Theta_1} E_{\theta_1}[1 - \psi]
 \]
 for those \(\psi \in \Psi_\alpha = \{ \psi : \sup_{\theta_0 \in \Theta_0} E_{\theta_0}[\psi] \leq \alpha \} \).

9.3 Minimax test (minimax detection)

Definition 9.3 (minimax test) *A test \(\psi^M \) is minimax optimal if*

\[
R(\psi^M, \Theta_0, \Theta_1) = \inf_{\psi} R(\psi, \Theta_0, \Theta_1)
\]

for the first formulation or

\[
R_\alpha(\psi^M, \Theta_0, \Theta_1) = \inf_{\psi \in \Psi_\alpha} R_\alpha(\psi, \Theta_0, \Theta_1).
\]

Under regularity conditions, one can show that

1. The minimax risk of \(R(\psi, \Theta_0, \Theta_1) \) is
 \[
 \sup_{p_0, p_1} \{ 1 - \|p_0 - p_1\|_1; p_0 \in \text{conv}(P_0), p_1 \in \text{conv}(P_1) \}
 \]
 and the minimax test is achieved by a Bayes test. Here \(\text{conv}(\cdot) \) is the convex hull of a distribution class.

2. The minimax risk of \(R_\alpha(\psi, \Theta_0, \Theta_1) \) is
 \[
 \sup_{p_0, p_1} \left\{ \inf_{\psi \in \Psi_\alpha} E_{P_1}[1 - \psi]; p_0 \in \text{conv}(P_0), p_1 \in \text{conv}(P_1) \right\}.
 \]
We next consider an example of high-dimensional minimax detection. Consider \(\Theta_0 = \{ \theta_0 \} \) and \(\Theta_1 \subseteq \mathbb{R}^d \). Typically we assume \(\theta_0 = 0 \) is the zero vector and \(\Theta_1(n,d) \) changes with \(n \) (the number of samples) and \(d \) (the number of variables). The risk of a testing function is defined as

\[
R(\psi; \Theta_0, \Theta_1) = E_{\theta_0} \psi + \sup_{\theta \in \Theta_1} E_{\theta_1}[1 - \psi],
\]
or under a Bayesian formulation

\[
R(\psi; \Theta_0, \Theta_1) = E_{\theta_0} \psi + \int_{\Theta_1} E_{\theta_1}[1 - \psi] d\pi(\theta_1)
\]

with respect to some prior distribution \(\pi \) over \(\Theta_1 \). Under the high-dimensional testing scenario, we usually adopt the following definition of asymptotic power to quantify the power of a test \(\psi \):

Definition 9.4 (asymptotic power) A test \(\psi \) is asymptotically powerful if

\[
\lim_{n \to \infty} R(\psi; \Theta_0(n,d), \Theta_1(n,d)) = 0.
\]

On the other hand, \(\psi \) is asymptotically powerless if

\[
\lim \inf_{n \to \infty} R(\psi; \Theta_0(n,d), \Theta_1(n,d)) = 1.
\]

Let’s now consider the example of high-dimensional normal mean testing problem. We have

\[
H_0 : \mathcal{N}(0, I), \quad H_1 : \mathcal{N}(\theta, I),
\]

where \(\theta \in \Theta_1(n,d) = \{ \theta \in \mathbb{R}^d : \|\theta\|_2 \geq r_{n,d} \} \). The goal is to find the fastest rate of \(r_{n,d} \) going to zero while still making the test asymptotically powerful. As a perhaps simpler example, consider low-dimensional linear regression

\[
H_0 : \beta = 0, \quad H_1 : \beta \neq 0.
\]

For fixed design \(X \in \mathbb{R}^{n \times d} \), a natural test is to consider \(\|XX^\dagger y\|_2^2 \). Under \(H_0 \) we have

\[
\|XX^\dagger y\|_2^2 \sim \chi_{\min(n,d)}^2.
\]

Therefore, the test is powerless if

\[
\frac{\|X\beta\|_2^2}{\sqrt{\min(n,d)}} \to 0.
\]