Department of Statistics Unitmark
Dietrich College of Humanities and Social Sciences

Statistical Machine Learning

There are currently no projects for this area of research.

A unified framework for constructing, tuning and assessing photometric redshift density estimates in a selection bias setting

Photometric redshift estimation is an indispensable tool of precision cosmology. One problem that plagues the use of this tool in the era of large-scale sky surveys is that the bright galaxies that are selected for spectroscopic observation do not have properties that match those of (far more numerous) dimmer galaxies; thus, ill-designed empirical methods that produce accurate and precise redshift estimates for the former generally will not produce good estimates for the latter. In this paper, we provide a principled framework for generating conditional density estimates (i.e. photometric redshift PDFs) that takes into account selection bias and the covariate shift that this bias induces. We base our approach on the assumption that the probability that astronomers label a galaxy (i.e. determine its spectroscopic redshift) depends only on its measured (photometric and perhaps other) properties x and not on its true redshift. With this assumption, we can explicitly write down risk functions that allow us to both tune and compare methods for estimating importance weights (i.e. the ratio of densities of unlabeled and labeled galaxies for different values of x) and conditional densities. We also provide a method for combining multiple conditional density estimates for the same galaxy into a single estimate with better properties. We apply our risk functions to an analysis of approximately one million galaxies, mostly observed by SDSS, and demonstrate through multiple diagnostic tests that our method achieves good conditional density estimates for the unlabeled galaxies.

New image statistics for detecting disturbed galaxy morphologies at high redshift

Testing theories of hierarchical structure formation requires estimating the distribution of galaxy morphologies and its change with redshift. One aspect of this investigation involves identifying galaxies with disturbed morphologies (e.g. merging galaxies). This is often done by summarizing galaxy images using, e.g. the concentration, asymmetry and clumpiness and Gini-M20 statistics of Conselice and Lotz et al., respectively, and associating particular statistic values with disturbance. We introduce three statistics that enhance detection of disturbed morphologies at high redshift (z ˜ 2): the multimode (M), intensity (I) and deviation (D) statistics. We show their effectiveness by training a machine-learning classifier, random forest, using 1639 galaxies observed in the H band by the Hubble Space Telescope WFC3, galaxies that had been previously classified by eye by the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey collaboration. We find that the MID statistics (and the A statistic of Conselice) are the most useful for identifying disturbed morphologies.

We also explore whether human annotators are useful for identifying disturbed morphologies. We demonstrate that they show limited ability to detect disturbance at high redshift, and that increasing their number beyond ≈10 does not provably yield better classification performance. We propose a simulation-based model-fitting algorithm that mitigates these issues by bypassing annotation.

Semi-supervised learning for photometric supernova classification

We present a semi-supervised method for photometric supernova typing. Our approach is to first use the non-linear dimension reduction technique diffusion map to detect structure in a data base of supernova light curves and subsequently employ random forest classification on a spectroscopically confirmed training set to learn a model that can predict the type of each newly observed supernova. We demonstrate that this is an effective method for supernova typing. As supernova numbers increase, our semi-supervised method efficiently utilizes this information to improve classification, a property not enjoyed by template-based methods. Applied to supernova data simulated by Kessler et al. to mimic those of the Dark Energy Survey, our methods achieve (cross-validated) 95 per cent Type Ia purity and 87 per cent Type Ia efficiency on the spectroscopic sample, but only 50 per cent Type Ia purity and 50 per cent efficiency on the photometric sample due to their spectroscopic follow-up strategy. To improve the performance on the photometric sample, we search for better spectroscopic follow-up procedures by studying the sensitivity of our machine-learned supernova classification on the specific strategy used to obtain training sets. With a fixed amount of spectroscopic follow-up time, we find that, despite collecting data on a smaller number of supernovae, deeper magnitude-limited spectroscopic surveys are better for producing training sets. For supernova Ia (II-P) typing, we obtain a 44 per cent (1 per cent) increase in purity to 72 per cent (87 per cent) and 30 per cent (162 per cent) increase in efficiency to 65 per cent (84 per cent) of the sample using a 25th (24.5th) magnitude-limited survey instead of the shallower spectroscopic sample used in the original simulations. When redshift information is available, we incorporate it into our analysis using a novel method of altering the diffusion map representation of the supernovae. Incorporating host redshifts leads to a 5 per cent improvement in Type Ia purity and 13 per cent improvement in Type Ia efficiency.