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Chapter 27

Nonparametric Bayesian Methods

.

Most of this book emphasizes frequentist methods, especially for nonparamet-
ric problems. However, there are Bayesian approaches to many nonparametric
problems. In this chapter we present some of the most commonly used nonpara-
metric Bayesian methods. These methods place priors on infinite dimensional
spaces. The priors are based on certain stochastic processes called Dirichlet
processes and Gaussian processes. In many cases, we cannot write down ex-
plicit formulas for the priors. Instead, we give explicit algorithms for drawing
from the prior and the posterior.

27.1 What is Nonparametric Bayes?

In parametric Bayesian inference we have a model M = {f(y | ✓) : ✓ 2 ⇥} and data
Y
1

, . . . , Yn ⇠ f(y | ✓). We put a prior distribution ⇡(✓) on the parameter ✓ and compute the
posterior distribution using Bayes’ rule:

⇡(✓ |Y ) =

Ln(✓)⇡(✓)

m(Y )

(27.1)

where Y = (Y
1

, . . . , Yn), Ln(✓) =
Q

i f(Yi | ✓) is the likelihood function and

m(y) = m(y
1

, . . . , yn) =

Z

f(y
1

, . . . , yn|✓)⇡(✓)d✓ =

Z n
Y

i=1

f(yi|✓)⇡(✓)d✓

is the marginal distribution for the data induced by the prior and the model. We call m the
induced marginal. The model may be summarized as:

✓ ⇠ ⇡

Y
1

, . . . , Yn|✓ ⇠ f(y|✓).
633
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We use the posterior to compute a point estimator such as the posterior mean of ✓. We
can also summarize the posterior by drawing a large sample ✓

1

, . . . , ✓N from the posterior
⇡(✓ |Y ) and the plotting the samples.

In nonparametric Bayesian inference, we replace the finite dimensional model {f(y | ✓) :
✓ 2 ⇥} with an infinite dimensional model such as

F =

⇢

f :

Z

(f 00
(y))2dy < 1

�

(27.2)

Typically, neither the prior nor the posterior have a density function with respect to a dom-
inating measure. But the posterior is still well defined. On the other hand, if there is a
dominating measure for a set of densities F then the posterior can be found by Bayes theo-
rem:

⇡n(A) ⌘ P(f 2 A |Y ) =

R

A Ln(f)d⇡(f)
R

F Ln(f)d⇡(f)
(27.3)

where A ⇢ F , Ln(f) =
Q

i f(Yi) is the likelihood function and ⇡ is a prior on F . If there
is no dominating measure for F then the posterior stull exists but cannot be obtained by
simply applying Bayes’ theorem. An estimate of f is the posterior mean

bf(y) =

Z

f(y)d⇡n(f). (27.4)

A posterior 1� ↵ region is any set A such that ⇡n(A) = 1� ↵.
Several questions arise:

1. How do we construct a prior ⇡ on an infinite dimensional set F?

2. How do we compute the posterior? How do we draw random samples from the
posterior?

3. What are the properties of the posterior?

The answers to the third question are subtle. In finite dimensional models, the inferences
provided by Bayesian methods usually are similar to the inferences provided by frequen-
tist methods. Hence, Bayesian methods inherit many properties of frequentist methods:
consistency, optimal rates of convergence, frequency coverage of interval estimates etc. In
infinite dimensional models, this is no longer true. The inferences provided by Bayesian
methods do not necessarily coincide with frequentist methods and they do not necessarily
have properties like consistency, optimal rates of convergence, or coverage guarantees.

27.2 Distributions on Infinite Dimensional Spaces

To use nonparametric Bayesian inference, we will need to put a prior ⇡ on an infinite dimen-
sional space. For example, suppose we observe X

1

, . . . , Xn ⇠ F where F is an unknown
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distribution. We will put a prior ⇡ on the set of all distributions F . In many cases, we
cannot explicitly write down a formula for ⇡ as we can in a parametric model. This leads
to the following problem: how we we describe a distribution ⇡ on an infinite dimensional
space? One way to describe such a distribution is to give an explicit algorithm for drawing
from the distribution ⇡. In a certain sense, “knowing how to draw from ⇡” takes the place
of “having a formual for ⇡.”

The Bayesian model can be written as

F ⇠ ⇡

X
1

, . . . , Xn|F ⇠ F.

The model and the prior induce a marginal distribution m for (X
1

, . . . , Xn),

m(A) =

Z

PF (A)d⇡(F )

where

PF (A) =

Z

IA(x1, . . . , xn)dF (x
1

) · · · dF (xn).

We call m the induced marginal. Another aspect of describing our Bayesian model will be
to give an algorithm for drawing X = (X

1

, . . . , Xn) from m.
After we observe the data X = (X

1

, . . . , Xn), we are interested in the posterior distri-
bution

⇡n(A) ⌘ ⇡(F 2 A|X
1

, . . . , Xn). (27.5)

Once again, we will describe the posterior by giving an algorithm for drawing randonly
from it.

To summarize: in some nonparametric Bayesian models, we describe the prior distribu-
tion by giving an algorithm for sampling from the prior ⇡, the marginal m and the posterior
⇡n.

27.3 Four Nonparametric Problems

We will focus on four specific problems. The four problems and their most common fre-
quentist and Bayesian solutions are:

Statistical Problem Frequentist Approach Bayesian Approach
Estimating a cdf empirical cdf Dirichlet process
Estimating a density kernel smoother Dirichlet process mixture
Estimating a regression function kernel smoother Gaussian process
Estimating several sparse multinomials empirical Bayes hierarchical Dirichlet process mixture
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27.4 Estimating a cdf

Let X
1

, . . . , Xn be a sample from an unknown cdf (cumulative distribution function) F
where Xi 2 R. The usual frequentist estimate of F is the empirical distribution function

Fn(x) =
1

n

n
X

i=1

I(Xi  x). (27.6)

Recall from equation (6.46) of Chapter 6 that for every ✏ > 0 and every F ,

PF

⇣

sup

x
|Fn(x)� F (x)| > ✏

⌘

 2e�2n✏2 . (27.7)

Setting ✏n =

q

1

2n log

�

2

↵

�

we have

inf

F
PF

 

Fn(x)� ✏n  F (x)  Fn(x) + ✏n for all x

!

� 1� ↵ (27.8)

where the infimum is over all cdf’s F . Thus,
�

Fn(x)�✏n, Fn(x)+✏n
�

is a 1�↵ confidence
band for F .

To estimate F from a Bayesian perspective we put a prior ⇡ on the set of all cdf’s F
and then we compute the posterior distribution on F given X = (X

1

, . . . , Xn). The most
commonly used prior is the Dirichlet process prior which was invented by the statistician
Thomas Ferguson in 1973.

The distribution ⇡ has two parameters, F
0

and ↵ and is denoted by DP(↵, F
0

). The
parameter F

0

is a distribution function and should be thought of as a prior guess at F . The
number ↵ controls how tightly concentrated the prior is around F

0

. The model may be
summarized as:

F ⇠ ⇡

X
1

, . . . , Xn|F ⇠ F

where ⇡ = DP(↵, F
0

).

How to Draw From the Prior. To draw a single random distribution F from Dir(↵, F
0

)

we do the following steps:

1. Draw s
1

, s
2

, . . . independently from F
0

.

2. Draw V
1

, V
2

, . . . ⇠ Beta(1,↵).

3. Let w
1

= V
1

and wj = Vj
Qj�1

i=1

(1� Vi) for j = 2, 3, . . ..

4. Let F be the discrete distribution that puts mass wj at sj , that is, F =

P1
j=1

wj�s
j

where �s
j

is a point mass at sj .
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V1 V2(1 −V1)
w1 w2

…

…

Figure 27.1. The stick breaking process shows how the weights w
1

, w
2

, . . . from the Dirichlet pro-
cess are constructed. First we draw V

1

, V
2

, . . . ⇠ Beta(1,↵). Then we set w
1

= V
1

, w
2

=

V
2

(1� V
1

), w
3

= V
3

(1� V
1

)(1� V
2

), . . ..

Figure 27.2. The Chinese restaurant process. A new person arrives and either sits at a table with
people or sits at a new table. The probability of sitting at a table is proportional to the number of
people at the table.

It is clear from this description that F is discrete with probability one. The construction
of the weights w

1

, w
2

, . . . is often called the stick breaking process. Imagine we have a stick
of unit length. Then w

1

is is obtained by breaking the stick a the random point V
1

. The stick
now has length 1�V

1

. The second weight w
2

is obtained by breaking a proportion V
2

from
the remaining stick. The process continues and generates the whole sequence of weights
w
1

, w
2

, . . .. See Figure 27.1. It can be shown that if F ⇠ Dir(↵, F
0

) then the mean is
E(F ) = F

0

.

You might wonder why this distribution is called a Dirichlet process. The reason is this.
Recall that a random vector P = (P

1

, . . . , Pk) has a Dirichlet distribution with parameters
(↵, g

1

, . . . , gk) (with
P

j gj = 1) if the distribution of P has density

f(p
1

, . . . , pk) =
�(↵)

Qk
j=1

�(↵gj)

k
Y

j=1

p
↵g

j

�1

j

over the simplex {p = (p
1

, . . . , pk) : pj � 0,
P

j pj = 1}. Let (A
1

, . . . , Ak) be any
partition of R and let F ⇠ DP(↵, F

0

) be a random draw from the Dirichlet process. Let
F (Aj) be the amount of mass that F puts on the set Aj . Then (F (A

1

), . . . , F (Ak)) has
a Dirichlet distribution with parameters (↵, F

0

(A
1

), . . . , F
0

(Ak)). In fact, this property
characterizes the Dirichlet process.

How to Sample From the Marginal. One way is to draw from the induced marginal m is
to sample F ⇠ ⇡ (as described above) and then draw X

1

, . . . , Xn from F . But there is an
alternative method, called the Chinese Restaurant Process or infinite Pólya urn (Blackwell
and MacQueen, 1973). The algorithm is as follows.

1. Draw X
1

⇠ F
0

.

2. For i = 2, . . . , n: draw

Xi|X1

, . . . Xi�1

=

⇢

X ⇠ Fi�1

with probability

i�1

i+↵�1

X ⇠ F
0

with probability

↵
i+↵�1

where Fi�1

is the empirical distribution of X
1

, . . . Xi�1

.

The sample X
1

, . . . , Xn is likely to have ties since F is discrete. Let X⇤
1

, X⇤
2

, . . . denote
the unique values of X

1

, . . . , Xn. Define cluster assignment variables c
1

, . . . , cn where
ci = j means that Xi takes the value X⇤

j . Let nj = |{i : cj = j}|. Then we can write

Xn =

⇢

X⇤
j with probability

n
j

n+↵�1

X ⇠ F
0

with probability

↵
n+↵�1

.

In the metaphor of the Chinese restaurant process, when the nth customer walks into the
restaurant, he sits at table j with probability nj/(n + ↵ � 1), and occupies a new table
with probability ↵/(n + ↵ � 1). The jth table is associated with a “dish” X⇤

j ⇠ F
0

.
Since the process is exchangeable, it induces (by ignoring X⇤

j ) a partition over the integers
{1, . . . , n}, which corresponds to a clustering of the indices. See Figure 27.2.

How to Sample From the Posterior. Now suppose that X
1

, . . . , Xn ⇠ F and that we
place a Dir(↵, F

0

) prior on F .

27.9 Theorem. Let X
1

, . . . , Xn ⇠ F and let F have prior ⇡ = Dir(↵, F
0

). Then the
posterior ⇡ for F given X

1

, . . . , Xn is Dir

�

↵+ n, Fn
�

where

Fn =

n

n+ ↵
Fn +

↵

n+ ↵
F
0

. (27.10)

Since the posterior is again a Dirichlet process, we can sample from it as we did the
prior but we replace ↵ with ↵ + n and we replace F

0

with Fn. Thus the posterior mean is
Fn is a convex combination of the empirical distribution and the prior guess F

0

. Also, the
predictive distribution for a new observation Xn+1

is given by Fn.
To explore the posterior distribution, we could draw many random distribution functions

from the posterior. We could then numerically construct two functions Ln and Un such that

⇡
�

Ln(x)  F (x)  Un(x) for all x|X1

, . . . , Xn
�

= 1� ↵.

This is a 1� ↵ Bayesian confidence band for F . Keep in mind that this is not a frequentist
confidence band. It does not guarantee that

inf

F
PF (Ln(x)  F (x)  Un(x) for all x) = 1� ↵.

When n is large, Fn ⇡ Fn in which case there is little difference between the Bayesian and
frequentist approach. The advantage of the frequentist approach is that it does not require
specifiying ↵ or F

0

.
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Figure 27.3. The top left plot shows the discrete probabilty function resulting from a single draw
from the prior which is a DP(↵, F

0

) with ↵ = 10 and F
0

= N(0, 1). The top right plot shows the
resulting cdf along with F

0

. The bottom left plot shows a few draws from the posterior based on
n = 25 observations from a N(5,1) distribution. The blue line is the posterior mean and the red
line is the true F . The posterior is biased because of the prior. The bottom right plot shows the
empirical distribution function (solid black) the true F (red) the Bayesian postrior mean (blue) and
a 95 percnt frequentist confidence band.

27.11 Example. Figure 27.3 shows a simple example. The prior is DP(↵, F
0

) with ↵ = 10

and F
0

= N(0, 1). The top left plot shows the discrete probabilty function resulting from
a single draw from the prior. The top right plot shows the resulting cdf along with F

0

.
The bottom left plot shows a few draws from the posterior based on n = 25 observations
from a N(5,1) distribution. The blue line is the posterior mean and the red line is the true
F . The posterior is biased because of the prior. The bottom right plot shows the empirical
distribution function (solid black) the true F (red) the Bayesian postrior mean (blue) and a
95 percnt frequentist confidence band. 2

27.5 Density Estimation

Let X
1

, . . . , Xn ⇠ F where F has density f and Xi 2 R. Our goal is to estimate f . The
Dirichlet process is not a useful prior for this problem since it produces discrete distributions
which do not even have densities. Instead, we use a modification of the Dirichlet process.
But first, let us review the frequentist approach.
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The most common frequentist estimator is the kernel estimator

bf(x) =
1

n

n
X

i=1

1

h
K

✓

x�Xi

h

◆

where K is a kernel and h is the bandwidth. A related method for estimating a density is to
use a mixture model

f(x) =
k
X

j=1

wjf(x; ✓j).

For example, of f(x; ✓) is Normal then ✓ = (µ,�). The kernel estimator can be thought
of as a mixture with n components. In the Bayesian approach we would put a prior on
✓
1

, . . . , ✓k, on w
1

, . . . , wk and a prior on k. We could be more ambitious and use an infinite
mixture

f(x) =
1
X

j=1

wjf(x; ✓j).

As a prior for the parameters we could take ✓
1

, ✓
2

, . . . to be drawn from some F
0

and
we could take w

1

, w
2

, . . . , to be drawn from the stick breaking prior. (F
0

typically has
parameters that require further priors.) This infinite mixture model is known as the Dirichlet
process mixture model. This infinite mixture is the same as the random distribution F ⇠
DP(↵, F

0

) which had the form F =

P1
j=1

wj�✓
j

except that the point mass distributions
�✓

j

are replaced by smooth densities f(x|✓j).
The model may be re-expressed as:

F ⇠ DP(↵, F
0

) (27.12)

✓
1

, . . . , ✓n|F ⇠ F (27.13)

Xi|✓i ⇠ f(x|✓i), i = 1, . . . , n. (27.14)

(In practice, F
0

itself has free parameters which also require priors.) Note that in the DPM,
the parameters ✓i of the mixture are sampled from a Dirichlet process. The data Xi are not
sampled from a Dirichlet process. Because F is sampled from from a Dirichlet process,
it will be discrete. Hence there will be ties among the ✓i’s. (Recall our erlier discussion
of the Chinese Restaurant Process.) The k < n distinct values of ✓i can be thought of
as defining clusters. The beauty of this model is that the discreteness of F automatically
creates a clustering of the ✓j’s. In other words, we have implicitly created a prior on k, the
number of distinct ✓j’s.

How to Sample From the Prior. Draw ✓
1

, ✓
2

, . . . , F
0

and draw w
1

, w
2

, . . . , from the
stsick breaking process. Set f(x) =

P1
j=1

wjf(x; ✓j). The density f is a random draw
from the prior. We could repeat this process many times resulting in many randomly drawn
densities from the prior. Plotting these densities could give some intuition about the struc-
ture of the prior.
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Figure 27.4. Samples from a Dirichlet process mixture model with Gaussian generator, n = 500.

How to Sample From the Prior Marginal. The prior marginal m is

m(x
1

, x
2

, . . . , xn) =

Z n
Y

i=1

f(xi |F ) d⇡(F ) (27.15)

=

Z n
Y

i=1

✓

Z

f(xi | ✓) p(✓ |F ) dF (✓)

◆

dP (G) (27.16)

If we wnat to draw a sample from m, we first draw F from a Dirichlet process with param-
eters ↵ and F

0

, and then generate ✓i independently from this realization. Then we sample
Xi ⇠ f(x|✓i).

As before, we can also use the Chinese restaurant representation to draw the ✓j’s se-
quentially. Given ✓

1

, . . . , ✓i�1

we draw ✓j from

↵F
0

(·) +
n�1

X

i=1

�✓
i

(·). (27.17)

Let ✓⇤j denote the unique values among the ✓i, with nj denoting the number of elements
in the cluster for parameter ✓⇤i ; that is, if c

1

, c
2

, . . . , cn�1

denote the cluster assignments
✓i = ✓⇤c

i

then nj = |{i : ci = j}|. Then we can write

✓n =

(

✓⇤j with probability n
j

n+↵�1

✓ ⇠ F
0

with probability ↵
n+↵�1

.
(27.18)

How to Sample From the Posterior. We sample from the posterior by Gibbs sampling
(reference to simulation chapter xxxx). Our ultimate goal is to approximate the predictive
distribuiton of a new observation xn+1

:

bf(xn+1

) ⌘ f(xn+1

|x
1

, . . . , xn).
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This density is our Bayesian density estimator.
The Gibbs sampler for the DP mixture is straightforward in the case where the base

distribution F
0

is conjugate to the data model f(x | ✓). Recall that if f(x | ✓) is in the
exponential family it can be written in the (canonical) natural parameterization as

f(x | ✓) = h(x) exp
�

✓Tx� a(✓)
�

(27.19)

The conjugate prior for this model takes the form

p(✓ |� = {�
1

,�
2

}) = g(✓) exp
�

�T
1

✓ � �
2

a(✓)� b(�
1

,�
2

)

�

(27.20)

Here a(✓) is the moment generating function (log normalizing constant) for the original
model, and b(�) is the moment generating function for the prior. The parameter of the prior
has two parts, corresponding to the two components of the vector of sufficient statistics
(✓,�a(✓)). The parameter �

1

has the same dimension as the parameter ✓ of the model, and
�
2

is a scalar. To verify conjugacy, note that

p(✓ |x,�) / p(x | ✓) p(✓ |�) (27.21)

/ h(x) exp(✓Tx� a(✓))g(✓) exp(�T
1

✓ � �
2

a(✓)� b(�
1

,�
2

)) (27.22)

/ g(✓) exp((x+ �
1

)

T ✓ � (�
2

+ 1)a(✓)) (27.23)

The factor h(x) drops out in the normalization. Thus, the parameters of the posterior are
� = (�

1

+ x,�
2

+ 1).

27.24 Example. Take p(· |µ) be normal with known variance. Thus,

p(x |µ) =

1p
2⇡�

exp

✓

�(x� µ)2

2�2

◆

(27.25)

=

1p
2⇡�

exp

✓

� x2

2�2

◆

| {z }

h(x)

exp

✓

xµ

�2

� µ2

2�2

◆

(27.26)

Let ⌫ =

µ
�2 be the natural parameter. Then

p(x | ⌫) =

1p
2⇡�

exp

✓

� x2

2�2

◆

| {z }

h(x)

exp

✓

x⌫ � ⌫2�2

2

◆

(27.27)

Thus, a(⌫) = ⌫2�2/2. The conjugate prior then takes the form

p(µ |�
1

,�
2

) = g(µ) exp

✓

�
1

µ� �
2

µ2�2

2

� b(�
1

,�
2

)

◆

(27.28)

where b(�
1

,�
2

) is chosen so that the prior integrates to one. 2
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Under conjugacy, the parameters ✓
1

, . . . , ✓n can be integrated out, and the Gibbs sam-
pling is carried out with respect to the cluster assignments c

1

, . . . , cn. Let c�i denote the
vector of the n � 1 cluster assignments for all data points other than i. The Gibbs sam-
pler cycles through indices i according to some schedule, and sets ci = k according to the
conditional probability

p(ci = k |x
1:n, c�i,�) (27.29)

This either assigns ci to one of the existing clusters, or starts a new cluster. By the chain
rule, we can factor this conditional probability as

p(ci = k |x
1:n, c�i,�) = p(ci = k | c�i) p(xi |x�i, c�i, ci = k,�) (27.30)

The class assignment probability p(ci = k | c�i) is governed by the Pólya urn scheme:

p(ci = k | c�i) /
(

# {j : cj = k, j 6= i} if k is an existing cluster
↵ if k is a new cluster

(27.31)

The conditional probability of xi is, by conjugacy, given by

p(xi |x�i, c�i, ci = k,�) = (27.32)

= p(xi | other xj in cluster k, �) (27.33)

=

Z

p(xi | ✓)p(✓ | other xj in cluster k, �) (27.34)

=

exp

⇣

b
⇣

�
1

+

P

j 6=i 1[cj = k]xj + xi, �2

+

P

j 6=i 1[cj = k] + 1

⌘⌘

exp

⇣

b
⇣

�
1

+

P

j 6=i 1[cj = k]xj , �2

+

P

j 6=i 1[cj = k]
⌘⌘ (27.35)

The probability of xi conditioned on the event that it starts a new cluster is

p(xi |F0

) =

Z

p(xi | ✓) dF0

(✓) (27.36)

= exp (b(xi + �
1

,�
1

+ 1)) (27.37)

The algorithm iteratively updates the cluster assignments in this manner, until convergence.
After appropriate convergence has been determined, the approximation procedure is

to collect a set of partitions c(b), for b = 1, . . . , B. The predictive distribution is then
approximated as

p(xn+1

|x
1:n,�,↵, F0

) ⇡ 1

B

B
X

b=1

p(xn+1

| c(b)
1:n, x1:n,�,↵, F0

) (27.38)

where the probabilities are computed just as in the Gibbs sampling procedure, as described
above.
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If the base measure F
0

is not conjugate, MCMC is significantly more complicated and
problematic in high dimensions. See Neal (2000) for a discussion of MCMC algorithms for
this case.

The Mean Field Approximation. An alternative to sampling is to use an approximation.
Recall that in the mean field variational approximation, we treat all of the variables as
independent, and assume a fully factorized variational approximation q. The strategy is
then to maximize the lower bound on the data likelihood, or equivalently to minimize the
KL divergence D(q k p) with respect to the variational parameters that determine q.

In this setting, the variables we are integrating over are ✓⇤j and Vj , for the infinite
sequence j = 1, 2, . . . , together with the mixture component indicator variables Zi, for
i = 1, 2, . . . , n. Since it is of course not possible to implement an infinite model explic-
itly, we take a finite variational approximation that corresponds to breaking the stick into T
pieces. Thus, we take

q(V
1:T , ✓

⇤
1:T , Z1:n) =

T�1

Y

t=1

q�
t

(Vt)

T
Y

t=1

q⌧
t

(✓⇤t )
n
Y

i=1

q�
i

(Zi) (27.39)

where each factor has its own variational parameter. Each q�
t

is a beta distribution, each q⌧
t

is a conjugate distribution over ✓⇤t , and each q�
i

is a (T � 1)-dimensional multinomial dis-
tribution. Note that while there are T mixture components in the variational approximation,
the model itself is not truncated.

Let � denote the parameters of the conjugate distribution F
0

, as we did above for the
Gibbs sampler. According to the standard variational procedure, we then bound the log
marginal probability of the data from below as

log p(x
1:n |↵,�) � (27.40)

Eq[log p(V |↵)] + Eq[log p(✓
⇤ |�)] +

n
X

i=1

�

Eq[log ⇡Z
i

] + Eq[log p(xi | ✓⇤Z
i

)]

�

+

T�1

X

t=1

H(q�
t

) +

T
X

t=1

H(q⌧
t

) +

n
X

i=1

H(q�
i

) (27.41)

where H denotes entropy. For details on a coordinate ascent algorithm to optimize this
lower bound as a function of the variational parameters, see (Blei and Jordan, 2005).

To estimate the predictive distribution, note first that the true predictive distribution
under the stick breaking representation is given by

p(xn+1

|x
1:n,↵,�) =

Z 1
X

t=1

⇡t(v) p(xn+1

| ✓⇤t ) dP (v, ✓⇤ |x,�,↵) (27.42)

We approximate this by replacing the true stick breaking distribution with the variational
distribution. Since, under the variational approximation, the mixture is truncated and the V
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and ✓⇤ variables are conditionally independent, the approximated predictive distribution is
thus

p(xn+1

|x
1:n,↵,�) ⇡

T
X

t=1

Eq[⇡t(V )]Eq(p(xn+1

| ✓⇤t )). (27.43)

27.5.1 A Detailed Implementation

To understand better how to use the model, we consider how to use the DPM for estimating
density using a mixture of Normals. There are numerous implementations. We consider the
one in Ishwaran and James (2002), because it is very clear and explicit.

The first step is to replace the infinite mixture with a large but finite mixture. Thus we
replace the stick-breaking process with V

1

, . . . , VN�1

⇠ Beta(1,↵) and w
1

= V
1

, w
2

=

V
2

(1� V
1

), . . .. This generates w
1

, . . . , wN which sum to 1. Replacing the infinite mixture
with the finite mixture is a numerical trick not an inferential step and has little numerical
effect as long as N is large. For example, they show tha when n = 1, 000 it suffices to use
N = 50. A full specification of the resulting model, including priors on the hyperparame-
ters is:

✓ ⇠ N(0, A)

↵ ⇠ Gamma(⌘
1

, ⌘
2

)

µ
1

, . . . , µN ⇠ N(✓, B2

)

1

�2

1

, . . . ,
1

�2

N

⇠ Gamma(⌫
1

, ⌫
2

)

K
1

, . . . ,Kn ⇠
N
X

j=1

wj�j

Xi ⇠ N(µi,�
2

i ) i = 1, . . . , n

The hyperparemeters A,B, �
1

, �
2

, ⌫
1

, ⌫
2

still need to be set. Compare this to kernel density
estimation whihc requires the single bandwidth h. Ishwaran and James (2002) use A =

1000, ⌫
1

= ⌫
2

= ⌘
1

= ⌘
2

= 2 and they take B to be 4 ties the standard deviation of the
data.

It is now possible to wite down a Gibbs sampling algorithm for sampling from the prior;
see Ishwaran and James (2002) for details. The authors apply the method to the problem
of estimating the density of thicknesses of stamps issued in Mexico between 1872-1874.
The final Bayeian density estimator is similar to the kernel density estimator. Of curse, this
raises the question of whether the Bayesian method is worth all the extra effort.

27.6 Nonparametric Regression

Consider the nonparametric regression model

Yi = m(Xi) + ✏i, i = 1, . . . , n (27.44)
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where E(✏i) = 0. The frequentist kernel estimator for m is

bm(x) =

Pn
i=1

Yi K
⇣ ||x�X

i

||
h

⌘

Pn
i=1

K
⇣ ||x�X

i

||
h

⌘ (27.45)

where K is a kernel and h is a bandwidth. The Bayesian version requires a prior ⇡ on the
set of regression functions M. A common choice is the Gaussian process prior.

A stochastic process m(x) indexed by x 2 X ⇢ Rd is a Gaussian process if for each
x
1

, . . . , xn 2 X the vector (m(x
1

),m(x
2

), . . . ,m(xn)) is Normally distributed:

(m(x
1

),m(x
2

), . . . ,m(xn)) ⇠ N(µ(x),K(x)) (27.46)

where Kij(x) = K(xi, xj) is a Mercer kernel (reference xxxx).
Let’s assume that µ = 0. Then for given x

1

, x
2

, . . . , xn the density of the Gaussian
process prior of m = (m(x

1

), . . . ,m(xn)) is

⇡(m) = (2⇡)�n/2|K|�1/2
exp

✓

�1

2

mTK�1m

◆

(27.47)

Under the change of variables m = K↵, we have that ↵ ⇠ N(0,K�1

) and thus

⇡(↵) = (2⇡)�n/2|K|�1/2
exp

✓

�1

2

↵TK↵

◆

(27.48)

Under the additive Gaussian noise model, we observe Yi = m(xi)+✏i where ✏i ⇠ N(0,�2

).
Thus, the log-likelihood is

log p(y |m) = � 1

2�2

X

i

(yi �m(xi))
2

+ const (27.49)

and the log-posterior is

log p(y |m) + log ⇡(m) = � 1

2�2

ky �K↵k2
2

� 1

2

↵TK↵+ const (27.50)

= � 1

2�2

ky �K↵k2
2

� 1

2

k↵k2K + const (27.51)

What functions have high probability according to the Gaussian process prior? The prior
favors ↵TK�1↵ being small. Suppose we consider an eigenvector v of K, with eigenvalue
�, so that Kv = �v. Then we have that

1

�
= vTK�1v (27.52)

Thus, eigenfunctions with large eigenvalues are favored by the prior. These correspond to
smooth functions; the eigenfunctions that are very wiggly correspond to small eigenvalues.
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In this Bayesian setup, MAP estimation corresponds to Mercer kernel regression, which
regularizes the squared error by the RKHS norm k↵k2K . The posterior mean is

E(↵ |Y ) =

�

K + �2I
��1

Y (27.53)

and thus
bm = E(m |Y ) = K

�

K + �2I
��1

Y. (27.54)

We see that bm is nothing but a linear smoother and is, in fact, very similar to the frequentist
kernel smoother.

Unlike kernel regression, where we just need to choose a bandwidth h, here we need to
choose the function K(x, y). This is a delicate matter; see xxxx.

Now, to compute the predictive distribution for a new point Yn+1

= m(xn+1

) + ✏n+1

,
we note that (Y

1

, . . . , Yn) ⇠ N(0, (K + �2I)↵). Let k be the vector

k = (K(x
1

, xn+1

), . . . ,K(xn, xn+1

)) (27.55)

Then (Y
1

, . . . , Yn+1

) is jointly Gaussian with covariance
✓

K + �2I k
kT k(xn+1

, xn+1

) + �2

◆

(27.56)

Therefore, conditional distribution of Yn+1

is

Yn+1

|Y
1:n, x1:n ⇠ N

�

kT (K + �2I)�1Y, k(xn+1

, xn+1

) + �2 � kT (K + �2I)�1k
�

(27.57)

Note that the above variance differs from the variance estimated using the frequentist method.
However, Bayesian Gaussian process regression and kernel regression ofte lead to similar
results. The advantages of the kernel regression is that it requires a single parameter h
that can be chosen by cross-valdiation and its theoretical properties are simple and well-
understood.

27.7 Estimating Many Multinomials

In many domains, the data naturally fall into groups. In such cases, we may want to model
each group using a mixture model, while sharing the mixing components from group to
group. For instance, text documents are naturally viewed as groups of words. Each docu-
ment might be modeled as being generated from a mixture of topics, where a topic assigns
high probability to words from a particular semantic theme, with the topics shared across
documents—a finance topic might assign high probability to words such as “earnings,”
“dividend,” and “report.” Other examples arise in genetics, where each individual has a
genetic profile exhibiting a pattern of haplotypes, which can be modeled as arising from a
mixture of several ancestral populations.

As we’ve seen, Dirichlet process mixtures enable the use of mixture models with a
potentially infinite number of mixture components, allowing the number of components
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to be selected adaptively from the data. A hierarchical Dirichlet process mixture is an
extension of the Dirichlet process mixture to grouped data, where the mixing components
are shared between groups.

Hierarchical modeling is an important method for “borrowing strength” across different
populations. In Chapter 14 we discussed a simple hierarchical model that allows for differ-
ent disease rates in m different cities, where ni people are selected from the ith city, and we
observe how many people Xi have the disease being studied. We can think of the probabil-
ity ✓i of the disease as a random draw from some distribution G

0

, so that the hierarchical
model can be written as

For each j = 1, . . . ,m : (27.58)

✓j ⇠ G
0

(27.59)

Xj |nj , ✓j ⇠ Binomial(ni, ✓j). (27.60)

It is then of interest to estimate the parameters ✓i for each city, or the overall disease rate
R

✓ d⇡(✓), tasks that can be carried out using Gibbs sampling. This hierarchical model is
shown in Figure 27.6.

To apply such a hierarchical model to grouped data, suppose that F (✓) is a family
of distributions for ✓ 2 ⇥, and G =

P1
i=1

⇡i�✓
i

is a (potentially) infinite mixture of the
distributions {F (✓i)}, where

P

i ⇡i = 1 and ✓i 2 ⇥. We denote sampling from this mixture
as X ⇠ Mix(G,F ), meaning the two-step process

Z |⇡ ⇠ Mult(⇡) (27.61)

X |Z ⇠ F (✓Z). (27.62)

Here’s a first effort at forming a nonparametric Bayesian model for grouped data. For each
group, draw Gj from a Dirichlet process DP(�, H). Then, sample the data within group j
from the mixture model specified by Gj . Thus:
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G0

θ1 θ2 θm

X1 X2 Xm

· · ·

· · ·

Figure 27.6. A hierarchical model. The parameters ✓
i

are sampled conditionally independently from
G

0

, and the observations X
i

are made within the ith group. The hierarchical structure statistically
couples together the groups.

For each j = 1, . . . ,m:

(a) Sample Gj | �, H ⇠ DP(�, H)

(b) For each i = 1, . . . , nj :
Sample Xji |Gj ⇠ Mix(Gj , F ), i = 1 . . . , nj .

This process, however, does not satisfy the goal of statistically tying together the groups:
each Gj is discrete, and for j 6= k, the mixtures Gj and Gk will not share any atoms, with
probability one.

A simple and elegant solution, proposed by Teh et al. (2006), is to add a layer to the
hierarchy, by first sampling G

0

from a Dirichlet process DP(�, H), and then sampling each
Gj from the Dirichlet process DP(↵

0

, G
0

). Drawing G
0

from a Dirichlet process ensures
(with probability one) that it is a discrete measure, and therefore that the discrete mea-
sures Gj ⇠ DP(↵

0

, G
0

) have the opportunity to share atoms. This leads to the following
procedure. The model is shown graphically in Figure 27.7.

Generative process for a hierarchical Dirichlet process mixture:

1. Sample G
0

| �, H ⇠ DP(�, H)

2. For each j = 1, . . . ,m:

(a) Sample Gj |↵0

, G
0

⇠ DP(↵
0

, G
0

)

(b) For each i = 1, . . . , nj :

Sample Xij |Gj ⇠ Mix(Gj , F ), i = 1 . . . , nj .
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Mix(G, F )
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G1 G2 Gm

X1 X2 Xm

DP(γ, H)

DP(α0, G0) DP(α0, G0)

Mix(G1, F ) Mix(Gm, F )

· · ·

· · ·

Figure 27.7. Left: A Dirichlet process mixture. Right: A hierarchical Dirichlet process mixture.
An extra layer is added to the hierarchy to ensure that the mixtures G

j

share atoms, by forcing the
measure G

0

to be discrete.

The hierarchical Dirichlet process can be viewed as a hierarchical K-component mix-
ture model, in the limit as K ! 1, in the following way. Let

✓k |H ⇠ H, k = 1, . . . ,K (27.63)

� | � ⇠ Dir(�/K, . . . , �/K) (27.64)

⇡j |↵0

,� ⇠ Dir(↵
0

�
1

, . . . ,↵
0

�K), j = 1, . . . ,m (27.65)

Xji |⇡j , ✓ ⇠ Mix

 

K
X

k=1

⇡jk�✓
k

, F

!

, i = 1, . . . , nj . (27.66)

The marginal distribution of X converges to the hierarchical Dirichlet process as K ! 1.
This finite version was used for statistical language modeling by MacKay and Peto (1994).

27.7.1 Gibbs Sampling for the HDP

Suppose that the distribution H , which generates models ✓, is conjugate to the data dis-
tribution F ; this allows ✓ to be integrated out, circumventing the need to directly sample
it. In this case, it is possible to derive several efficient Gibbs sampling algorithms for the
hierarchical Dirichlet process mixture. We summarize one such algorithm here; see Teh
et al. (2006) for alternatives and further details.

The Gibbs sampler iteratively samples the variables � = (�
1

,�
2

, . . .), which are the
weights in the stick breaking representation of G

0

, and the variables zj = (zj1, zj2, . . . , zjn
j

)

indicating which mixture component generates the jth data group xj = (xj1, xj2, . . . , xjn
j

).
In addition, note that in the mixture Gj =

P1
k=1

⇡ji�✓
ji

for the jth group, an atom ✓k of
G

0

can appear multiple times. The variable mjk indicates the number of times component
k appears in Gj ; this is also stochastically sampled in the Gibbs sampler. A dot is used
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to denote a marginal count; thus, m·k =

Pm
j=1

mjk is the number of times component k
appears in the mixtures G

1

, . . . , Gm. We denote

nj·k =

n
j

X

i=1

1[zji = k] (27.67)

which is the number of times component k is used in generating group j. These variables
can be given mnemonic interpretations in terms of the “Chinese restaurant franchise” (Teh
et al., 2006), an extension of the Chinese restaurant process metaphor to grouped data.
Finally, the superscript \ji denotes that the ith element of the jth group is held out of a
calculation. In particular,

n\ji
j·k =

X

i0 6=i

1[zji0 = k] (27.68)

Finally, we use the notation

f\ji
k (xji) =

R

f(xji | ✓k)
Q

la 6=ji, z
la

=k f(xla | ✓k)h(✓k) d✓k
R

Q

la 6=ji, z
la

=k f(xla | ✓k)h(✓k) d✓k
(27.69)

to denote the conditional density of xji under component k, given all of the other data
generated from this component. Here f(· | ✓) is the density of F (✓) and h(✓) is the density
of H(✓). Under the conjugacy assumption, the integrals have closed form expressions.

Using this notation, the Gibbs sampler can be expressed as follows. At each point
in the algorithm, a (random) number K of mixture components are active, with weights
�
1

, . . . ,�K satisfying
PK

j=1

�j  1. A weight �u � 0 is left for an as yet “unassigned”
component knew. These weights are updated according to

(�
1

, . . . ,�K ,�u) ⇠ Dir(m·1, . . . ,m·K , �) (27.70)

With � fixed, the latent variable zji for the ith data point in group j is sampled according to

p(zji = k | z\ji,�) =
(

⇣

n\ji
j·k + ↵

0

�k
⌘

f\ji
k (xji) if component k previously used

↵
0

�uf
\ji
knew

(xji) if k = knew.
(27.71)

Finally, the variable mjk is updated according to the conditional distribution

p(mjk = m | z,�) = �(↵
0

�k)

�(↵
0

�k + nj·k)
s(nj·k,m)(↵

0

�k)
m (27.72)

where s(n,m) are unsigned Stirling numbers of the first kind, which count the number
permutations of n elements having m disjoint cycles.
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27.8 The Infinite Hidden Markov Model

27.9 Theoretical Properties of Nonparametric Bayes

In this section we briefly discuss some theoretical properties of nonparametric Bayesian
methods. We will focus on density estimation. In frequentist nonparametric inference,
procedures are required to have certain guarantees such as consistency and minimaxity.
Similar reasoning can be applied to Bayesian procedures. It is desirable, for example, that
the posterior distribution ⇡n has mass that is concentrated near the true density function f .
More specifically, we can ask three specific questions:

1. Is the posterior consistent?

2. Does posterior concentrate at the optimal rate?

3. Does posterior have correct coverage?

27.9.1 Consistency

Let f
0

denote the true density. By consistency we mean that, when f
0

2 A, ⇡n(A) should
converge, in some sense, to 1. According to Doob’s theorem, consistency holds under very
weak conditions.

To state Doob’s theorem we need some notation. The prior ⇡ and the model define a
joint distribution µn on sequences Y n

= (Y
1

, . . . , Yn), namely, for any B 2 Rn,25

µn(Yn 2 B) =

Z

P(Y n 2 B | f)d⇡(f) =
Z

B
f(y

1

) · · · f(yn)d⇡(f). (27.73)

In fact, the model and prior determine a joint distribution µ on the set of infinite sequences26

Y1
= {Y 1

= (y
1

, y
2

, . . . , )}.

27.74 Theorem (Doob 1949). For every measurable A,

µ
⇣

lim

n!1⇡n(A) = I(f
0

2 A)

⌘

= 1. (27.75)

By Doob’s theorem, consistency holds except on a set of probability zero. This sounds
good but it isn’t; consider the following example.

27.76 Example. Let Y
1

, . . . , Yn ⇠ N(✓, 1). Let the prior ⇡ be a point mass at ✓ = 0. Then
the posterior is point mass at ✓ = 0. This posterior is inconsistent on the set N = R� {0}.
This set has probability 0 under the prior so this does not contradict Doob’s theorem. But
clearly the posterior is useless. 2

25 More precisely, for any Borel set B.
26 More precisely, on an appropriate �-field over the set of infinite sequences.
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Doob’s theorem is useless for our purposes because it is solopsistic. The result is with
respect to the Bayesian’s own distribution µ. Instead, we want to say that the posterior is
consistent with respect to P

0

, the distribution generating the data.
To continue, let us define three types of neighborhoods. Let f be a density and let Pf

be the corresponding probability measure. A Kullback-Leibler neighborhood around Pf is

BK(p, ✏) =

(

Pg :

Z

f(x) log

✓

f(x)

g(x)

◆

dx  ✏

)

. (27.77)

A Hellinger neighborhood around Pf is

BH(p, ✏) =

(

Pg :

Z

(

p

f(x)�p
g(x))2  ✏2

)

. (27.78)

A weak neighborhood around Pf is

BW (P, ✏) =

(

Q : dW (P,Q)  ✏

)

(27.79)

where dW is the Prohorov metric

dW (P,Q) = inf

(

✏ > 0 : P (B)  Q(B✏
) + ✏, for all B

)

(27.80)

where B✏
= {x : infy2B kx � yk  ✏}. Weak neighborhoods are indeed very weak: if

Pg 2 BW (Pf , ✏) it does not imply that g resembles f .

27.81 Theorem (Schwartz 1963). If

⇡(BK(f
0

, ✏)) > 0, for all ✏ > 0 (27.82)

then, for any � > 0,
⇡n(BW (P, �))

a.s.! 1 (27.83)

with respect to P
0

.

This is still unsatisfactory since weak neighborhoods are large. Let N(M, ✏) denote
the smallest number of functions f

1

, . . . , fN such that, for each f 2 M, there is a fj such
that f(x)  fj(x) for all x and such that supx(fj(x) � f(x))  ✏. Let H(M, ✏) =

logN(M, ✏).

27.84 Theorem (Barron, Schervish and Wasserman (1999) and Ghosal, Ghosh and
Ramamoorthi (1999)). Suppose that

⇡(BK(f
0

, ✏)) > 0, for all ✏ > 0. (27.85)



27.9. Theoretical Properties of Nonparametric Bayes 653

Further, suppose there exists M
1

,M
2

, . . . such that ⇡(Mc
j)  c

1

e�jc2 and H(Mj , �) 
c
3

j for all large j. Then, for any � > 0,

⇡n(BH(P, �))
a.s.! 1 (27.86)

with respect to P
0

.

27.87 Example. Recall the Normal means model

Yi = ✓i +
1p
n
✏i, i = 1, 2, . . . (27.88)

where ✏i ⇠ N(0,�2

). We want to infer ✓ = (✓
1

, ✓
2

, . . .). Assume that ✓ is contained in the
Sobolev space

✓ 2 ⇥ =

(

✓ :

X

i

✓2i i
2p < 1

)

. (27.89)

Recall that the estimator b✓i = biYi is minimax for this Sobolev space where bi was given in
Chapter ??. In fact the Efromovich-Pinsker estimator is adaptive minimax over the smooth-
ness index p. A simple Bayesian analysis is to use the prior ⇡ that treats each ✓i as indepen-
dent random variables and ✓i ⇠ N(0, ⌧2i ) where ⌧2i = i�2q. Have we really defined a prior
on ⇥? We need to make sure that ⇡(⇥) = 1. Fix K > 0. Then,

⇡
⇣

X

i

✓2i i
2p > K

⌘


P

i E⇡(✓2i )i
2p

K
=

P

i ⌧
2

i i
2p

K
=

P

i
1

i2(q�p)

K
. (27.90)

The numerator is finite as long as q > p + (1/2). Assuming q > p + (1/2) we then see
that ⇡(

P

2

i i
2p > K) ! 0 as K ! 1 which shows that ⇡ puts all its mass on ⇥. But, as

we shall see below, the condition q > p + (1/2) is guaranteed to yield a posterior with a
suboptimal rate of convergence. 2

27.9.2 Rates of Convergence

Here the situation is more complicated. Recall the Normal means model

Yi = ✓i +
1p
n
✏i, i = 1, 2, . . . (27.91)

where ✏i ⇠ N(0,�2

). We want to infer ✓ = (✓
1

, ✓
2

, . . .) 2 ⇥ from Y = (Y
1

, Y
2

, . . . , ).
Assume that ✓ is contained in the Sobolev space

✓ 2 ⇥ =

(

✓ :

X

i

✓2i i
2p < 1

)

. (27.92)
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The following results are from Zhao (2000), Shen and Wasserman (2001), and Ghosal,
Ghosh and van der Vaart (2000).

27.93 Theorem. Put independent Normal priors ✓i ⇠ N(0, ⌧2i ) where ⌧2i = i�2q. The
Bayes estimator attains the optimal rate only when q = p+ (1/2). But then:

⇡(⇥) = 0 and ⇡(⇥ |Y ) = 0. (27.94)

27.9.3 Coverage

Suppose ⇡n(A) = 1� ↵. Does this imply that

Pn
f0(f0 2 A) � 1� ↵? (27.95)

or even
lim inf

n!1 inf

f0
Pn
f0(f0 2 A) � 1� ↵? (27.96)

Recall what happens for parametric models: if A = (�1, a] and

P(✓ 2 A | data) = 1� ↵ (27.97)

then
P✓(✓ 2 A) = 1� ↵+O

✓

1p
n

◆

(27.98)

and, moreover, if we use the Jeffreys’ prior then

P✓(✓ 2 A) = 1� ↵+O

✓

1

n

◆

. (27.99)

Is the same true for nonparametric models? Unfortunately, no; counterexamples are given
by Cox (1993) and Freedman (1999). In their examples, one has:

⇡n(A) = 1� ↵ (27.100)

but
lim inf

n!1 inf

f0
Pf0(f0 2 A) = 0! (27.101)

27.10 Bibliographic Remarks

Nonparametric Bayes began with Ferguson (1973) who invented the Dirichlet process. The
Dirichlet process mixture is due to Escobar and West (1995). Hierarchical Drichlet models
were developed in Teh et al. (2004), Blei et al. (2004), Blei and Jordan (2004) and Blei and
Jordan (2005). For Gaussian process priors see, for example, Mackay (1997) and Altun
et al. (2004). Theoretical properties of nonparametric Bayesian procedures are studied
in numerous places, including Barron et al. (1999); Diaconis and Freedman (1986, 1997,
1993); Freedman (1999); Shen and Wasserman (2001); Ghosal et al. (1999, 2000); Zhao
(2000).
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Exercises

27.1 Let w
1

, w
2

, . . . be the weights generated from the stick-breaking process. Show that
P1

j=1

wj = 1 with probability 1.

27.2 Let F ⇠ DP(↵, F
0

). Show that E(F ) = F
0

. Show that the prior gtes more concen-
trated around F

0

as ↵ ! 1.

27.3 Find a bound on
P(sup

x
|Fn(x)� F (x)| > ✏) (27.102)

where Fn is defined by (27.10).

27.4 Consider the Dirichlet process DP(↵, F
0

).
(a) Set F

0

= N(0, 1). Draw 100 random distributions from the prior and plot them.
Ty several diferent values of ↵.
(b) Draw X

1

, . . . , Xn ⇠ F where F = N(5, 3). Compute and plot the empirical dis-
tribution function and plot a 95 percent confidence band. Now compute the Bayesian
posterior using a DP(↵, F

0

) prior with F
0

= N(0, 1). Note that, to make this real-
istic, we are assuming that the prior guess F

0

is not equal to the true (but unknown)
F . Plot the Bayes estimator Fn. (Try a few different values of ↵.) Compute a 95
percent Bayesian confidence band. Repeat the entire process many ties and see how
often the Bayesian confidence bands actually contains F .

27.5 In the hierarchical Dirichlet process, we first draw G
0

⇠ DP(�, H). The stick break-
ing representation allows us to write this as

G
0

=

1
X

i=1

�i�✓
i

. (27.103)

The next level in the hierarchy samples Gj ⇠ DP(↵, G
0

).

1. Show that, under the stick breaking representation for Gj ,

Gj =

1
X

k=1

⇡jk�✓
k

(27.104)

where ⇡j = (⇡j1,⇡j2, . . .) ⇠ DP(↵
0

,�).
2. Show that ⇡j can equivalently be constructed as

Vjk ⇠ Beta

 

↵
0

�k,↵0

 

1�
k
X

k=1

�i

!!

(27.105)

⇡jk = Vjk

k�1

Y

i=1

(1� Vji) (27.106)


