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Abstract: We consider the particle filter approximation of the optimal filter in

non-compact state space models. A time-uniform convergence result is built on

top of a filter stability argument developed by Douc, Moulines, and Ritov (2009),

under the assumption of a heavy-tailed state process and an informative observation

model. We show that an existing set of sufficient conditions for filter stability is

also sufficient, with minor modifications, for particle filter convergence. The rate of

convergence is also given and depends on both the sample size and the tail behavior

of the transition kernel.
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1 Introduction

Consider a state space model consisting of two sequences of random vari-

ables: a Markovian state process (Xi, i ≥ 0) in probability space (X ,FX , P ) with

transition density q(·, ·) under a base measure µ1:

P (Xi+1 ∈ A|Xi = x) =

∫
A
q(x, x′)dµ1(x

′), ∀ i ≥ 0,

for all A ∈ FX and x ∈ X ; and an observation sequence (Yi, i ≥ 1) in (Y,FY , P ),

where Yi’s are conditionally independent given Xi’s, with density function g(y;x)

under a base measure µ2:

P (Yi ∈ B|Xi = x) =

∫
B
g(y;x)dµ2(y), ∀ i ≥ 1,

for all B ∈ FY and x ∈ X . The joint distribution of (Xi, Yi : i ≥ 0) is determined

by q, g, and p0, the density of X0. Models of this form are also known as

hidden Markov models (Künsch (2001); Cappé, Moulines, and Rydén (2005)).

Typical inference tasks in state space models include: 1) parameter estimation
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for the state process q and the observation model g (Bickel, Ritov, and Rydén

(1998); Olsson and Rydén (2008)); and 2) when q and g are known, computing

the conditional distribution of state variables Xi given the observations Y s
1 ≡

(Y1, . . . , Ys), whose density function is denoted by pi|s (Liu and Chen (1998)).

Calculating pi|s for s = i, s > i, and s < i are called filtering, smoothing, and

predicting, respectively.

State space models have found wide applications in signal processing, robotic-

s, biology, finance, and geophysics (Liu (2001); Künsch (2001); Cappé, Moulines,

and Rydén (2005)). In particular, filtering, an important and classical topic in

state space models, has been the focus of much research interest and effort. Fil-

tering aims at calculating or approximating the conditional distribution of Xi

given Y i
1 , whose density is denoted by pi|i. However, exact calculation of the

optimal filter pi|i is usually computationally infeasible due to the nonlinearity

in q and g. The particle filter, originally introduced by Gordon, Salmon, and

Smith (1993), is one of the most important class of filtering methods because

of its easy implementation and the modeling flexibility inherited from its non-

parametric nature. Various implementation of particle filters have been studied

in the statistics literature. For example, Liu and Chen (1998) consider particle

filters under the framework of sequential Monte Carlo methods, where sequential

importance sampling and related methods are discussed. Künsch (2005) studies

another particle filter implementation under the name of recursive Monte Carlo

filters, where importance sampling is not carried out explicitly on the particles,

but implicitly through the sampling distribution update. For other discussion

about practical implementation of particle filters, see Pitt and Shephard (1999);

Lin, et al (2005).

In particle filters, the target distribution pi|i is approximated by the sum of

weighted point mass distributions:

p̂i|i =

n∑
j=1

wji ζ(xji ),

where {xji}nj=1 is a set of particles in the state space chosen by the algorithm,

ζ(x) is the point mass distribution at x, and {ωji }nj=1 is a set of weights satisfying

ωji ≥ 0,
∑

j ω
j
i = 1. Starting from p̂0|0 = p0, p̂i|i is used (instead of pi|i) together

with the next observation yi+1 to obtain the next filtering distribution p̂i+1|i+1
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in a recursive manner. Such a point mass approximation greatly simplifies the

computation of the update from p̂i|i to p̂i+1|i+1. Obviously, the accuracy of

approximation depends on the choice of particles and their weights. Further

details are given in Section 2. For a thorough introduction to the basic theory

and application of particle filters, see Doucet, de Freitas, and Gordon (2001).

The popularity and successful application of particle filters urge theoretical

justification. Specifically, an important topic is time-uniform convergence:

sup
i≥1

E||p̂i|i − pi|i|| → 0, as n→∞, (1.1)

where n is the number of particles, p̂i|i is the particle filter approximation of pi|i,

and ||·|| is a suitable function norm. In applications, it is also desired to know the

rate of convergence. Note that the object p̂i|i has two sources of randomness: the

observation sequence (Yi, i ≥ 1) and the Monte Carlo sampling in each iteration.

In this paper, unless otherwise noted, the expectation is with respect to both

sources of randomness.

A common approach (Del Moral and Guionnet (2001); Künsch (2005)) of

establishing time-uniform convergence for particle filters is based on the fact

that the Monte Carlo sampling error introduced in each iteration is propagated

over time by a single Bayes operator and a sequence of Markov operators. The

argument generally consists of two components. The first is to develop a uni-

form upper bound on the single step sampling error after being propagated by

the Bayes operator. A particular challenge is to provide a lower bound of the

normalizing constant in the Bayes formula. The second is to show that the con-

ditional chain (Xi|Y s
1 : 1 ≤ i ≤ s) is uniformly contracting so that the single step

approximation error vanishes exponentially as a function of time. This usually

requires mixing conditions on the state transition kernel of the form

c−a(·) ≤ q(x, ·) ≤ c+a(·), ∀x ∈ X , (1.2)

for some density function a(·) and positive constants c−, c+. Condition (1.2) is

often too strong to hold when X is not compact. Meanwhile, the compactness and

(1.2) also play an important role in obtaining a lower bound of the normalizing

constant in the Bayes formula. Therefore, most convergence results for particle

filters are only applicable to compact state spaces.
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This paper is part of the effort of proving time-uniform convergence for parti-

cle filters in non-compact state spaces. The argument follows the general frame-

work described above. We consider autoregressive models with a heavy-tailed

transition kernel and lighter-tailed observation, for which the uniform contract-

ing property has been proven in Douc, Moulines, and Ritov (2009). We show

that the sufficient conditions for the uniform contracting property are also suf-

ficient, with minor modifications, for controlling the single step approximation

error. There are two key assumptions. First, the tail of the state process is

at least exponential or heavier in a sense defined in equation (4.2), which is an

important example of the “pseudo-mixing” condition (Le Gland and Oudjane

(2003)). Second, the observation likelihood has lighter tails than the transition

kernel. This is a relaxation of the “bounded observation” model and enables us

to avoid the use of truncation (Le Gland and Oudjane (2003); Heine and Crisan

(2008)) for likelihood functions with unbounded support.

Our result is particulary applicable to autoregressive models of the form:

Xi = a(Xi−1) + Ui,

Yi = b(Xi) + Vi.
(1.3)

Assuming that Ui and Vi have appropriate tail behavior, we show that (Theorem

5)

sup
i>0

E
∣∣∣∣p̂i|i − pi|i∣∣∣∣tv ≤ cθn−1/2 + 2P (|U1| ≥ θ), ∀ θ > 0, (1.4)

where constant c > 0 depends on the model only, and || · ||tv denotes the total

variation norm. The free parameter θ > 0 can be chosen according to the tail

probability of U1 to optimize the rate of convergence. Comparing with typical

compact state space results, this rate has an extra term P (|U1| ≥ θ), and is

slower than the usual O(n−1/2) rate. This is actually a price paid for providing

a non-trivial lower bound on the normalizing constant in the Bayes formula in

non-compact state and observation spaces.

In related work, Le Gland and Oudjane (2003) study time-uniform approxi-

mation under the pseudo-mixing condition with application to a truncated par-

ticle filter. Heine and Crisan (2008) study uniform convergence of a truncated

particle filter under a weaker norm for a different class of autoregressive models,

including some special cases that are not pseudo-mixing. The convergence rate is
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provided in terms of both the truncation parameter and the number of particles.

Douc, Moulines, and Ritov (2009) establish the uniform contracting property of

the original non-truncated filter for pseudo-mixing state processes with lighter-

tailed observation models. The contracting property is then used to prove the

filter stability, which says that the filtering distribution pi|i has little dependence

on the initial distribution p0 for large i. van Handel (2009) uses a different ap-

proach that employs the ergodicity of Markov process {(Xi, pi|i) : i ≥ 0}, giving

a Cesàro-type time-uniform convergence for general state space models, without

rates of convergence. The key assumption there is that the approximated filtering

distributions are uniformly tight in Cesàro sense. A set of sufficient conditions

include geometric ergodicity of the state process (Xi : i ≥ 0) and appropriate tail

behaviors.

In Section 2 we briefly review the filtering problem with a special focus on

particle filters. In Section 3 we present some general arguments to control the er-

ror propagation. In Section 4 we apply the arguments to a class of autoregressive

models, for which time-uniform convergence is developed. Some further remarks

and possible future research topics are given in Section 5. Some lengthy proofs

are included in Section 6.

2 Preliminaries on filtering

The objective of this section is to provide necessary prerequisites for the

filtering problem, Monte Carlo approximation, and relevant notations. For pre-

sentation convenience, we write gi(xi) for g(yi;xi). The conditional density of

Xi given Y s
1 is written as pi|s(·). The base measures µ1 and µ2 are not crucial

in the argument and results, so we focus on Euclidean spaces for simplicity and

assume that both the transition density q and observation density g are positive

everywhere under the Lebesgue measure.

The dependence structure of a state space model can be described by the

following diagram:

. . . −−−−→ Xi−1 −−−−→ Xi −−−−→ Xi+1 −−−−→ . . .y y y

. . . Yi−1 Yi Yi+1 . . .
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This graph representation leads to some basic recursive formulas.

2.1 The forward propagation and Monte Carlo approximation

Suppose at time i ≥ 1 we have obtained the ideal (optimal) filtering distri-

bution pi−1|i−1, then the conditional distribution of Xi given Y i−1
1 is obtained

by applying the Markov kernel induced from transition density q on the density

function pi−1|i−1:

pi|i−1(xi) =

∫
pi−1|i−1(xi−1)q(xi−1, xi)dxi−1. (2.1)

When the new observation Yi = yi is available, the distribution of Xi given

Y i
1 = yi1 is obtained by applying the Bayes formula on the forecast density pi|i−1

with likelihood function gi(·) ≡ g(yi; ·):

pi|i(xi) =
pi|i−1(xi)gi(xi)∫
pi|i−1(x)gi(x)dx

. (2.2)

The right hand side of (2.2) is well-defined when q and g are positive everywhere.

In practice the prediction (2.1) and Bayes update (2.2) do not allow any

closed form solutions. Particle filters tackle this difficulty using Monte Carlo

samples to approximate the conditional distributions. We consider the recursive

Monte Carlo (RMC, Künsch (2005)) filter as a generic form of particle filter.

In RMC approximations, the integral in (2.1) is substituted by averaging

over a random sample:

p̂i|i−1(xi) =
1

n

n∑
j=1

q(xji−1, xi), (2.3)

where {xji−1, j = 1, . . . , n} is an i.i.d sample from p̂i−1|i−1 ≈ pi−1|i−1. The Bayes

update step is similar:

p̂i|i(xi) =
p̂i|i−1(xi)gi(xi)∫
p̂i|i−1(x)gi(x)dx

.

The recursion starts from p̂0|0 = p0|0 = p0. See Künsch (2005) for a detailed

discussion on implementation of RMC filters.
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2.2 The operator notation

For any density function p, transition density q, and likelihood g, define the

Markov transition operator Q and Bayes operator B:

Qp(x) =

∫
p(x′)q(x′, x)dx′,

B(p, g)(x) =
p(x)g(x)∫
p(x′)g(x′)dx′

.

Then the forward recursion of the optimal filter can be represented by the oper-

ator Fi:

pi|i = Fipi−1|i−1 := B(Qpi−1|i−1, gi).

For RMC filters, define the random Markov transition kernel Q̂:

Q̂p(x) =
1

n

n∑
j=1

q(zj , x),

with {zj , j = 1, . . . , n} an i.i.d sample from p(·). Therefore, the RMC forward

recursion becomes

p̂i|i = F̂ip̂i−1|i−1 := B(Q̂p̂i−1|i−1, gi).

We wish to control

||p̂i|i − pi|i||tv = ||FiFi−1 . . . F1p0|0 − F̂iF̂i−1 . . . F̂1p0|0||tv,

where || · ||tv refers to the total variation norm:

||f ||tv :=

∫
|f(x)|dx,

for any measurable function f .

2.3 The backward recursion and an alternative representation of

sequential filtering

The Monte Carlo approximation Q̂ of Q introduces a sampling error of order

OP (n−1/2) in each iteration. Such an error is subsequently propagated by the

Bayes operators B(·, gi), which may be expanding (Künsch (2001, Lemma 3.6)).
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Therefore, propagating through multiple Bayes operators may result in an expo-

nential growth of the sampling error. One can bypass this difficulty by looking

at a different way of getting pi|i from p0|0. Define the backward function βi,s as

the conditional probability of observing ysi+1 given xi:

βi,s(xi) =

{ ∫
X s−i

∏s
j=i+1 q(xj−1, xj)gj(xj)dxj , i ≤ s− 1;

1, i ≥ s,

where X s−i is the (s−i)-tuple product space containing the state vector (xi+1, ..., xs).

It is easy to check that for all i ≤ s− 1, βi,s follows a backward recursion:

βi,s(xi) =

∫
q(xi, xi+1)gi+1(xi+1)βi+1,s(xi+1)dxi+1. (2.4)

The backward function can be used to calculate pi|s for s > i:

pi|s = B(pi|i, βi,s).

Based on the backward function, we are ready to introduce an alternative

representation of the evolvement from pi|i to ps|s, which involves only one Bayes

operator B(·, βi,s). First we state the Markov property of the conditional chain

of Xi given Y s
1 .

Lemma 1. For any s ≥ 1, the conditional chain (Xi, 0 ≤ i ≤ s) given Y s
1 = ys1

is a (possibly non-homogenous) Markov chain, with transition kernel Fi+1|s :

X × FX 7→ [0, 1],

Fi+1|s(xi, A) =

∫
A q(xi, xi+1)gi+1(xi+1)βi+1,s(xi+1)dxi+1

βi,s(xi)
.

We refer the reader to Cappé, Moulines, and Rydén (2005, Proposition 3.3.2)

for a proof of Lemma 1.

Lemma 1 suggests that:

ps|s = Fs|s . . . F1|sB
(
p0|0, β0,s

)
, (2.5)

or more generally for all i ≤ s− 1 and any density p on X ,

Fs . . . Fi+1p = Fs|s . . . Fi+1|sB(p, βi,s). (2.6)

Equations (2.5) and (2.6) show how to obtain ps|s with only a single Bayes

operator followed by a sequence of Markov operators. This observation is useful
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in controlling the propagation of sampling error because Markov operators are

contracting under total variation norm: if F is a Markov kernel, its contraction

coefficient δ(F ) ∈ [0, 1] is

δ(F ) = sup
f1,f2

||Ff1 − Ff2||tv
||f1 − f2||tv

, (2.7)

where the supreme is over all pairs of densities f1 and f2 on X . Apparently, for

any Markov kernels F and F ′,

δ(FF ′) ≤ δ(F )δ(F ′). (2.8)

3 Convergence of Recursive Monte Carlo Filters

In this section we introduce some general arguments and conditions to de-

velop a uniform upper bound on E||p̂i|i − pi|i||tv. The arguments are applied to

a class of autoregressive models with a set of sufficient conditions in Section 4.

Consider a decomposition of the total approximation error for ps|s:∣∣∣∣p̂s|s − ps|s∣∣∣∣tv
=
∣∣∣∣∣∣F̂s · · · F̂1p0|0 − Fs · · ·F1p0|0

∣∣∣∣∣∣
tv

=

∣∣∣∣∣
∣∣∣∣∣
s∑
i=1

Fs · · ·Fi+1F̂i · · · F̂1p0|0 − Fs · · ·FiF̂i−1 · · · F̂1p0|0

∣∣∣∣∣
∣∣∣∣∣
tv

≤
s∑
i=1

∣∣∣∣∣∣Fs · · ·Fi+1F̂ip̂i−1|i−1 − Fs · · ·Fip̂i−1|i−1
∣∣∣∣∣∣
tv

≤
s∑
i=1

δ(Fs|s · · ·Fi+1|s)
∣∣∣∣∣∣B(Q̂p̂i−1|i−1, giβi,s)−B(Qp̂i−1|i−1, giβi,s)

∣∣∣∣∣∣
tv
, (3.1)

where the second step uses a stepwise decomposition of the approximation error;

the third step uses the triangle inequality and the definition of p̂i−1|i−1; and the

last step uses the fact B(B(p, g), h) = B(p, gh) and (2.6). Use the notation

∆i,s =
∣∣∣∣∣∣B(Q̂p̂i−1|i−1, giβi,s)−B(Qp̂i−1|i−1, giβi,s)

∣∣∣∣∣∣
tv
,

then controlling the particle filter approximation error amounts to two tasks:

1) provide an upper bound of the single step error ∆i,s, and 2) show that

δ(Fs|s · · ·Fi+1|s) ≤ ρs−i uniformly for all ys1 with 0 < ρ < 1.
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3.1 Single-step approximation error

We first look at the single step sampling error:

∆i,s =
∣∣∣∣∣∣B (Q̂p̂i−1|i−1, giβi,s)−B (Qp̂i−1|i−1, giβi,s)∣∣∣∣∣∣

tv

=

∫ ∣∣∣∣∣ Q̂p̂i−1|i−1(xi)gi(xi)βi,s(xi)∫
Q̂p̂i−1|i−1(x

′
i)gi(x

′
i)βi,s(x

′
i)dx

′
i

−
Qp̂i−1|i−1(xi)gi(xi)βi,s(xi)∫
Qp̂i−1|i−1(x

′
i)gi(x

′
i)βi,s(x

′
i)dx

′
i

∣∣∣∣∣ dxi
≤

2
∫ ∣∣∣Q̂p̂i−1|i−1(xi)−Qp̂i−1|i−1(xi)∣∣∣ gi(xi)βi,s(xi)dxi∫

Qp̂i−1|i−1(xi)gi(xi)βi,s(xi)dxi
. (3.2)

The last inequality stems from the following.

Lemma 2 (Künsch (2001, Lemma 3.6)). Let f and h be two non-negative inte-

grable functions with
∫
f(x)dx > 0 and

∫
h(x)dx > 0, then∫ ∣∣∣∣ f(x)∫

f(x′)dx′
− h(x)∫

h(x′)dx′

∣∣∣∣ dx ≤ 2
∫
|f(x)− h(x)|dx∫

f(x)dx
.

Proof. With out loss of generality, assume
∫
f(x)dx ≥

∫
h(x)dx. Then∫ ∣∣∣∣ f(x)∫

f(x′)dx′
− h(x)∫

h(x′)dx′

∣∣∣∣ dx = 2

∫ (
f(x)∫
f(x′)dx′

− h(x)∫
h(x′)dx′

)
+

dx

=2

(∫
f(x′)dx′

)−1 ∫ (
f(x)−

∫
f(x′)dx′∫
h(x′)dx′

h(x)

)
+

dx

≤2

(∫
f(x′)dx′

)−1 ∫
(f(x)− h(x))+ dx

≤2

(∫
f(x′)dx′

)−1 ∫
|f(x)− h(x)| dx,

where (z)+ ≡ max(z, 0). The conclusion follows from the assumption
∫
f(x)dx ≥∫

h(x)dx.

Next we give upper and lower bounds on the numerator and denominator in

(3.2), respectively. If ||q||∞ := supx,x′ q(x, x
′) ≤M , then∣∣∣Q̂p̂i−1|i−1(xi)−Qp̂i−1|i−1(xi)∣∣∣ = OP

(
M√
n

)
. (3.3)

Therefore, roughly speaking, the numerator of (3.2) is bounded byO(n−1/2M
∫
giβi,s).
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It remains to control the function giβi,s, which is intractable in general. As

giβi,s appears in both the numerator and denominator in (3.2), one can expect

some cancelation if it can be separated out from the integral in the denominator.

The following assumption validates such a cancelation, and provides a lower

bound on the denominator:

(A1) For every y, there exists a compact set Cy ⊆ X , such that

(a) For all x, x′, y,

min

{∫
Cy
q(x, x′)g(y;x′)dx′∫
q(x, x′)g(y;x′)dx′

,

∫
Cy
g(y;x)q(x, x′)dx∫
g(y;x)q(x, x′)dx

,∫
Cy
g(y;x)dx∫
g(y;x)dx

}
≥ κ > 0,

where κ is a positive constant independent of (x, x′, y).

(b) κ ≤
∫
C0
p0(x0)dx0 ≤ 1, where C0 ⊆ X is a compact set that depends

only on p0, and κ is the constant of part (a).

(c) E supx∈CYi ,x
′∈CYi+1

(q(x, x′))−1 <∞ for all i ≥ 0.

Part (a) essentially requires that, as demonstrated in Section 4, the observation

provides more information about the current state than the previous and future

states, which is satisfied when the likelihood has lighter tails than the transition

kernel. For any y, the set Cy can be thought as the set of state variables that are

“likely” to generate observation Y = y. In part (b), the choice of C0 is not very

crucial and we can choose it to be a level set defined as {x0 : p(y1|x0) ≥ λ0}, for

some λ0 > 0.

Part (c) requires CYi and CYi+1 to be “close” enough, on average, with respect

to the randomness of (Yi, i ≥ 1). It provides a lower bound on the denominator

factor Qp̂i−1|i−1 on Ci. If

ξi := sup
xi−1∈CYi−1

,xi∈CYi
(q(xi−1, xi))

−1 , (3.4)

we have the following.

Lemma 3. Under (A1), we have, for any 1 ≤ i ≤ s− 1, conditioning on Y s
1 ,

inf
xi∈Ci

Qp̂i−1|i−1(xi) ≥ κξ−1i .
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The proof of Lemma 3 is postponed to Section 6.1.

Recall that the numerator in (3.2) is roughly O(
∫
giβi/

√
n), and Lemma 3

implies that the denominator is at least κ
∫
Ci
giβi/ξi. Then (A1a) and (A1b)

finishes the cancelation of
∫
giβi,s. Formally, let Ei denote the expectation over

Monte Carlo samples from p̂i|i conditioning on (Yi, i ≥ 1), then we have the

following.

Lemma 4. Take ξi as in (3.4). Assuming (A1), and that ||q||∞ ≤M ,

Ei−1∆i,s ≤ 2 min

(
1,

Mξi
κ2
√
n

)
.

A detailed proof of Lemma 4 is given in Section 6.1.

In order to verify condition (A1), the construction of Cy requires further

investigation on the tail behavior of q and g. We illustrate the idea through an

autoregressive model in Section 4. In subsequent arguments we write Ci for Cyi ,

and supCi×Ci+1
for supx∈Ci,x′∈Ci+1

.

3.2 A time-uniform result with uniformly contracting kernels

To obtain time-uniform convergence, we also need to show that the sequence

of Markov operators Fi+1|s, . . . , Fs|s are uniformly contracting:

δ

(
s∏

r=i+1

Fr|s

)
≤ ρs−i, (3.5)

for some ρ ∈ (0, 1) independent of the observation sequence (y1, . . . , ys).

If (3.5) holds, by contracting of Markov kernels and the decomposition in

(3.1) we have, by Lemma 4,

E
∣∣∣∣p̂s|s − ps|s∣∣∣∣tv ≤ s∑

i=1

δ

(
s∏

r=i+1

Fr|s

)
E∆i,s

≤ 2

s∑
i=1

ρs−iE

(
1
∧ M

κ2
√
n
ξi

)
≤ 2

1− ρ
sup
i>0

E

(
1
∧ M

κ2
√
n
ξi

)
. (3.6)

Douc, Moulines, and Ritov (2009) introduce a set of sufficient condition-

s to prove (3.5) for autoregressive models of form (1.3) with a pseudo-mixing
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kernel and lighter-tail likelihood. In the next section we show that a sim-

ple modification of these conditions makes them also sufficient for (A1) and

supi≥0E(1 ∧Mκ−2ξi/
√
n) = o(1), and therefore sufficient for time-uniform par-

ticle approximation.

4 Functional autoregressive model

Here we look at a nonlinear, non-Gaussian state space model (see also Le

Gland and Oudjane (2003); Heine and Crisan (2008); Douc, Moulines, and Ritov

(2009)):

Xi = a(Xi−1) + Ui,

Yi = b(Xi) + Vi,
(4.1)

for i ≥ 1, with X0 ∼ p0. Here (Ui : i ≥ 1) and (Vi : i ≥ 1) are two independent

sequences of random variables, with continuous densities pU and pV , respectively.

For presentation simplicity we focus on the case X = Y = R1. Extension to Rd

is straightforward.

Consider the following set of conditions.

(C1) Function a(·) is Lipschitz: |a(x)− a(x′)| ≤ a+|x− x′|; function b(·) is one-

to-one differentiable with derivative bounded and bounded away from zero:

0 < b− ≤ |b′(x)| ≤ b+, ∀x.

(C2) pU is non increasing on [0,∞), with pU (x) = pU (|x|) and ||pU ||∞ ≤M <∞.

Moreover, for all x ≥ 0 and x′ ≥ 0,

pU (x+ x′)

pU (x)pU (x′)
≥ r > 0. (4.2)

(C3) pV (y) = pV (|y|), and pV is non increasing on [0,∞), satisfying∫
[pU (cx)]−2 pV (x)dx <∞, ∀c > 0. (4.3)

(C4) The initial distribution also has lighter tail than pU :∫ [
pU (a−1+ b−x)

]−1
p0(x)dx <∞. (4.4)
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Similar conditions are considered by Le Gland and Oudjane (2003) in study-

ing uniform particle approximation of truncated filters, and by Douc, Moulines,

and Ritov (2009) in proving filter stability for non-truncated filters. Here in

(4.1) the state propagation function a(·) and observation function b(·) stay the

same for all i ≥ 1, which is just for presentation simplicity. In fact they can

depend on time index i and the results remain valid if we modify condition (C1)

to that |ai(x) − ai(x′)| ≤ a+|x − x′| and 0 < b− ≤ |b′i(x)| ≤ b+ for all i ≥ 1 and

(x, x′). Equation (4.2) is an example of the so-called “pseudo-mixing” condition.

It indicates a somewhat heavy tail of pU that is satisfied for exponential, logistic,

and Pareto-type tails (not for Gaussian). The conditions in Heine and Crisan

(2008) allow pU to have lighter tails, including Gaussian, but not power-law tail-

s. The condition of pU and pV being non-increasing on [0,∞) can be relaxed to

being non-increasing on [L,∞) and strictly positive on [0, L]. The case L = 0 is

qualitatively not special, but allows concise presentation.

Our main result is the next theorem which is proved in Section 6.2:

Theorem 5. Under Model (4.1), assuming (C1)- (C4), there exists a constant

c depending on the model only, such that

sup
s≥0

E
∣∣∣∣p̂s|s − ps|s∣∣∣∣tv ≤ cθ√

n
+ 2P (|U1| > θ), ∀ θ > 0.

Theorem 5 indicates that the time-uniform expected approximation error is

bounded by the sum of two parts: one determined by the sample size and one

by the tail behavior of the state noise. Such a rate is slower than the O(1/
√
n)

rate usually seen in compact state spaces (Künsch (2005)). It is a consequence of

the need to provide a lower bound away from zero for the normalizing constant

in the Bayes formula in non-compact state spaces. In fact, the term P (|U1| > θ)

comes from ξi, which is the supreme of (q(xi−1, xi))
−1 on Ci−1 ×Ci, and can be

large if Ci−1 and Ci are far away from each other. Clearly this will never be a

problem if the state space is compact.

The free parameter θ can be chosen to optimize the rate of convergence.

Example 6. If the state noise U1 has Pareto-type (power-law) tail,

P (|U1| > θ) = O(θ−α)
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for some α > 0. Choosing θ = n1/(2+2α) in Theorem 5 yields

sup
s≥0

E
∣∣p̂s|s − ps|s∣∣ = O(n−

α
2+2α ).

Example 7. If the state noise U1 has exponential tails,

P (|U1| > θ) = O
(
e−θ

α
)

for some 0 < α ≤ 1. With θ = (log n/2)1/α, then

sup
s≥0

E
∣∣p̂s|s − ps|s∣∣ = O

(
(log n)

1
αn−

1
2

)
.

That is, when U1 has exponential tails, the rate of convergence suggested by

Theorem 5 is only slightly slower than n−1/2.

5 Final remarks

We have shown that the recursive Monte Carlo filter is consistent uniformly

over time for noisy autoregressive models when the state process is heavy-tailed

and the observation error has lighter tails. Such a tail constraint is used in both

establishing the filter stability, as well as controlling the single step error. Al-

though a heavy tail in the state process noise facilitates our argument, it adds

an extra term in the convergence rate. A heavier tail indicates a slower conver-

gence. Following this intuition, if the state process has even lighter tails, such

as Gaussian, the convergence result still holds. However, some other technique

must be used in this case to deal with the backward function and the normalizing

constant. We regard this as an interesting topic for future research.

The results in this paper provide upper bounds on the approximation error.

In practice, the asymptotic behavior of particle filter based estimators provides

useful guidance for further inferences, such as confidence interval and hypothesis

testing. In this direction, central limit theorems are given by Del Moral and

Jacod (2001) for Gaussian linear models, Chopin (2004) for particle filters with

importance sampling and resampling, and Künsch (2005) for recursive Monte

Carlo filters. These central limit theorems are not time-uniform, and hence hold

under weaker conditions than those typically required by time-uniform results as
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considered in this paper. Little is known about central limit theorems in a time-

uniform sense for particle filters and its variants, and this may be an important

topic for future research.

In this paper we assume that the hidden Markov model is completely known.

In practice, for example, in finance, biology, and geophysics, it is often desired

to estimate unknown parameters and do filtering at the same time. This is

indeed the focus of many research endeavors (see Liu and West (2001); Cappé

and Moulines (2005); Polson, Stroud, and Müller (2008), for example). It will

be also interesting to connect current work in filter convergence with parameter

estimation and to provide theoretical understanding for particle based parameter

estimation.

6 Proofs

In the proofs we use c, ci, (i = 0, 1, 2, . . . ) to denote positive constants that

depend on the model only. Their values may change in different displays.

6.1 Proofs of Section 3

In this section we prove Lemma 4, starting with Lemma 3.

Proof of Lemma 3. For i ≥ 2, let {xji−2}nj=1 be an i.i.d sample from p̂i−2|i−2.

Then by (A1), for all xi ∈ Ci,

Qp̂i−1|i−1(xi) =

∫
p̂i−1|i−1(xi−1)q(xi−1, xi)dxi−1

≥
∫
Ci−1

p̂i−1|i−1(xi−1)q(xi−1, xi)dxi−1

≥ξ−1i
∫
Ci−1

p̂i−1|i−1(xi−1)dxi−1

=ξ−1i

∫
Ci−1

n−1
∑n

j=1 q(x
j
i−2, xi−1)gi−1(xi−1)dxi−1∫

n−1
∑n

j=1 q(x
j
i−2, xi−1)gi−1(xi−1)dxi−1

=ξ−1i

∑n
j=1

∫
Ci−1

q(xji−2, xi−1)gi−1(xi−1)dxi−1∑n
j=1

∫
q(xji−2, xi−1)gi−1(xi−1)dxi−1

≥ξ−1i κ.
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For i = 1 we have, according to (A1), for all x1 ∈ C1,

p1|0(x1) =

∫
p0(x0)q(x0, x1)dx0

≥
∫
C0

p0(x0)q(x0, x1)dx0

≥ξ−11

∫
C0

p0(x0)dx0

≥ξ−11 κ.

The next lemma enables us to restrict the integral of giβi,s on Ci.

Lemma 8. Under (A1), we have for all 1 ≤ i ≤ s, and all ys1,∫
Ci
gi(xi)βi,s(xi)dxi∫
gi(xi)βi,s(xi)dxi

≥ κ. (6.1)

Proof of Lemma 8. When i = s, we have βi,s ≡ 1, and the result follows easily

from (A1).

When i ≤ s− 1, by (A1),∫
Ci

gi(xi)βi,s(xi)dxi =

∫
Ci

gi(xi)

∫
q(xi, xi+1)gi+1(xi+1)βi+1,s(xi+1)dxi+1dxi

=

∫ ∫
Ci

gi(xi)q(xi, xi+1)dxigi+1(xi+1)βi+1,s(xi+1)dxi+1

≥κ
∫ ∫

gi(xi)q(xi, xi+1)dxigi+1(xi+1)βi+1,s(xi+1)dxi+1

=κ

∫
gi(xi)βi,s(xi)dxi.

With Lemma 3 and Lemma 8, we can cancel out giβi,s in Equation (3.2).

Proof of Lemma 4. First consider the Monte Carlo approximation error for a

random sample {xji−1}nj=1 from p̂i−1|i−1:

Ei−1

∣∣∣Q̂p̂i−1|i−1(xi)−Qp̂i−1|i−1(xi)∣∣∣
≤
(
Ei−1

∣∣∣Q̂p̂i−1|i−1(xi)−Qp̂i−1|i−1(xi)∣∣∣2)1/2
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=

Ei−1
∣∣∣∣∣n−1

n∑
j=1

q(xji−1, xi)−
∫
p̂i−1|i−1(xi−1)q(xi−1, xi)dxi−1

∣∣∣∣∣
2
1/2

≤n−1M2.

Combined with (3.2), we have

Ei−1∆i,s ≤
2
∫
Ei−1

∣∣∣Q̂p̂i−1|i−1(xi)−Qp̂i−1|i−1(xi)∣∣∣ gi(xi)βi,s(xi)dxi∫
Qp̂i−1|i−1(xi)gi(xi)βi,s(xi)dxi

≤
2M

∫
gi(xi)βi,s(xi)dxi√

n
∫
Qp̂i−1|i−1(xi)gi(xi)βi,s(xi)dxi

≤
2M

∫
gi(xi)βi,s(xi)dxi√

n
∫
Ci
Qp̂i−1|i−1(xi)gi(xi)βi,s(xi)dxi

≤
2Mξi

∫
gi(xi)βi,s(xi)dxi√

nκ
∫
Ci
gi(xi)βi,s(xi)dxi

≤ 2Mξi√
nκ2

.

By definition ||∆i,s||tv ≤ 2. As a result, Ei−1∆i,s ≤ 2(1 ∧Mκ−2ξi/
√
n).

6.2 Proof of Theorem 5

The proof of Theorem 5 consists of three parts:

1. Verify condition (A1) to enable application of Lemma 4. This is to be done

in Lemma 9.

2. Establish uniform contracting property for the conditional Markov opera-

tors Fi|s. This is an existing result from Douc, Moulines, and Ritov (2009).

3. Control E(1 ∧Mκ−2ξi/
√
n).

With these three components, Theorem 5 follows immediately from (3.6). In

the following we give detailed arguments for each of these components.

Part I: verify condition (A1). To verify condition (A1), we first specify Cy:

Cy := {x : |x− b−1(y)| ≤ D},



Convergence of Particle Filters 19

with a constant D to be chosen later with

inf
[0,D]

pV > 0. (6.2)

Under these conditions, one can show the following, and hence verify (A1).

Lemma 9. Assuming (C1)-(C4), then for each y the Cy’s defined above satisfy

min

{∫
Cy
q(x, x′)g(y;x′)dx′∫
q(x, x′)g(y;x′)dx′

,

∫
Cy
g(y;x)q(x, x′)dx∫
g(y;x)q(x, x′)dx

,

∫
Cy
g(y;x)dx∫
g(y;x)dx

}
≥ κ > 0,

for some κ ∈ (0, 1), independent of (x, x′, y).

The proof is just a minor modification of Douc, Moulines, and Ritov (2009,

Lemmas 11,12). We postpone it to the end of this section.

Now we have verified all the conditions necessary to apply Lemma 4. Next

we develop a bound for E
(
1 ∧Mκ−2ξi/

√
n
)
.

Part II: Control E(1∧Mκ−2ξi/
√
n). Under the autoregressive model (4.1), using

(4.2) repeatedly, we have for i ≥ 2

ξi = sup
Ci−1×Ci

p−1U (xi − a(xi−1))

= sup
Ci−1×Ci

p−1U
(
xi − b−1(Yi) + b−1(Yi)

−a(b−1(Yi−1)) + a(b−1(Yi−1))− a(xi−1)
)

≤ cp−1U (b−1(Yi)− a(b−1(Yi−1)))

≤ cp−1U (b−1(Yi)−Xi +Xi − a(Xi−1) + a(Xi−1)− a(b−1(Yi−1)))

≤ cp−1U (b−1− Vi)p
−1
U (Ui)p

−1
U (a+b

−1
− (Vi−1)), (6.3)

noting again that the constant c may take different values in different displays.

Therefore, for any θ > 0,

E

(
1
∧ M

κ2
√
n
ξi

∣∣∣∣Vi, Vi−1)
≤ c√

n
p−1U (b−1− Vi)p

−1
U (a+b

−1
− Vi−1)

∫ θ

−θ
p−1U (u)pU (u)du+

∫
[−θ,θ]c

pU (u)du
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=
cθ√
n
p−1U (b−1− Vi)p

−1
U (a+b

−1
− Vi−1) + P (|U1| > θ). (6.4)

Equation (4.3) in condition (C3) ensures that E[p−1U (b−1− Vi)p
−1
U (a+b

−1
− Vi−1)] is a

finite constant.

The case i = 1 is similar. Actually (6.4) still holds by realizing that

ξ1 = sup
(x0,x1)∈C0×C1

p−1U (x1 − a(x0)) (6.5)

≤ sup
C0×C1

p−1U (b−1− V1)p
−1
U (U1)p

−1
U (a+b

−1
− |X0|).

As a result, we obtain a bound on the expected one step propagated sampling

error:

E

(
1
∧ M

κ2
√
n
ξi

)
≤ cθ√

n
+ P (|U1| > θ),

for some constant c depending only on the model.

Part III: Uniform contracting property of Fi|s. The uniform contracting prop-

erty of Fi|s under this setting has been established by Douc, Moulines, and Ritov

(2009). We state it without proof:

Lemma 10. Under Model (4.1), assuming (C1)-(C4), then

δ(Fi+1|sFi|s) ≤ ρ < 1, ∀ 1 ≤ i ≤ s− 1,

for some constant ρ depending only on the model.

In the end we give the proof of Lemma 9, which follows largely from Douc,

Moulines, and Ritov (2009, Lemmas 10, 11 and 12), with small modifications.

Lemma 11 (Lemma 10 of Douc, Moulines, and Ritov (2009)). Assume diam(C) <

∞. Then for all x ∈ C and x′ ∈ X ,

ρ(C)hC(x′) ≤ q(x, x′) ≤ ρ−1(C)hC(x′), (6.6)

with

ρ(C) = rpU (diam(C)) ∧ inf
|u|≤diam(C)

pU ∧

(
sup

|u|≤diam(C)
pU

)−1
,

hC(x′) = 1
(
x′ ∈ a(C)

)
+ 1

(
x′ /∈ a(C)

)
pU (|x′ − a(z0)|),
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where r is defined in (4.2), and z0 is an arbitrary element of C. In addition, for

all x ∈ X and x′ ∈ C,

ν(C)kC(x) ≤ q(x, x′), (6.7)

with

ν(C) = inf
|u|≤diam(C)

pU ,

kC(x) = 1 (a(x) ∈ C) + r1 (a(x) /∈ C) pU (|z′ − a(x)|),

where z′ is an arbitrary element in C.

Proof of Lemma 9. Recall that Cy = {x : |x− b−1(y)| ≤ D}, for some D > 0.

We first show

inf
y

∫
Cy
g(y;x)dx∫
g(y;x)dx

> 0.

In fact, we have g(y;x) = pV (y − b(x)), and then∫
Ccy

pV (y − b(x))dx ≤
∫
Ccy

pV
(
b−|b−1(y)− x|

)
dx ≤

∫
|x|≥D

pV (b−|x|)dx,

which is independent of y. Also note that
∫
pV (y − b(x))dx is bounded from be-

low uniformly in y by change of variables and the assumption that |b′| is bound-

ed and bounded away from zero. Now we can choose D large enough so that∫
|x|≥D pV (b−|x|)dx < infy

∫
pV (y − b(x))dx, and hence

inf
y

∫
Cy

g(y;x)dx > 0.

Then we are going to show

inf
y,x

∫
Cy
q(x, x′)g(y;x′)dx′∫
q(x, x′)g(y;x′)dx′

> 0, (6.8)

which is equivalent to

inf
y,x

∫
Cy
q(x, x′)g(y;x′)dx′∫

Ccy
q(x, x′)g(y;x′)dx′

> 0.

Note that in Lemma 11 the constants ρ(Cy) and ν(Cy) depend on Cy only

through its diameter and hence are independent of y. In the following argument

we drop the dependence on y when using these notations.

Consider two cases.
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1. a(x) ∈ Cy.

In this case kCy(x) ≡ 1 as defined in Lemma 11. We have∫
Cy
q(x, x′)g(y;x′)dx′∫
q(x, x′)g(y;x′)dx′

≥ ν

M

∫
Cy
g(y;x′)dx′∫
g(y;x′)dx′

≥ ν

M
inf
y

∫
Cy
g(y;x′)dx′∫
g(y;x′)dx′

> 0,

(6.9)

where we used the fact q(x, x′) ≤ ||pU ||∞ ≤M .

2. a(x) /∈ Cy.

In this case kCy(x) = rpU (|b−1(y) − a(x)|) as defined in Lemma 11, where

z′ is chosen as b−1(y). In (4.2) let w = x′ − a(x), w′ = b−1(y) − x′, so by

monotonicity of pU , (4.2), we have

pU (|w + w′|) ≥ pU (|w|+ |w′|) ≥ rpU (|w|)pU (|w′|),

which implies

pU (|x′ − a(x)|)
pU (|b−1(y)− a(x)|)

≤ r−1p−1U (|b−1(y)− x′|).

Therefore, using (4.3),∫
Cy
q(x, x′)g(y;x′)dx′∫

Ccy
q(x, x′)g(y;x′)dx′

≥
rνpU (|b−1(y)− a(x)|)

∫
Cy
g(y;x′)dx′∫

Ccy
pU (|x′ − a(x)|)pV (y − b(x′))dx′

≥
r2ν

∫
Cy
g(y;x′)dx′∫

Ccy
p−1U (|b−1(y)− x′|)pV (y − b(x′))dx′

≥
r2ν

∫
Cy
g(y;x′)dx′∫

Ccy
p−1U (|b−1(y)− x′|)pV (b−|b−1(y)− x′|)dx′

≥
r2ν

∫
Cy
g(y;x′)dx′∫

|z|≥D p
−1
U (|z|)pV (b−|z|)dz

≥
r2ν infy

∫
Cy
g(y;x′)dx′∫

|z|≥D p
−1
U (|z|)pV (b−|z|)dz

> 0, (6.10)

where the last inequality is based on (4.3) of condition (C3). Note that the

bounds of both (6.9) and (6.10) are independent of y and x. As a result

(6.8) is true.
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It remains to show

inf
y,x′

∫
Cy
g(y;x)q(x, x′)dx∫
g(y;x)q(x, x′)dx

> 0. (6.11)

The argument is very similar to that of (6.8). Again, consider two cases.

1. x′ ∈ a(Cy).

In this case hCy(x
′) ≡ 1, and we have∫

Cy
g(y;x)q(x, x′)dx∫
g(y;x)q(x, x′)dx

≥
ρ
∫
Cy
g(y;x)dx

M
∫
g(y;x)dx

≥ ρ

M
inf
y

∫
Cy
g(y;x)dx∫
g(y;x)dx

> 0. (6.12)

2. x′ /∈ a(Cy).

In this case hCy(x
′) = pU (|x′− a(b−1(y))|), choosing z0 = b−1(y) in Lemma

11, and∫
Cy
g(y;x)q(x, x′)dx∫

Ccy
g(y;x)q(x, x′)dx

≥
ρpU (|x′ − a(b−1(y))|)

∫
Cy
g(y;x)dx∫

Ccy
pV (y − b(x))pU (x′ − a(x))dx

. (6.13)

It suffices to show∫
Ccy

p−1U (|x′ − a(b−1(y))|)pU (x′ − a(x))pV (y − b(x))dx

is bounded uniformly for all y and x′.

Again, let w = x′ − a(x), w′ = a(x) − a(b−1(y)). Then |w + w′| = |x′ −
a(b−1(y))| > L. Therefore,

pU (|w + w′|) ≥ pU (|w|+ |w′|) ≥ rpU (|w|)pU (|w′|),

which implies

p−1U (|x′ − a(b−1(y))|)pU (x′ − a(x)) ≤ r−1p−1U (|a(x)− a(b−1(y))|).

Also note that for all z, z′ ∈ X ,

p−1U (|a(z)− a(z′)|) ≤ p−1U (a+|z − z′|).

As a result,∫
Ccy

p−1U (|x′ − a(b−1(y))|)pU (x′ − a(x))pV (y − b(x))dx (6.14)
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≤
∫
Ccy

r−1p−1U (|a(x)− a(b−1(y))|)pV (y − b(x))dx

≤r−1
∫
Ccy

p−1U (a+|x− b−1(y)|)pV (y − b(x))dx

≤r−1
∫
|x|>D

p−1U (a+|x|)pV (b−x)dx

<∞,

where the last inequality uses (4.3). Therefore, (6.11) is true because the

bounds in (6.12) and (6.14) do not depend on y or x′.
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