
Chapter 13

The Strong Markov
Property and Martingale
Problems

Section 13.1 introduces the strong Markov property — indepen-
dence of the past and future conditional on the state at random
(optional) times. It includes an example of a Markov process which
is not strongly Markovian.

Section 13.2 describes “the martingale problem for Markov pro-
cesses”, explains why it would be nice to solve the martingale prob-
lem, and how solutions are strong Markov processes.

13.1 The Strong Markov Property

A process is Markovian, with respect to a filtration {F}t, if for any fixed time t,
the future of the process is independent of Ft given Xt. This is not necessarily
the case for a random time τ , because there could be subtle linkages between
the random time and the evolution of the process. If these can be ruled out, we
have a strong Markov process.

Definition 165 (Strongly Markovian at a Random Time) Let X be a
Markov process with respect to a filtration {F}t, with transition kernels µt,s and
evolution operators Kt,s. Let τ be an {F}t-optional time which is almost surely
finite. Then X is strongly Markovian at τ when either of the two following
(equivalent) conditions hold

P (Xt+τ ∈ B|Fτ ) = µτ,τ+t(Xτ , B) (13.1)
E [f(Xτ+t)|Fτ ] = (Kτ,τ+tf)(Xτ ) (13.2)

for all t ≥ 0, B ∈ X and bounded measurable functions f .
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Definition 166 (Strong Markov Property) If X is Markovian with respect
to {F}t, and strongly Markovian at every {F}t-optional time which is almost
surely finite, then it is a strong Markov process with respect to {F}t.

If the index set T is discrete, then the strong Markov property is implied
by the ordinary Markov property (Definition 102). If time is continuous, this
is not necessarily the case. It is generally true that, if X is Markov and τ
takes on only countably many values, X is strongly Markov at τ (Exercise 13.1).
In continuous time, however, the Markov property does not imply the strong
Markov property.

Example 167 (A Markov Process Which Is Not Strongly Markovian)
(After Fristedt and Gray (1997, pp. 626–627).) We will construct an R2-valued
Markov process on [0,∞) which is not strongly Markovian. Begin by defining
the following map from R to R2:

f(w) =






(w, 0) w ≤ 0
(sinw, 1− cos w) 0 < w < 2π
(w − 2π, 0) w ≥ 2π

(13.3)

When w is less than zero or above 2π, f(w) moves along the x axis of the plane;
in between, it moves along a circle of radius 1, centered at (0, 1), which it enters
and leaves at the origin. Notice that f is invertible everywhere except at the
origin, which is ambiguous between w = 0 and w = 2π.

Let X(t) = f(W (t) + π), where W (t) is a standard Wiener process. At
all t, P (W (t) + π = 0) = P (W (t) + π = 2π) = 0, so, with probability 1, X(t)
can be inverted to get W (t). Since W (t) is a Markov process, it follows that
P (X(t + h) ∈ B|X(t) = x) = P

(
X(t + h) ∈ B|FX

t

)
almost surely, i.e., X is

Markov. Now consider τ = inft X(t) = (0, 0), the hitting time of the origin.
This is clearly an FX-optional time, and equally clearly almost surely finite,
because, with probability 1, W (t) will leave the interval (−π,π) within a finite
time. But, equally clearly, the future behavior of X will be very different if it hits
the origin because W = π or because W = −π, which cannot be determined just
from X. Hence, there is at least one optional time at which X is not strongly
Markovian, so X is not a strong Markov process.

Since we often want to condition on the state of the process at random times,
we would like to find conditions under which a process is strongly Markovian
for all optional times.

13.2 Martingale Problems

One approach to getting strong Markov processes is through martingales, and
more specifically through what is known as the martingale problem.

Notice the following consequence of Theorem 158:

Ktf(x)− f(x) =
∫ t

0
KsGf(x)ds (13.4)
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for any t ≥ 0 and f ∈ Dom(G). The relationship between Ktf and the condi-
tional expectation of f suggests the following definition.

Definition 168 (Martingale Problem) Let Ξ be a Polish space, D a class
of bounded, continuous, real-valued functions on Ξ, and G an operator from D
to bounded, measurable functions on Ξ. A Ξ-valued stochastic process on R+ is
a solution to the martingale problem for G and D if, for all f ∈ D,

f(Xt)−
∫ t

0
Gf(Xs)ds (13.5)

is a martingale with respect to
{
FX

}
t
, the natural filtration of X.

Proposition 169 (Cadlag Nature of Functions in Martingale Prob-
lems) Suppose X is a cadlag solution to the martingale problem for G,D. Then
for any f ∈ D, the stochastic process given by Eq. 13.5 is also cadlag.

Proof: Follows from the assumption that f is continuous. !

Lemma 170 (Alternate Formulation of Martingale Problem) X is a
solution to the martingale problem for G,D if and only if, for all t, s ≥ 0,

E
[
f(Xt+s)|FX

t

]
−E

[∫ t+s

t
Gf(Xu)du|FX

t

]
= f(Xt) (13.6)

Proof: Take the definition of a martingale and re-arrange the terms in Eq.
13.5. !

Martingale problems are important because of the two following theorems
(which can both be refined considerably).

Theorem 171 (Markov Processes Solve Martingale Problems) Let X
be a homogeneous Markov process with generator G and cadlag sample paths,
and let D be the continuous functions in Dom(G). Then X solves the martingale
problem for G,D.

Proof: Exercise 13.2. !

Theorem 172 (Solutions to the Martingale Problem are Strongly Marko-
vian) Suppose that for each x ∈ Ξ, there is a unique cadlag solution to the
martingale problem for G,D such that X0 = x. Then the collection of these
solutions is a homogeneous strong Markov family X, and the generator is equal
to G on D.

Proof: Exercise 13.3. !
The main use of Theorem 171 is that it lets us prove convergence of some

functions of Markov processes, by showing that they can be cast into the form of
Eq. 13.5, and then applying the martingale convergence devices. The other use
is in conjunction with Theorem 172. We will often want to show that a sequence
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of Markov processes converges on a limit which is, itself, a Markov process. One
approach is to show that the terms in the sequence solve martingale problems
(via Theorem 171), argue that then the limiting process does too, and finally
invoke Theorem 172 to argue that the limiting process must itself be strongly
Markovian. This is often much easier than showing directly that the limiting
process is Markovian, much less strongly Markovian. Theorem 172 itself is often
a convenient way of showing that the strong Markov property holds.

13.3 Exercises

Exercise 13.1 (Strongly Markov at Discrete Times) Let X be a homoge-
neous Markov process with respect to a filtration {F}t and τ be an {F}t-optional
time. Prove that if P (τ <∞) = 1, and τ takes on only countably many values,
then X is strongly Markovian at τ . (Note: the requirement that X be homo-
geneous can be lifted, but requires some more technical machinery I want to
avoid.)

Exercise 13.2 (Markovian Solutions of the Martingale Problem) Prove
Theorem 171. Hints: Use Lemma 170, bounded convergence, and Theorem 158.

Exercise 13.3 (Martingale Solutions are Strongly Markovian) Prove
Theorem 172. Hint: use the Optional Sampling Theorem (from 36-752, or from
chapter 7 of Kallenberg).


