
Chapter 12

Generators of Markov
Processes

This lecture is concerned with the infinitessimal generator of a
Markov process, and the sense in which we are able to write the evo-
lution operators of a homogeneous Markov process as exponentials
of their generator.

Take our favorite continuous-time homogeneous Markov process, and con-
sider its semi-group of time-evolution operators Kt. They obey the relationship
Kt+s = KtKs. That is, composition of the operators corresponds to addition of
their parameters, and vice versa. This is reminiscent of the exponential func-
tions on the reals, where, for any k ∈ R, k(t+s) = ktks. In the discrete-parameter
case, in fact, Kt = (K1)

t, where integer powers of operators are defined in the
obvious way, through iterated composition, i.e., K2f = K ◦ (Kf). It would
be nice if we could extend this analogy to continuous-parameter Markov pro-
cesses. One approach which suggests itself is to notice that, for any k, there’s
another real number g such that kt = etg, and that etg has a nice representation
involving integer powers of g:

etg =
∞∑

i=0

(tg)i

i!

The strategy this suggests is to look for some other operator G such that

Kt = etG ≡
∞∑

i=0

tiGi

i!

Such an operator G is called the generator of the process, and the purpose of this
chapter is to work out the conditions under which this analogy can be carried
through.

In the exponential function case, we notice that g can be extracted by taking
the derivative at zero: d

dte
tg

∣∣
t=0

= g. This suggests the following definition.
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Definition 150 (Infinitessimal Generator) Let Kt be a continuous-parameter
semi-group of linear operators on L, where L is a normed linear vector space,
e.g., Lp for some 1 ≤ p ≤ ∞. Say that a function f ∈ L belongs to Dom(G) if
the limit

lim
h↓0

Khf −K0f

h
≡ Gf (12.1)

exists in an L-norm sense (Definition 151). The operator G defined through Eq.
12.1 is called the infinitessimal generator of the semi-group Kt.

Definition 151 (Limit in the L-norm sense) Let L be a normed vector
space. We say that a sequence of elements fn ∈ L has a limit f in L when

lim
n→∞

‖fn − f‖ = 0 (12.2)

This definition extends in the natural way to continuously-indexed collections of
elements.

Lemma 152 (Generators are Linear) For every semi-group of homogeneous
transition operators Kt, the generator G is a linear operator.

Proof: Exercise 12.1. !

Lemma 153 (Invariant Distributions of a Semi-group Belong to the
Null Space of Its Generator) If ν is an invariant distribution of a semi-group
of Markov operators Mt with generator G, then Gν = 0.

Proof: Since ν is invariant, Mtν = ν for all t (Theorem 136). Hence
Mtν − ν = Mtν − M0ν = 0, so, applying the definition of the generator (Eq.
12.1), Gν = 0. !

Remark: The converse assertion, that Gν = 0 implies ν is invariant under
Mt, requires extra conditions.

There is a conjugate version of this lemma.

Lemma 154 (Invariant Distributions and the Generator of the Time-
Evolution Semigroup) If ν is an invariant distribution of a Markov process,
and the time-evolution semi-group Kt is generated by G, then, ∀f ∈ Dom(G),
νGf = 0.

Proof: Since ν is invariant, νKt = ν for all t, hence νKtf = νf for all
t ≥ 0 and all f . Since taking expectations with respect to a measure is a linear
operator, ν(Ktf − f) = 0, and obviously then (Eq. 12.1) νGf = 0. !

Remark: Once again, νGf = 0 for all f is not enough, in itself, to show that
ν is an invariant measure.

You will usually see the definition of the generator written with f instead
of K0f , but I chose this way of doing it to emphasize that G is, basically,
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the derivative at zero, that G = dK/dt|t=0. Recall, from calculus, that the
exponential function can kt be defined by the fact that d

dtk
t ∝ kt (and e can

be defined as the k such that the constant of proportionality is 1). As part of
our program, we will want to extend this differential point of view. The next
lemma builds towards it, by showing that if f ∈ Dom(G), then Ktf is too.

Lemma 155 (Operators in a Semi-group Commute with Its Genera-
tor) If G is the generator of the semi-group Kt, and f is in the domain of G,
then Kt and G commute, for all t:

KtGf = lim
t′→t

Kt′f −Ktf

t′ − t
(12.3)

= GKtf (12.4)

Proof: Exercise 12.2. !

Definition 156 (Time Derivative in Function Space) For every t ∈ T , let
u(t, x) be a function in L. When the limit

u′(t0, x) = lim
t→t0

u(t, x)− u(t0, x)
t− t0

(12.5)

exists in the L sense, then we say that u′(t0) is the time derivative or strong
derivative of u(t) at t0.

Lemma 157 (Generators and Derivatives at Zero) Let Kt be a homo-
geneous semi-group of operators with generator G. Let u(t) = Ktf for some
f ∈ Dom(G). Then u(t) is differentiable at t = 0, and its derivative there is
Gf .

Proof: Obvious from the definitions. !

Theorem 158 (The Derivative of a Function Evolved by a Semi-Group)
Let Kt be a homogeneous semi-group of operators with generator G, and let
u(t, x) = (Ktf)(x), for fixed f ∈ Dom(G). Then u′(t) exists for all t, and is
equal to Gu(t).

Proof: Since f ∈ Dom(G), KtGf exists, but then, by Lemma 155, KtGf =
GKtf = Gu(t), so u(t) ∈ Dom(G) for all t. Now let’s consider the time deriva-
tive of u(t) at some arbitrary t0, working from above:

(u(t)− u(t0)
t− t0

=
Kt−t0u(t0)− u(t0)

t− t0
(12.6)

=
Khu(t0)− u(t0)

h
(12.7)

Taking the limit as h ↓ 0, we get that u′(t0) = Gu(t0), which exists, because
u(t0) ∈ Dom(G). !



CHAPTER 12. GENERATORS 91

Corollary 159 (Initial Value Problems in Function Space) u(t) = Ktf ,
f ∈ Dom(G), solves the initial value problem u(0) = f , u′(t) = Gu(t).

Proof: Immediate from the theorem. !
Remark: Such initial value problems are sometimes called Cauchy problems,

especially when G takes the form of a differential operator.

Corollary 160 (Derivative of Conditional Expectations of a Markov
Process) Let X be a homogeneous Markov process whose time-evolution op-
erators are Kt, with generator G. If fDom(G), then its condition expectation
E [f(Xs)|Xt] has strong derivative Gu(t).

Proof: An immediate application of the theorem.
We are now almost ready to state the sense in which Kt is the result of

exponentiating G. This is given by the remarkable Hille-Yosida theorem, which
in turn involves a family of operators related to the time-evolution operators,
the “resolvents”, again built by analogy to the exponential functions, and to
Laplace transforms.

Recall that the Laplace transform of a function f : R ,→ R is another func-
tion, f̃ , defined by

f̃(λ) ≡
∫ ∞

0
e−λtf(t)dt

for positive λ. Laplace transforms arise in many contexts (linear systems theory,
integral equations, etc.), one of which is moment-generating functions in basic
probability theory. If Y is a real-valued random variable with probability law
P , then the moment-generating function is

MY (λ) ≡ E
[
eλY

]
=

∫
eλydP =

∫
eλyp(y)dy

when the density in the last expression exists. You may recall, from this context,
that the distributions of well-behaved random variables are completely specified
by their moment-generating functions; this is actually a special case of a more
general result about when functions are uniquely described by their Laplace
transforms, i.e., when f can be expressed uniquely in terms of f̃ . This is im-
portant to us, because it turns out that the Laplace transform, so to speak, of a
semi-group of operators is better-behaved than the semi-group itself, and we’ll
want to say when we can use the Laplace transform to recover the semi-group.

The analogy with exponential functions, again, is a key. Notice that, for any
positive constant λ,

∫ ∞

t=0
e−λtetgdt =

1
λ− g

(12.8)

from which we could recover g, as that value of λ for which the Laplace transform
is singular. In our analogy, we will want to take the Laplace transform of the
semi-group. Just as f̃(λ) is another real number, the Laplace transform of a
semi-group of operators is going to be another operator. We will want that to
be the inverse operator to λ−G.
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Definition 161 (Resolvents) Given a continuous-parameter homogeneous semi-
group Kt, for each λ > 0, the resolvent operator or resolvent Rλ is the Laplace
transform of Kt: for every f ∈ L,

(Rλf)(x) ≡
∫ ∞

t=0
e−λt(Ktf)(x)dt (12.9)

Remark 1: Think of Kt as a function from the real numbers to the linear
operators on L. Symbolically, its Laplace transform would be

∫∞
0 e−λtKtdt.

The equation above just fills in the content of that symbolic expression.
Remark 2: The name “resolvent”, like some of the other ideas an termi-

nology of operator semi-groups, comes from the theory of integral equations;
invariant densities (when they exist) are solutions of homogeneous linear Fred-
holm integral equations of the second kind. Rather than pursue this connection,
or even explain what that phrase means, I will refer you to the classic treatment
of integral equations by Courant and Hilbert (1953, ch. 3), which everyone else
seems to follow very closely.

Remark 3: When the function f is a value (loss, benefit, utility, ...) function,
(Ktf)(x) is the expected value at time t when starting the process in state x.
(Rλf)(x) can be thought of as the net present expected value when starting at
x and applying a discount rate λ.

Definition 162 (Yosida Approximation of Operators) The Yosida ap-
proximation to a semi-group Kt with generator G is given by

K(λ)
t ≡ etG(λ)

(12.10)
G(λ) ≡ λ(λRλ − I) = λGRλ (12.11)

The domain of G(λ) is all of L, not just Dom(G).

Theorem 163 (Hille-Yosida Theorem) Let G be a linear operator on some
linear subspace D of L. G is the generator of a continuous semi-group of con-
tractions Kt if and only if

1. D is dense in L;

2. For every f ∈ L and λ > 0, there exists a unique g ∈ D such that λg−Gg =
f ;

3. For every g ∈ D and positive λ, ‖λg −Gg‖ ≥ λ‖g‖.

Under these conditions, the resolvents of Kt are given by Rλ = (λI−G)−1, and
Kt is the limit of the Yosida approximations as λ →∞:

Ktf = lim
λ→∞

Kλ
t f, ∀f ∈ L (12.12)
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Proof: See Kallenberg, Theorem 19.11. !
Remark 1: Other good sources on the Hille-Yosida theorem include Ethier

and Kurtz (1986, sec. 1.2), and of course Hille’s own book (Hille, 1948, ch. XII).
I have not read Yosida’s original work.

Remark 2: The point of condition (1) in the theorem is that for any f ∈ L,
we can chose fn ∈ D such that fn → f . Then, even if Gf is not directly defined,
Gfn exists for each n. Because G is linear and therefore continuous, Gfn goes
to a limit, which we can chose to write as Gf . Similarly for G2, G3, etc. Thus
we can define etGf as

lim
n→∞

∞∑

j=0

tjGjfn

j!

assuming all of the sums inside the limit converge, which is yet to be shown.
Remark 3: The point of condition (2) in the theorem is that, when it holds,

(λI −G)−1 is well-defined, i.e., there is an inverse to the operator λI−G. This
is, recall, what we would like the resolvent to be, if the analogy with exponential
functions is to hold good.

Remark 4: If we start from the semi-group Kt and obtain its generator G, the
theorem tells us that it satisfies properties (1)–(3). If we start from an operator
G and see that it satsifies (1)–(3), the theorem tells us that it generates some
semi-group. It might seem, however, that it doesn’t tell us how to construct that
semi-group, since the Yosida approximation involves the resolvent Rλ, which is
defined in terms of the semi-group, creating an air of circularity. In fact, when
we start from G, we decree Rλ to be (λI −G)−1. The Yosida approximations
then is defined in terms of G and λ alone.

Corollary 164 (Stochastic Approximation of Initial Value Problems)
Let u(0) = f , u′(t) = Gu(t) be an initial value problem in L. Then a stochastic
approximation to u(t) can be founded by taking

û(t) =
1
n

n∑

i=1

f(Xi(t)) (12.13)

where the Xi are independent copies of the Markov process corresponding to the
semi-group Kt generated by G, with initial condition Xi(0) = x.

Proof: Combine corollaries. !

12.1 Exercises

Exercise 12.1 (Generators are Linear) Prove Lemma 152.

Exercise 12.2 (Semi-Groups Commute with Their Generators) Prove
Lemma 155.
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1. Prove Equation 12.3, restricted to t′ ↓ t instead of t′ → t. Hint: Write Tt

in terms of an integral over the corresponding transition kernel, and find
a reason to exchange integration and limits.

2. Show that the limit as t′ ↑ t also exists, and is equal to the limit from
above. Hint: Re-write the quotient inside the limit so it only involves
positive time-differences.

3. Prove Equation 12.4.

Exercise 12.3 (Generator of the Poisson Counting Process) Find the
generator of the time-evolution operators of the Poisson counting process (Ex-
ample 140).


