
Chapter 2

Building Infinite Processes
from Finite-Dimensional
Distributions

Section 2.1 introduces the finite-dimensional distributions of a
stochastic process, and shows how they determine its infinite-dimensional
distribution.

Section 2.2 considers the consistency conditions satisfied by the
finite-dimensional distributions of a stochastic process, and the ex-
tension theorems (due to Daniell and Kolmogorov) which prove the
existence of stochastic processes with specified, consistent finite-
dimensional distributions.

2.1 Finite-Dimensional Distributions

So, we now have X, our favorite Ξ-valued stochastic process on T with paths
in U . Like any other random variable, it has a probability law or distribution,
which is defined over the entire set U . Generally, this is infinite-dimensional.
Since it is inconvenient to specify distributions over infinite-dimensional spaces
all in a block, we consider the finite-dimensional distributions.

Definition 22 (Finite-dimensional distributions) The finite-dimensional
distributions of X are the the joint distributions of Xt1 , Xt2 , . . . Xtn , t1, t2, . . . tn ∈
T , n ∈ N.

You will sometimes see “FDDs” and “fidis” as abbreviations for “finite-
dimensional distributions”. Please do not use “fidis”.

We can at least hope to specify the finite-dimensional distributions. But we
are going to want to ask a lot of questions about asymptotics, and global proper-
ties of sample paths, which go beyond any finite dimension, so you might worry
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that we’ll still need to deal directly with the infinite-dimensional distribution.
The next theorem says that this worry is unfounded; the finite-dimensional dis-
tributions specify the infinite-dimensional distribution (pretty much) uniquely.

Theorem 23 (Finite-dimensional distributions determine process dis-
tributions) Let X and Y be two Ξ-valued processes on T with paths in U . Then
X and Y have the same distribution iff all their finite-dimensional distributions
agree.

Proof: “Only if”: Since X and Y have the same distribution, applying
the any given set of coordinate mappings will result in identically-distributed
random vectors, hence all the finite-dimensional distributions will agree.

“If”: We’ll use the π-λ theorem.
Let C be the finite cylinder sets, i.e., all sets of the form

C =
{
x ∈ ΞT |(xt1 , xt2 , . . . xtn) ∈ B

}

where n ∈ N, B ∈ Xn, t1, t2, . . . tn ∈ T . Clearly, this is a π-system, since it is
closed under intersection.

Now let L consist of all the sets L ∈ X T where P (X ∈ L) = P (Y ∈ L).
We need to show that this is a λ-system, i.e., that it (i) includes ΞT , (ii) is
closed under complementation, and (iii) is closed under monotone increasing
limits. (i) is clearly true: P

(
X ∈ ΞT

)
= P

(
Y ∈ ΞT

)
= 1. (ii) is true because

we’re looking at a probability: if L ∈ L, then P (X ∈ Lc) = 1 − P (X ∈ L) =
1 − P (Y ∈ L) = P (Y ∈ Lc). To see (iii), let Ln ↑ L be a monotone-increasing
sequence of sets in L, and recall that, for any measure, Ln ↑ L implies µLn ↑ µL.
So P (X ∈ Ln) ↑ P (X ∈ L), P (Y ∈ Ln) ↑ P (Y ∈ L), and (since P (X ∈ Ln) =
P (Y ∈ Ln)), P (X ∈ Ln) ↑ P (Y ∈ L) as well. A sequence cannot have two
limits, so P (X ∈ L) = P (Y ∈ L), and L ∈ L.

Since the finite-dimensional distributions match, P (X ∈ C) = P (Y ∈ C) for
all C ∈ C, which means that C ⊂ L. Also, from the definition of the product
σ-field, σ(C) = X T . Hence, by the π-λ theorem, X T ⊆ L. !

A note of caution is in order here. If X is a Ξ-valued process on T whose
paths are constrained to line in U , and Y is a similar process that is not so
constrained, it is nonetheless possible that X and Y agree in all their finite-
dimensional distributions. The trick comes if U is not, itself, an element of X T .
The most prominent instance of this is when Ξ = R, T = R, and the constraint
is continuity of the sample paths: we will see that U &∈ BR. (This is the point
of Exercise 1.1.)

2.2 Consistency and Extension

The finite-dimensional distributions of a given stochastic process are related
to one another in the usual way of joint and marginal distributions. Take
some collection of indices t1, t2 . . . tn ∈ T , and corresponding measurable sets
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B1 ∈ X1, B2 ∈ X2, . . . Bn ∈ Xn. Then, for any m > n, and any further indices
tn+1, tn2 , . . . tm, it must be the case that

P (Xt1 ∈ B1, Xt2 ∈ B2, . . . Xtn ∈ Bn) (2.1)
= P

(
Xt1 ∈ B1, Xt2 ∈ B2, . . . Xtn ∈ Bn, Xtn+1 ∈ Ξ, Xtn+2 ∈ Ξ, . . . Xtm ∈ Ξ

)

This is going to get really awkward to write over and over, so let’s introduce
some simplifying notation. Fin(T ) will denote the class of all finite sub-sets
of our index set T , and likewise Denum(T ) all denumerable sub-sets. We’ll
indicate such sub-sets, for the moment, by capital letters like J , K, etc., and
extend the definition of coordinate maps (Definition 15) so that πJ maps from
ΞT to ΞJ in the obvious way, and πK

J maps from ΞK to ΞJ , if J ⊂ K. If µ is
the measure for the whole process, then the finite-dimensional distributions are
{µJ |J ∈ Fin(T )}. Clearly, µJ = µ ◦ πJ

−1.

Definition 24 (Projective Family of Distributions) A family of distri-
butions µJ , J ∈ Denum(T ), is projective when for every J,K ∈ Denum(T ),
J ⊂ K implies

µJ = µK ◦
(
πK

J

)−1
(2.2)

Such a family is also said to be consistent or compatible (with one another).

Lemma 25 (FDDs Form Projective Families) The finite-dimensional dis-
tributions of a stochastic process always form a projective family.

Proof: This is just the fact that we get marginal distributions by integrating
out some variables from the joint distribution. But, to proceed formally: Letting
J and K be finite sets of indices, J ⊂ K, we know that µK = µ ◦ πK

−1, that
µJ = µ ◦ πJ

−1 and that πJ = πK
J ◦ πK . Hence

µJ = µ ◦
(
πK

J ◦ πK

)−1
(2.3)

= µ ◦ π−1
K ◦

(
πK

J

)−1
(2.4)

= µK ◦
(
πK

J

)−1
(2.5)

as required. !
I claimed that the reason to care about finite-dimensional distributions is

that if we specify them, we specify the distribution of the whole process. Lemma
25 says that a putative family of finite dimensional distributions must be consis-
tent, if they are to let us specify a stochastic process. Theorem 23 says that there
can’t be more than one process distribution with all the same finite-dimensional
marginals, but it doesn’t guarantee that a given collection of consistent finite-
dimensional distributions can be extended to a process distribution — it gives
uniqueness but not existence. Proving the existence of an extension requires
some extra assumptions. Either we need to impose topological conditions on Ξ,
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or we need to ensure that all the finite-dimensional distributions can be related
through conditional probabilities. The first approach is due to Daniell and Kol-
mogorov, and will finish this lecture; the second is due to Ionescu-Tulcea, and
will begin the next.

We’ll start with Daniell’s theorem on the existence of random sequences, i.e.,
where the index set is the natural numbers, which uses mathematical induction
to extend the finite-dimensional family. To get there, we need a useful proposi-
tion about our ability to represent non-trivial random variables as functions of
uniform random variables on the unit interval.

Proposition 26 (Randomization, transfer) Let X and X ′ be identically-
distributed random variables in a measurable space Ξ and Y a random variable
in a Borel space Υ. Then there exists a measurable function f : Ξ× [0, 1] )→ Υ
such that L (X ′, f(X ′, Z)) = L (X, Y ), when Z is uniformly distributed on the
unit interval and independent of X ′.

Proof: See Kallenberg, Theorem 6.10 (p. 112–113). !
Basically what this says is that if we have two random variables with a

certain joint distribution, we can always represent the pair by a copy of one of
the variables (X), and a transformation of an independent random number. It is
important that Υ be a Borel space here; the result, while very natural-sounding,
does not hold for arbitrary measurable spaces, because the proof relies on having
a regular conditional probability.

Theorem 27 (Daniell Extension Theorem) For each n ∈ N, let Ξn be a
Borel space, and µn be a probability measure on

∏n
i=1 Ξi. If the µn form a

projective family, then there exist random variables Xi : Ω )→ Ξi, i ∈ N, such
that L (X1, X2, . . . Xn) = µn for all n, and a measure µ on

∏∞
i=1 Ξi such that

µn is equal to the projection of µ onto
∏

i = 1nΞi.

Proof: For any fixed n, X1, X2, . . . Xn is just a random vector with distri-
bution µn, and we can always construct such an object. The delicate part here is
showing that, when we go to n+1, we can use the same random elements for the
first n coordinates. We’ll do this by using the representation-by-randomization
proposition just introduced, starting with an IID sequence of uniform random
variables on the unit interval, and then transforming them to get a sequence
of variables in the Ξi which have the right joint distribution. (This is like the
quantile transform trick for generating random variates.) The proof will go
inductively, so first we’ll take care of the induction step, and then go back to
reassure ourselves about the starting point.

Induction: Assume we already have X1, X2, . . . Xn such that L (X1, X2, . . . Xn) =
µn, and that we have a Zn+1 ∼ U(0, 1) and independent of all the Xi to date.
As remarked, we can always get Y1, Y2, . . . Yn+1 such that L (Y1, Y2, . . . Yn+1) =
µn+1. Because the µn form a projective family, L (Y1, Y2, . . . Yn) = L (X1, X2, . . . Xn).
Hence, by Proposition 26, there is a measurable f such that, if we set Xn+1 =
f(X1, X2, . . . Xn, Zn+1), then L (X1, X2, . . . Xn, Xn+1) = µn+1.
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First step: We need there to be an X1 with distribution µ1, and we need a
(countably!) unlimited supply of IID variables Z2, Z3, . . . all ∼ U(0, 1). But the
existence of X1 is just the existence of a random variable with a well-defined
distribution, which is unproblematic, and the existence of an infinite sequence of
IID uniform random variates is too. (See 36-752, or Lemma 3.21 in Kallenberg.)

Finally, to convince yourself of the existence of the measure µ on the product
space, recall Theoerem 16. !

Remark: Kallenberg, Corollary 6.15, gives a somewhat more abstract version
of this theorem.

Daniell’s extension theorem works fine for one-sided random sequences, but
we often want to work with larger and more interesting index sets. For this
we need the full Kolmogorov extension theorem, where the index set T can be
completely arbitrary. This in turn needs the Carathéodory Extension Theorem,
which I re-state here for convenience.

Proposition 28 (Carathéodory Extension Theorem) Let µ be a non-
negative, finitely additive set function on a field C of subsets of some space
Ω. If µ is also countably additive, then it extends to a measure on σ(C), and, if
µ(Ω) < ∞, the extension is unique.

Proof: See 36-752 lecture notes (Theorem 50, Exercise 51), or Kallenberg,
Theorem 2.5, pp. 26–27. Note that “extension” here means extending from a
mere field to a σ-field, not from finite to infinite index sets. !

Theorem 29 (Kolmogorov Extension Theorem) Let Ξt, t ∈ T , be a col-
lection of Borel spaces, with σ-fields Xi, and let µJ , J ∈ Fin(T ), be a projective
family of finite-dimensional distributions on those spaces. Then there exist Ξt-
valued random variables Xt such that L (XJ) = µJ for all J ∈ Fin(T ).

Proof: This will be easier to follow if we first consider the case there T
is countable, which is basically Theorem 27 again, and then the general case,
where we need Proposition 28.

Countable T : We can, by definition, put the elements of T in 1−1 correspon-
dence with the elements of N. This in turn establishes a bijection between the
product space

⊗
t∈T Ξt = ΞT and the sequence space

⊗∞
i=1 Ξt. This bijection

also induces a projective family of distributions on finite sequences. The Daniell
Extension Theorem (27) gives us a measure on the sequence space, which the
bijection takes back to a measure on ΞT . To see that this µ does not depend on
the order in which we arranged T , notice that any two arrangements must give
identical results for any finite set J , and then use Theorem 23.

Uncountable T : For each countable K ⊂ T , the argument of the preceding
paragraph gives us a measure µK on ΞK . And, clearly, these µK themselves form
a projective family. Now let’s define a set function µ on the countable cylinder
sets, i.e., on the class D of sets of the form A×ΞT\K , for some K ∈ Denum(T )
and some A ∈ XK . Specifically, µ : D )→ [0, 1], and µ(A × ΞT\K) = µK(A).
We would like to use Carathéodory’s theorem to extend this set function to
a measure on the product σ-algebra XT . First, let’s check that the countable
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cylinder sets form a field: (i) ΞT ∈ D, clearly. (ii) The complement, in ΞT , of
a countable cylinder A× ΞT\K is another countable cylinder, Ac × ΞT\K . (iii)
The union of two countable cylinders B1 = A1 × ΞT\K1 and B2 = A2 × ΞT\K2

is another countable cylinder, since we can always write it as A × ΞT\K for
some A ∈ XK , where K = K1 ∪ K2. Clearly, µ(∅) = 0, so we just need to
check that µ is countably additive. So consider any sequence of disjoint cylinder
sets B1, B2, . . .. Because they’re cylinder sets, each i, Bi = Ai × ΞT\Ki

, for
some Ki ∈ Denum(T ), and some Ai ∈ XKi . Now set K =

⋃
i Ki; this is a

countable union of countable sets, and so itself countable. Furthermore, say
Ci = Ai × ΞK\Ki

, so we can say that
⋃

i Bi = (
⋃

i Ci) × ΞT\K . With this
notation in place,

µ
⋃

i

Bi = µK

⋃

i

Ci (2.6)

=
∑

i

µKCi (2.7)

=
∑

i

µKiAi (2.8)

=
∑

i

µBi (2.9)

where in the second line we’ve used the fact that µK is a probability measure
on ΞK , and so countably additive on sets like the Ci. This proves that µ is
countably additive, so by Proposition 28 it extends to a measure on σ(D), the
σ-field generated by the countable cylinder sets. But we know from Definition
12 that this σ-field is the product σ-field. Since µ(ΞT ) = 1, Proposition 28
further tells us that the extension is unique. !

Borel spaces are good enough for most of the situations we find ourselves
modeling, so the Daniell-Kolmogorov Extension Theorem (as it’s often known)
see a lot of work. Still, some people dislike having to make topological assump-
tions to solve probabilistic problems; it seems inelegant. The Ionescu-Tulcea
Extension Theorem provides a purely probabilistic solution, available if we can
write down the FDDs recursively, in terms of regular conditional probability
distributions, even if the spaces where the process has its coordinates are not
nice and Borel. Doing this properly will involve our revisiting and extending
some ideas about conditional probability, which you will have seen in 36-752, so
it will be deferred to the next lecture.


