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We present a systematic examination of a real network data set using maximum likelihood estimation for exponential random graph models
as well as new procedures to evaluate how well the models fit the observed networks. These procedures compare structural statistics of
the observed network with the corresponding statistics on networks simulated from the fitted model. We apply this approach to the study
of friendship relations among high school students from the National Longitudinal Study of Adolescent Health (AddHealth). We focus
primarily on one particular network of 205 nodes, although we also demonstrate that this method may be applied to the largest network in
the AddHealth study, with 2,209 nodes. We argue that several well-studied models in the networks literature do not fit these data well and
demonstrate that the fit improves dramatically when the models include the recently developed geometrically weighted edgewise shared
partner, geometrically weighted dyadic shared partner, and geometrically weighted degree network statistics. We conclude that these models
capture aspects of the social structure of adolescent friendship relations not represented by previous models.
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1. INTRODUCTION

Among the many statistical methods developed in recent
decades for analyzing dependent data, network models are es-
pecially useful for dealing with the kinds of dependence in-
duced by social relations. Applications of social network mod-
els are becoming important in a number of fields, such as epi-
demiology, with the emergence of infectious diseases like AIDS
and SARS; business, with the study of “viral marketing”; and
political science, with the study of coalition formation dynam-
ics. Much recent effort has been focused on inference for social
network models (e.g., Holland and Leinhardt 1981; Strauss and
Ikeda 1990; Snijders 2002; Hunter and Handcock 2006), but
comparatively little work has tested the goodness of fit of the
models.

Data on social relationships often can be represented as a net-
work, or mathematical graph, consisting of a set of nodes and
a set of edges, where an edge is an ordered or unordered pair
of nodes. This article focuses specifically on network data col-
lected at a nationally representative sample of high schools in
the United States. The nodes represent students, and the edges
signify friendships between pairs of students. Figure 1 depicts
one such network graphically, where the shapes and labels of
the nodes represent covariates measured on the students.

We consider exponential family models, in the traditional sta-
tistical sense, for network structure. These models have a long
history in the networks literature, and we refer to them here as
exponential random graph models (ERGMs). The primary con-
tribution of this article is to propose a systematic approach to
the assessment of network ERGMs. The models that we exam-
ine here achieve a good fit to key structural properties of the
network with a small number of covariates. The approach and
the findings address a central question in the network literature:
Can the global structural features observed in a network be gen-
erated by a modest number of local rules?

Another contribution of this article is to demonstrate the
use of maximum likelihood to fit reasonable models to net-
work data with hundreds of nodes and obtain results that
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are scientifically meaningful and interesting. We have devel-
oped an R package (called statnet) to implement the pro-
cedures developed in this article; this package is available at
http://csde.washington.edu/statnet.

It is possible to simulate random networks from a given
ERGM—at least in principle—using well-established Markov
chain Monte Carlo (MCMC) techniques. More recently, var-
ious researchers have been developing techniques to solve a
harder problem: calculating approximate maximum likelihood
estimates (MLEs) of the ERGM parameters, given an observed
network. Although these techniques are conceptually simple
(Geyer and Thompson 1992), their practical implementation for
relatively large social networks has proven elusive. We are now
able to apply these techniques to networks encompassing thou-
sands of nodes, much larger problems than could be tackled
until very recently.

In problems for which maximum likelihood estimation pre-
viously has been possible in ERGMs, a troubling empirical
fact has emerged: When ERGM parameters are estimated and
a large number of networks are simulated from the resulting
model, these networks frequently bear little resemblance to the
observed network (Handcock 2003). This seemingly paradoxi-
cal fact arises because even though the MLE makes the proba-
bility of the observed network as large as possible, this proba-
bility still might be extremely small relative to other networks.
In such a case, the ERGM does not fit the data well.

The remainder of this article provides a case study illustrat-
ing the application of recently developed models, software, and
goodness-of-fit procedures to network data sets from the Na-
tional Longitudinal Study of Adolescent Health (AddHealth),
which is described in Section 2. Section 3 explains the statis-
tical models that we fit to these data. Section 4 illustrates our
goodness-of-fit technique on two simple models that do not fit
well. Section 5 explains a set of network statistics that are used
to build good-fitting models in Section 6.

2. INTRODUCTION TO THE ADDHEALTH SURVEY

The network data on friendships that we study in this arti-
cle were collected during the first wave (1994–1995) of Add-
Health. The AddHealth data come from a stratified sample of
schools in the United States containing students in grades 7–12.
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Figure 1. Mutual friendships represented as a network. Shapes of
nodes denote sex: circles for female, squares for male, and triangles
for unknown. Labels denote the units digit of grade (7–12), or “−” for
unknown.

To collect friendship network data, AddHealth staff constructed
a roster of all students in a school from school administrators.
Students were then provided with the roster and asked to se-
lect up to five close male friends and five close female friends.
Students were allowed to nominate friends who were outside
the school or not on the roster, or to stop before nominating
five friends of either sex. Complete details of this and subse-
quent waves of the study have been given by Resnick et al.
(1997) and Udry and Bearman (1998) and can be found at
http://www.cpc.unc.edu/projects/addhealth. In most cases, the
individual school did not contain all grades 7–12; instead, data
were collected from multiple schools within a single system
(e.g., a junior high school and a high school) to obtain the full
set of six grades. In these cases, we use the term “school” to
refer to a set of schools from one community.

The full data set contains 86 schools, 90,118 student ques-
tionnaires, and 578,594 friendship nominations. Schools with
large amounts of missing data, such as special education
schools and for school districts that required explicit parental
consent for student participation, were excluded from our
analysis. Thus our analysis included 59 of the schools, rang-
ing in size from 71 to 2,209 surveyed students. However, in
this article we focus primarily on a single illustrative school,
school 10, which has 205 students. Our results for school 10
may not necessarily be inferred to the whole population of
schools; in particular, as we point out in Section 7, the parame-
ter estimates for school 10 may be numerically quite different
for those of other schools, because the parameters may depend
on the number of nodes in a complicated way. Yet when we
consider all 59 schools, we find remarkably similar qualitative
results.

The edges in these raw network data are directed, because it
is possible that A could name B as a friend without B naming A.
However, in this article we consider the undirected network of
mutual friendships, those in which both A nominates B and B
nominates A. This feature of reciprocating nomination is com-
mon to many conceptualizations of friendship.

Each network may be represented by a symmetric n × n ma-
trix Y and an n×q matrix X of nodal covariates, where n is the

number of nodes. The entries of the Y matrix, termed the ad-
jacency matrix, are all 0’s and 1’s, with Yij = 1 indicating the
presence of an edge between i and j . Because self-nomination
was disallowed, Yii = 0 for all i. The limit on the number of
allowed nominations means that the data are not complete, but
for convenience we assume that a lack of nomination in either
direction between two individuals means that there is no mutual
friendship.

The nodal covariate matrix X includes many measurements
on each of the individuals in these networks. Some such mea-
surements, like sex, are not influenced by network structure
in any way and are termed exogenous. Other covariates may
exhibit nonexogeneity: for example, tobacco use may be in-
fluenced through friendships. Exogeneity is important, for in-
stance, to guarantee the dyadic independence property that we
explain in (3). We focus our analysis on only three covariates:
sex, grade, and race. Although the latter two may exhibit some
endogeneity (e.g., the influence of friends may affect whether
a student fails and must repeat a grade, or which race a student
of mixed-race heritage chooses to identify with), we assume
that such effects are minimal and consider the attributes to be
fixed and exogenous. What we term “race” is constructed from
two questions on race and Hispanic origin, with Hispanic origin
taking precedence. Thus our categories “Hispanic,” “Black,”
“White,” “Asian,” “Native American,” and “Other” are short-
hand names for “Hispanic (all races),” “Black (non-Hispanic),”
“White (non-Hispanic),” and so on. This coding follows stan-
dard practice in the social science literature.

3. EXPONENTIAL RANDOM GRAPH MODELS

Our overall goal in using ERGMs, also known as p-star mod-
els (Wasserman and Pattison 1996), is to model the random be-
havior of the adjacency matrix Y conditional on the covariate
matrix X. Given a user-defined p-vector g(Y,X) of statistics
and letting η ∈ R

p denote the statistical parameter, these mod-
els form a canonical exponential family (Lehmann 1983),

Pη(Y = y|X) = κ−1 exp{ηtg(y,X)}, (1)

where the normalizing constant κ ≡ κ(η) is defined by

κ =
∑

w

exp{ηtg(w,X)}, (2)

and the sum (2) is taken over the whole sample space of al-
lowable networks w. The objective in defining g(Y,X) is to
choose statistics that summarize the social structure of the net-
work. The range of substantially motivated network statistics
that might be included in the g(Y,X) vector is vast (see Wasser-
man and Faust 1994 for the most comprehensive treatment of
these statistics). We consider only a few key statistics here, cho-
sen to represent friendship selection rules operating at a local
level. The goal is to test whether these local rules can reproduce
the global network patterns of clustering and geodesic distances
(Morris 2003).

The development of estimation methods for ERGMs has not
kept pace with the development of ERGMs themselves. To un-
derstand why this is so, consider the sum of (2). A sample space
consisting of all possible undirected networks on n nodes con-
tains 2n(n−1)/2 elements, an astronomically large number even
for moderate n. Therefore, direct evaluation of the normalizing
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constant κ in (2) is computationally infeasible for all but the
smallest networks—except in certain special cases, such as the
dyadic independence model of (3)—and inference using max-
imum likelihood estimation is extremely difficult. To circum-
vent this difficulty, we use a technique called MCMC maximum
likelihood estimation, in which a stochastic approximation to
the likelihood function is built and then maximized (Geyer and
Thompson 1992). This and other methods have been considered
by Dahmström and Dahmström (1993), Corander, Dahmström,
and Dahmström (1998), Crouch, Wasserman, and Trachtenberg
(1998), Snijders (2002), and Handcock (2002). Details of the
specific technique that we use have been given by Hunter and
Handcock (2006), whereas the background of ERGMs in the
networks literature has been discussed by Snijders (2002) or
Hunter and Handcock (2006).

An important special case of model (1) is the dyadic inde-
pendence model, in which

g(y,X) =
∑∑

i<j

yij h(Xi ,Xj ) (3)

for some function h mapping R
q × R

q into R
p , where the q-

dimensional row vectors Xi and Xj are the nodal covariate vec-
tors for the ith and j th individuals. In the context of an undi-
rected network, the word dyad refers to a single Yij for some
pair (i, j) of nodes (not to be confused with an edge, which
requires that Yij = 1). In the ERGM resulting from (3), (1) be-
comes

Pη(Y = y|X) = κ−1
∏∏

i<j

exp
{
yijη

t�(g(y,X))ij
}
, (4)

where

�(g(y,X))ij = g(y,X)|yij =1 − g(y,X)|yij =0 (5)

denotes the change in the vector of statistics when yij is
changed from 0 to 1 and the rest of y remains unchanged. In (4),
the joint distribution of the Yij is simply the product of the
marginal distributions—hence the name “dyadic independence
model.” The MLE in such a model may be obtained using lo-
gistic regression. As the simplest example of a dyadic indepen-
dence model, we take p = 1 and h(Xi ,Xj ) = 1, which yields
the well-known Bernoulli network, also known as the Erdős–
Rényi network, in which each dyad is an edge with probability
exp{η}/(1 + exp{η}).

For dyadic dependence models, (4) is not generally true, but
nonetheless the right side of this equation is called the pseudo-
likelihood. Until recently, inference for social network mod-
els has relied on maximum pseudolikelihood estimation, which
may be implemented using a standard logistic regression algo-
rithm (Besag 1974; Frank and Strauss 1986; Strauss and Ikeda
1990; Geyer and Thompson 1992). However, it has been ar-
gued that maximum pseudolikelihood estimation can perform
very badly in practice (Geyer and Thompson 1992) and that its
theoretical properties are poorly understood (Handcock 2003).
Particularly dangerous is the practice of interpreting standard
errors from logistic regression output as though they are rea-
sonable estimates of the standard deviations of the pseudolike-
lihood estimators. The only estimation technique that we dis-
cuss throughout the rest of this article is maximum likelihood
estimation.

4. GOODNESS OF FIT FOR DYADIC
INDEPENDENCE MODELS

The first dyadic independence model that we consider is per-
haps the simplest possible network model, in which g(y,X)

consists only of E(y), the number of edges in y. This is the
Bernoulli, or Erdős–Rényi, network described in Section 3. For
AddHealth school 10, the parameter estimate for the Bernoulli
network is seen in Table 1 to be −4.625. This may be derived
exactly. Because school 10 has 205 nodes and 203 edges, the
MLE for the probability that any dyad has an edge is 203/

(205
2

)
,

or .00971, and the log-odds of this value is −4.625.
The second model that we consider includes edges and also

several statistics based on nodal covariates. All of these sta-
tistics may be expressed as dyadic independence statistics as
in (3); that is, they all are of the form

∑∑

i<j

yijh(Xi ,Xj ) (6)

for a suitably chosen function h(Xi ,Xj ).
First, we include the so-called nodal factor effects for each

of the factors grade, race, and sex. Given a particular level of
a particular factor (i.e., categorical variable), the nodal factor
effect counts the total number of endpoints with that level for
each edge in the network. In other words,

h(Xi ,Xj ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 if both nodes i and j have
the specified factor level

1 if exactly one of i, j has the
specified factor level

0 if neither i nor j has the
specified factor level.

(7)

This means that the corresponding parameter is the change in
conditional log-odds when we add an edge with one endpoint
having this factor level—and this change is doubled when both
endpoints of the edge share this level. As an example, consider
the grade factor, which has levels 7–12 along with one missing-
value level, NA. These seven levels of grade factor require six
separate statistics for the nodal factor effect; one level must be
excluded because the sum of all seven equals twice the num-
ber of edges in the network, thus creating a linear dependency
among the statistics.

The second type of nodal statistics that we use is the ho-
mophily statistics. A homophily statistic for a particular factor
gives each edge in the network a score or 0 or 1, depending on
whether the two endpoints have matching values of the factor.
We distinguish between two kinds of homophily, depending on
whether the distinct levels of the factor should exhibit differ-
ent homophily effects. Thus, for uniform homophily, we have a
single statistic, defined by

h(Xi ,Xj ) =
{

1 if i and j have the same level of the factor
0 otherwise.

On the other hand, for differential homophily, we have a set
of statistics, one for each level of the factor, where each is de-
fined by

h(Xi ,Xj ) =
{

1 if i and j both have the
specified factor level

0 otherwise.
(8)
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Table 1. Estimated coefficients and standard errors for the parameters of three simple models that
consider only network structure but no nodal covariate information

Model

Coefficient Edges only Edges plus GWESP Edges plus GWDSP Edges plus GWD

Edges −4.625(.07)
∗ −5.280(.10)

∗ −4.812(.197)
∗ −1.423(.50)

∗∗
GWESP 1.544(.10)

∗
GWDSP .047(.046)

GWD −1.305(.20)
∗

NOTE: The GWESP statistic v(y; τ), the GWDSP statistic w(y; τ), and the GWD statistic u(y; τ) all use τ = .25.
∗Significant at the .001 level.
∗∗Significant at the .01 level.

Note that for sex (a two-level factor), we may include a
differential homophily effect or a nodal factor effect, but not
both. This is because in an undirected network, there are only
three types of edges—male–male, female–female, and male–
female—so only two statistics are required to completely char-
acterize the sexes of both endpoints of an edge, provided that
the overall edge effect is also in the model. A differential ho-
mophily effect (two statistics) plus a nodal factor effect (one
statistic) would entail redundant information.

In addition to the nodal factor and homophily effects, one
final set of terms in our second dyadic independence model
(summarized as model I in Table 2) involves the grade factor.
This is an ordinal categorical variable, and we may expect the
propensity to form friendships to depend on the difference be-
tween two individuals’ grade values (e.g., seventh graders may
be more likely to form friendships with eighth graders than with
twelfth graders). Although we could add a new model term for

each possible pairing of two grade levels, a far more parsimo-
nious model considers only the absolute difference of grade val-
ues,

h(Xi ,Xj ) =
{

1 if |gradei − gradej | = C

for some constant C

0 otherwise.
(9)

In our models we added terms according to (9) for C = 1,
C = 2, and C = 3. (We could not let C = 0, because this would
introduce a linear dependence with the homophily statistics.)
This has the effect of combining C = 4 and C = 5, along with
any pairs for which grade is missing on one individual, into a
single reference category.

Note that all schools have two sexes and six grades, but only
some have additional NA categories for these factors. Further-
more, the number of races present varies considerably from
school to school. Parameters are excluded from the model when
it can be determined in advance that the MLE will be undefined.

Table 2. Estimated coefficients (and standard errors) for two models applied to AddHealth school 10

Coefficient Model I Model II Coefficient Model I Model II

Edges −10.45(1.44)
∗∗∗ −3.49(1.92) AD (grade) = 1 3.71(1.26)

∗∗ 3.41(1.42)
∗

GWESP .83(.13)
∗∗∗ AD (grade) = 2 2.43(1.28) 2.42(1.48)

GWD −2.01(.35)
∗∗∗ AD (grade) = 3 1.52(1.42) 1.43(1.62)

GWDSP .50(.09)
∗∗∗

DH (grade 7) 6.83(1.37)
∗∗∗ 6.00(1.56)

∗∗∗
NF (grade 8) −.54(.73) −.34(.78) DH (grade 8) 7.81(1.56)

∗∗∗ 6.48(1.64)
∗∗∗

NF (grade 9) .72(.53) .64(.59) DH (grade 9) 5.04(1.39)
∗∗∗ 4.52(1.58)

∗∗
NF (grade 10) .59(.57) .55(.59) DH (grade 10) 5.76(1.44)

∗∗∗ 4.96(1.59)
∗∗

NF (grade 11) 1.12(.53)
∗ .97(.60) DH (grade 11) 4.98(1.39)

∗∗∗ 4.32(1.54)
∗∗

NF (grade 12) 1.51(.60)
∗ 1.23(.60)

∗ DH (grade 12) 4.64(1.48)
∗∗ 4.11(1.58)

∗∗
NF (grade NA) 4.05(1.14)

∗∗∗ 3.86(1.30)
∗∗

DH (White) 1.58(.62)
∗ 1.55(.68)

∗
NF (Black) .45(.39) .51(.42) DH (Black) 1.18(1.27) .92(1.55)

NF (Hisp) −.419(.34) −.23(.33) DH (Hisp) 1.17(.41)
∗∗ .87(.43)

∗
NF (Nat Am) −.460(.30) −.21(.32) DH (Nat Am) 1.70(.42)

∗∗∗ 1.31(.43)
∗∗

NF (Other) −1.14(.75) −.61(.69)

NF (Race NA) 1.23(.61)
∗ 1.53(.89

NF (Female) .09(.09) .09(.10) UH (Sex) .78(.15)
∗∗∗ .67(.16)

∗∗∗
NF (Sex NA) −.43(.47) −.18(.47)

NOTE: NF, node factor; AD, absolute difference; DH, differential homophily; UH, uniform homophily. Model I contains terms for edges and the 25 nodal covariate terms described in
Section 4. Model II contains all of the terms in model I plus three additional terms—GWESP, GWDSP, and GWD—each with τ = .25. Differential homophily terms for Grade NA, Race
Other, Race NA, and Sex NA are omitted because no edges are observed between two actors sharing these attribute values.

∗Significant at the .05 level.
∗∗Significant at the .01 level.
∗∗∗Significant at the .001 level.
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Such cases occur for node factor effects when only a small
number of students have the factor level, and they all have 0
friendships, or for homophily terms when there are no ties be-
tween two students with a given factor level. For example, in
AddHealth school 10, grade is a 7-level factor, sex is a 3-level
factor, and race is a 4-level factor, and our dyadic independence
model contains 25 parameters: 1 for edges, 6 for the grade fac-
tor effect, 6 for differential homophily on grade (excluding the
NA category), 5 for the race factor effect, 4 for differential ho-
mophily on race (excluding the NA and Other categories), 2 for
the sex factor effect, and 1 for uniform homophily on sex. The
fitted values of these 25 parameters are presented as model I in
Table 2.

Our graphical tests of goodness-of-fit require a comparison
of certain observed network statistics with the values of these
statistics for a large number of networks simulated according
to the fitted ERGM. The choice of these statistics determines
which structural aspects of the networks are important in assess-
ing fit. We propose to consider three sets of statistics: the degree
distribution, the edgewise shared partner distribution, and the
geodesic distance distribution.

The degree distribution for a network consists of the val-
ues D0/n, . . . ,Dn−1/n, where Dk/n equals the proportion
of nodes that share edges with exactly k other nodes. The
edgewise shared partner distribution consists of the values
EP0/E, . . . ,EPn−2/E, where E denotes the total number of
edges and EPk equals the number of edges whose endpoints
both share edges with exactly k other nodes. (The Dk and EPk

statistics are explained in much greater detail in Sec. 5.) Finally,
the geodesic distance distribution consists of the relative fre-
quencies of the possible values of geodesic distance between
two nodes, where the geodesic distance between two nodes
equals the length of the shortest path joining those two nodes
(or infinity if there is no such path). For instance, because two
nodes are at geodesic distance 1 if and only if they are con-
nected by an edge, and because there are

(
n
2

)
possible pairs of

nodes, the first value of the geodesic distance distribution equals
E/

(
n
2

)
. The last value, the fraction of dyads with infinite geodes-

ics, is also called the fraction “unreachable.”
We chose to include the degree statistics because of the

tremendous amount of attention paid to them in the networks
literature. We included the shared partner statistics based on
the work of Snijders, Pattison, Robins, and Handcock (2006)
and Hunter and Handcock (2006), and because, as we show
in Section 6, the addition of a parametric formula involving
EP0, . . . ,EPn−2 improves model fit dramatically. Therefore,
these statistics appear to contain a great deal of relevant net-
work information. Furthermore, (13) demonstrates that the tri-
angle count, ubiquitous in the networks literature, is a function
of the shared partner statistics. Finally, the geodesic distance
statistics are the basis for two of the most common measures
of centrality, a fundamental concept in social network theory
(Wasserman and Faust 1994, p. 111) and clearly are relevant
to the speed and robustness of diffusion across networks. They
also represent higher-order network statistics not directly re-
lated to any of the statistics included in our models, and thus
provide a strong independent criterion for goodness of fit.

Figure 2 depicts the results of 100 simulations for school 10
from the fitted dyadic independence models given in Tables 1

and 2. The vertical axis in each plot is the logit (log-odds) of
the relative frequency, and the solid line represents the statis-
tics for the observed network. We can immediately see that the
models do an extremely poor job capturing the shared partner
distribution. They perform relatively well for the degree distrib-
ution and the geodesics distribution, considering their simplic-
ity. Adding the attribute-based statistics improves the fit of the
geodesic distribution considerably. The lack of fit in the shared
partner plot reflects the fact that the model strongly underesti-
mates the amount of local clustering present in the data. The
models predict friends to have no friends in common most of
the time and one friend in common occasionally, whereas in the
original data they have up to five friends in common. Although
we present plots for only one school here, the qualitative results
for other schools follow a small number of similar patterns.

In Sections 5 and 6 we present some modifications to the
models seen here that fit much better as measured both by the
graphical criterion that we have used here and by more tradi-
tional statistical measures, such as the Akaike information crite-
rion (AIC). The fact that the simple dyadic independence mod-
els do not appear to fit the data well is not surprising; after all,
such models are merely logistic regression models in which the
responses are the dyads. That we must move beyond dyadic in-
dependence to construct models that fit social network data well
is a result of the fact that the formation of edges in a network
depends on the existing network structure itself.

5. DEGREE, SHARED PARTNER, AND OTHER
NETWORK STATISTICS

A simplistic ERGM that is not a dyadic independence model
is one in which g(y,X) consists only of a subset of the de-
gree statistics Dk(y), 0 ≤ k ≤ n − 1. The degree of a node
in a network is the number of neighbors that it has, where a
neighbor is a node with which it shares an edge. We define
Dk(y) to be the number of nodes in the network y that have
degree k. Note that the Dk(y) statistics satisfy the constraint∑n−1

i=0 Di(y) = n, so we may not include all n degree statistics
among the components of the vector g(y,X); if we did, then
the coefficients in model (1) would not be identifiable. A com-
mon reformulation of the degree statistics is given by the k-star
statistics S1(y), . . . , Sn−1(y), where Sk(y) is the number of k-
stars in the network y. A k-star (Frank and Strauss 1986) is an
unordered set of k edges that all share a common node. For
instance, “1-star” is synonymous with “edge.” Because a node
with i neighbors is the center of

(
i
k

)
k-stars (but the “common

node” of a 1-star may be considered arbitrarily to be either of
two nodes), we see that

Sk(y) =
n−1∑

i=k

(
i

k

)
Di(y), 2 ≤ k ≤ n − 1, and

(10)

S1(y) = 1

2

n−1∑

i=1

iDi(y).

Note that an edge is the same as a 1-star, so E(y) = S1(y).
The k-star statistics are highly collinear with one another. For
example, any 4-star automatically comprises four 3-stars, six
2-stars, and four 1-stars (or edges).
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(a)

(b)

Figure 2. Simulation results for dyadic independence models. (a) School 10, edges only (Bernoulli or Erdős–Rényi model). (b) School 10,
edges and covariates. In all plots, the vertical axis is the logit of relative frequency, the school 10 statistics are indicated by the solid lines, the
boxplots include the median and interquartile range, and the light-gray lines represent the range in which 95% of simulated observations fall.

The shared partner statistics are another useful class of statis-
tics. We define two distinct sets of shared partner statistics, the
edgewise shared partner statistics and the dyadwise shared part-
ner statistics. The edgewise shared partner statistics are denoted
as EP0(y), . . . ,EPn−2(y), where EPk(y) is defined as the num-
ber of unordered pairs {i, j} such that yij = 1 and i and j have
exactly k common neighbors (Hunter and Handcock 2006).
The requirement that yij = 1 distinguishes the edgewise shared
partner statistics from the dyadwise shared partner statistics
DP0(y), . . . ,DPn−2(y): We define DPk(y) to be the number of
pairs {i, j} such that i and j have exactly k common neigh-
bors. In particular, it is always true that DPk(y) ≥ EPk(y), and
in fact DPk(y) − EPk(y) equals the number of unordered pairs
{i, j} for which yij = 0 and i and j share exactly k common
neighbors.

Because there are E(y) edges and
(
n
2

)
dyads in the entire net-

work, we obtain the identities

E(y) =
n−2∑

i=0

EPi (y) (11)

and

(
n

2

)
=

n−2∑

i=0

DPi (y). (12)

Furthermore, we can obtain the number of triangles in y by
considering the edgewise shared partner statistics. Whenever
yij = 1, the number of triangles that include this edge is exactly
the number of common neighbors shared by i and j . Therefore,
if we count all of the shared partners for all edges, then we have
counted each triangle three times, once for each of its edges; in
other words,

T (y) = 1

3

n−2∑

i=0

iEPi (y). (13)

A related formula involving the dyadwise shared partner statis-
tics is obtained by noting that each triangle automatically com-
prises three 2-stars; therefore, S2(y) − 3T (y) is the number of
2-stars for which the third side of the triangle is missing. We
conclude that

S2(y) − 3T (y) =
n−2∑

i=0

i[DPi (y) − EPi (y)]. (14)

Combining (14) and (13) produces

S2(y) =
n−2∑

i=0

iDPi (y).

Because a 2-star is also a path of length 2, S2(y) is sometimes
referred to as the twopath statistic.
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Figure 3. For this simple five-node network, the edgewise and
dyadwise shared partner distributions are (EP0, . . . ,EP3) = (1,4,

1,0) and (DP0, . . . ,DP3) = (2,6,2,0); the k-triangle and k-two-
path distributions are (T1, T2, T3) = (2,1,0) and (P1,P2,P3) = (10,

1,0).

Finally, we summarize two additional sets of statistics, due to
Snijders et al. (2006), that we use in Section 6. First, the triangle
statistic generalizes to the set of k-triangle statistics, where a k-
triangle is defined to be a set of k distinct triangles that share
a common edge. In particular, a 1-triangle is the same as a tri-
angle. Second, the 2-star statistic (also known as the twopath
statistic) generalizes to the set of k-twopath statistics, where a
k-twopath is a set of k distinct 2-paths joining the same pair
of nodes. In particular, a 1-twopath is the same as a 2-star or
a 2-path. Snijders et al. (2006) actually coined the term “k-
independent 2-path,” but we simplify this to k-twopath in this
article.

As a concrete example, we note that the simple network of
Figure 3 contains 2 1-triangles, 1 2-triangle, 10 1-twopaths, and
1 2-twopath. (Note that the 2-twopath joining nodes 1 and 4 is
the same as the 2-twopath joining nodes 2 and 3, although it is
counted only once.) We denote the number of k-triangles and k-
twopaths in the network y by Tk(y) and Pk(y). Just as the degree
statistics Di(y) are related to the k-star statistics Sk(y) by (10),
the edgewise and dyadwise shared partner statistics are related
to the k-triangle and k-twopath statistics by the equations

Tk(y) =
n−2∑

i=k

(
i

k

)
EPi (y), 2 ≤ k ≤ n − 2,

and

Pk(y) =
n−2∑

i=k

(
i

k

)
DPi (y), 1 ≤ k ≤ n − 2, k �= 2.

The cases not covered here are those of T1(y), given in (13), and
P2(y), the number of 4-cycles, which includes an extra factor
of 1/2, because any 4-cycle can be considered a 2-path between
two distinct pairs of nodes,

P2(y) = 1

2

n−2∑

i=2

(
i

2

)
DPi (y).

6. GOODNESS OF FIT FOR DYADIC
DEPENDENCE MODELS

A fundamental principle of social network analysis is that
dependence among edges is a guiding force in the formation
of networks; that is, the Yij that make up an adjacency matrix
Y are not independent of one another. For instance, it seems
reasonable that two potential edges should be correlated if they
involve the same individual (so that Yij is not independent of
Yik for distinct i, j , and k). Starting from this simple assump-
tion, Frank and Strauss (1986) proposed the so-called Markov

random graphs. They showed that an ERGM with a few simple
network statistics, among them the number of triangles, suffices
under this assumption. As originally proposed, these homoge-
neous Markov random graphs treat all nodes as equivalent, ig-
noring any covariate information.

But what if we have covariate information about the nodes?
Because nodal attributes are clearly important in most, if not all,
social networks, it is not surprising that homogeneous Markov
random graph models fail to empirically describe social net-
work data. But is it true that the Yij are dependent even when
we condition on the observations X? We might take the ap-
proach suggested by Markov random graphs, adding covariate
information of the sort discussed in Section 4 to Markov ran-
dom graph models and then performing statistical tests to de-
termine whether such terms as the number of triangles are sta-
tistically significant after the effects of covariates are accounted
for. Unfortunately, this approach fails. The reasons for this fail-
ure are deep (see Handcock 2002, 2003), but in a nutshell, the
models obtained by adding covariate information to Markov-
inspired ERGMs simply do not fit network data well. Without a
model that yields simulated networks resembling the observed
network, maximum likelihood estimation itself is doomed. (For
a discussion of maximum likelihood estimation algorithms, see
Snijders 2002; Hunter and Handcock 2006.) This failure mo-
tivated the work of Snijders et al. (2006) in developing the al-
ternating k-triangle, k-twopath, and k-star statistics that we ex-
plain in this section.

These new statistics finally allow us to build dependence
models that fit network data sets well enough to enable reliable
maximum likelihood estimation routines. Thus we can augment
these models by adding covariate-only terms, then try to deter-
mine whether the dependence terms are statistically significant.
If not, then independence models will suffice, so we may simply
perform “network” analysis by ignoring the network structure
altogether and performing logistic regression on the indepen-
dent responses Yij . We can see (somewhat reassuringly from
the standpoint of social networks research) that the dependence
among dyads appears to persist even after nodal covariate in-
formation is taken into account.

Consider using the shared partner statistics and the degree
statistics defined in Section 5 to build an ERGM. For instance,
it is possible to add one new term to the model for each of the
edgewise shared partner statistics EP1, . . . ,EPn−2—we omit
EP0 to avoid the linear dependence of (11)—but this typically
leads to a model with excessive flexibility. As Hunter and Hand-
cock (2006) pointed out, it is often better to restrict the parame-
ter space to avoid problems of degeneracy. Toward this end, we
define the statistics

u(y; τ) = eτ
n−2∑

i=1

{1 − (1 − e−τ )i}Di(y), (15)

v(y; τ) = eτ

n−2∑

i=1

{1 − (1 − e−τ )i}EPi (y), (16)

and

w(y; τ) = eτ

n−2∑

i=1

{1 − (1 − e−τ )i}DPi (y), (17)
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where in each case τ is an additional parameter. We refer to
these three statistics as geometrically weighted degree, edge-
wise shared partner, and dyadwise shared partner statistics.

Although the definitions of u, v, and w may appear some-
what unusual, we chose them to coincide with the alternating
k-star, alternating k-triangle, and alternating k-twopath statis-
tics of Snijders et al. (2006),

u(y; τ) = 2S1(y) − S2(y)

(eτ )1
+ · · · + (−1)n

Sn−1(y)

(eτ )n−2
, (18)

v(y; τ) = 3T1(y) − T2(y)

(eτ )1
+ · · · + (−1)n−3 Tn−2(y)

(eτ )n−3
, (19)

and

w(y; τ) = P1(y) − 2P2(y)

(eτ )1
+ · · · + (−1)n−3 Pn−2(y)

(eτ )n−3
. (20)

Actually, the alternating k-star statistic in (18) is not identical to
the alternating k-star statistic of Snijders et al. (2006), although
it is in a certain sense equivalent from a modeling perspective.
Hunter (2007) discussed this issue at length. As Snijders et al.
(2006) explained, these three statistics appear to capture high-
order dependency structure in networks in a parsimonious fash-
ion while avoiding the problems of degeneracy described by
Handcock (2002, 2003).

The τ parameters in (16), (17), and (15) are not canoni-
cal exponential family parameters like η in (1); rather, if τ =
(τ1, τ2, τ3) is considered unknown and (η,τ ) is the full parame-
ter vector, then the ERGM forms a curved exponential family,
which complicates the estimation procedure. Hunter and Hand-
cock (2006) addressed this more complicated situation; how-
ever, for the purposes of this article, we make the simplifying
assumption that each τ is fixed and known. In our model-fitting
procedure, we tried a range of different values of τ on several
schools and found that for each statistic, the goodness-of-fit
plots (as in Fig. 4) were nearly indistinguishable for different
values of τ in the range that we tested (.1–1.5). Values far out-
side this range resulted in models that could not be fit. Based on
these results, we use a fixed value of τ = .25 for all the models
that we discuss.

As an example, we take g(y,X) to consist of only two terms,
the edge statistic and the geometrically weighted edgewise
shared partner (GWESP) statistic. In this case the ERGM of (1)
becomes

Pη(Y = y|X) = κ−1 exp{η1E(y) + η2v(y; τ)}. (21)

We fit model (21), as well as similar models using the geo-
metrically weighted dyadwise shared partner (GWDSP) and
geometrically weighted degree (GWD) statistics, to AddHealth
school 10. The results are given in Table 1.

Many dyadic dependence models create such severe numeri-
cal difficulties in estimation (Handcock 2002, 2003) that we are
unable to fit them for a large number of different networks of
different sizes. Models with the GWESP, GWDSP, and GWD
statistics appear to be more robust. Using our MCMC fitting
procedure, we could estimate their parameters on many of the
AddHealth schools, the first such application of maximum like-
lihood estimation to a dyadic dependence model for a range of

different-sized networks with hundreds of nodes. As a case in
point, consider Figure 5, in which we successfully fit a dyadic
dependence model to the largest school in the sample, with
2,209 nodes, and obtained reasonable parameter estimates. (We
discuss this school further in Sec. 7.)

As described in Section 4, one way to develop an idea of
how well a model fits is by comparing a set of observed net-
work statistics with the range of the same statistics obtained
by simulating many networks from the fitted ERGM. If the ob-
served network is not typical of the simulated network for a
particular statistic, then the model is either degenerate (if the
statistic is among those included in the ERGM vector g[y,X])
or poorly fitted (if the statistic is not included). Figure 4 depicts
simulation results for school 10 for the three dyadic-dependent
ERGMs in Table 1; Figure 6 depicts model II from Table 2.

For both school 10 and many of the other smaller AddHealth
schools, a simple model containing only individual-level at-
tributes [Fig. 2(b)] does a respectable job of recreating the geo-
desic distribution of the observed data, a global property of
the network. At the same time, it strongly underestimates the
amount of local clustering as captured by the shared partner
distribution. The former observation is encouraging, because
information on attribute matching is far easier to collect than
other types of network data in most real-world settings where
only a sample of nodes is available. Gathering such informa-
tion requires questions only about the attributes of respondents’
partners, not their actual identities. The latter observation tells
us that not all features of the network can be ascribed to purely
dyadic-level phenomena; this fact is not surprising, because it is
the very basis for the field of network analysis. Finally, the fact
that a simple model is strongly predictive of one higher-order
network property (geodesics) and strongly divergent from an-
other (shared partner) suggests that various network statistics
should be tested to develop a robust sense of goodness of fit.

Comparing Figure 2(b) with Figures 4(a) and 4(b) shows that
incorporating the heterogeneity of actors through nodal covari-
ates was more important for model fit than either modeling de-
gree or edgewise shared partners alone. This should not be too
surprising; we expect that nodal covariates to be very important
in predicting most types of social relationships, and certainly
high school friendships are no exception.

Social relations generally exhibit local clustering, and in
this case we observe that the simple Bernoulli model dras-
tically underpredicts the number of shared partners people
should have, even though it captures the degree distribution
well. Such clustering can come from at least two different
sources: actors matching on exogenous attributes and actors
forming partnerships on the basis of existing shared partners.
The two are fundamentally different; the former is dyadic-
independent, using factors exogenous to the network structure;
whereas the latter is dyadic-dependent and reflects the tran-
sitivity property that friends of my friends are more likely
to be my friends. The modeling here shows that neither ho-
mophily nor shared partners alone is sufficient to explain the
clustering observed in this friendship network. The same is
true of other AddHealth schools (see the plots available at
http://csde.washington.edu/networks). Indeed, Table 2 shows
that the homophily effects are smaller in magnitude in model II
(which includes the shared partner statistics) than in model I.
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(a)

(b)

(c)

Figure 4. Simulation results for dyadic dependence ERGMs of Table 1. (a) School 10, edges and GWESP (τ = .25). (b) School 10, edges
and GWDSP (τ = .25). (c) School 10, edges and GWD (τ = .25).

In this setting a simple one-term Bernoulli model [Fig. 2(a)]
turned out to fit the degree distribution fairly well, although it
failed slightly in underestimating the number of high-degree
nodes. Adding the degree distribution to the model in the form
of the GWD statistic [Fig. 4(c)] appeared to remedy this de-
fect. However, neither of these two models reproduced the
clustering and geodesic distances observed in this network. In
fact, comparing the rightmost plots in Figures 2(a) and 4(c)
shows that adding the GWD statistic by itself appears to have
worsened the fit to the geodesic distance distribution. We may
explain this phenomenon by noting (in Fig. 1) that the stu-
dents tend to form friendships preferentially within their own

grade, creating longer-than-expected geodesics between pairs
of students in different grades. Adding only the GWD term to
the model makes this problem worse, because it tends to cre-
ate highly connected individuals (while still ignoring grade),
thus shortening the geodesics even more. But whatever the
cause of this phenomenon, the most important message here
is that there are hazards inherent in focusing only on the de-
gree distribution when trying to build realistic models for net-
works.

One might wonder how our graphical methods for assessing
goodness of fit compare with more traditional methods, such as
the AIC (Akaike 1973) or the Bayes information criterion BIC
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Figure 5. Goodness-of-fit plots for school 44, the largest AddHealth school with 2,209 nodes. The clear lack of fit in the geodesic distribution
is typical of this model for the larger AddHealth schools, even though the same model tends to fit well on smaller schools. School 44, edges,
covariates, GWESP, GWDSP, and GWD (all τ = .25).

(Schwarz 1978), where

AIC(M) = −2(maximized loglikelihood under M)

+ 2(# of parameters in M) (22)

and

BIC(M) = −2(maximized log-likelihood under M)

+ logN(# of parameters in M), (23)

where M denotes a particular ERGM and N denotes the sample
size. The goal is to minimize AIC(M) or BIC(M) as a function
of M . Unfortunately, these traditional methods entail several
problems. For one thing, the assumptions used to justify the
AIC and BIC are not met here, because our observations are not
an independent and identically distributed sample. In fact, it is
not even clear how to evaluate BIC(M), because there is no easy
way to determine the effective sample size N . For any dyadic
independence model, N = (

n
2

)
, the number of dyads. However,

when dependence among dyads exists, the effective sample size
can be smaller than

(
n
2

)
. Finally, as we pointed out in Section 3,

it is not possible to evaluate the likelihood function directly for
most ERGMs except in the case of dyadic independence mod-
els, where the likelihood equals the pseudolikelihood (4).

Thus any attempt to achieve model selection through the AIC
or BIC is approximate at best. However, even using the roughly
approximated AIC, we find that the conclusions of the graphical
goodness-of-fit procedures are borne out in the sense that mod-
els that produce large reductions in the (approximate) AIC also
seem to yield considerably better fits in the graphical plots, and
those with smaller reductions in the AIC have less pronounced
effects on the plots. However, the goodness-of-fit plots provide
a richer picture than the AIC alone. From these plots, a num-
ber of features of the relationships between these models and
the network structure become clear. For instance, both the plots
and the AIC indicate that incorporating the heterogeneity of ac-
tors through nodal covariates is far more important to model
fit than modeling either degree or shared partners alone. Yet the
plots are more informative than the AIC results in the sense that
they tell which structural features are fit well and which are not.

7. DISCUSSION

Only with the recent development of the R package
statnet, which is available on the Internet at http://csde.
washington.edu/statnet, has it been possible to reliably apply
likelihood-based inference for ERGMs to networks of hundreds
of nodes. Therefore, it is possible to consider other aspects of
these models, such as how well they fit the observed data, as we

Figure 6. Simulation results for model II of Table 2. School 10, edges, covariates, GWESP, GWDSP, and GWD (all τ = .25).
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do in this article for the particular case of high school friendship
networks.

Choosing an appropriate set of network statistics on which to
compare the observed network with networks simulated from
the fitted model is an important task in the graphical goodness-
of-fit studies that we advocate in this article. If possible, these
statistics should match the purpose of the network estimation
and simulation. It may not be immediately clear what kinds of
network properties are relevant; in fact, this might be precisely
the question in which we are interested in the first place. For
many social relations, theory may suggest that people do not
look beyond more than one or two layers of network neighbors,
so adequately modeling statistics such as the edgewise shared
partner distribution might be expected to get higher-order sta-
tistics correct as well.

Comparing different AddHealth schools shows that many
significant model parameters have remarkably similar qualita-
tive patterns. Even the numerical values of the MLEs are often
quite similar across friendship networks. However, when com-
paring networks with different numbers of nodes, it is impor-
tant that the values of the parameter estimates are not neces-
sarily comparable. The question of how to modify ERGMs so
that their coefficients are directly comparable without regard
to n, the number of nodes, is a very important issue in network
modeling. Furthermore, as pointed out in Section 6, the related
question of the effective sample size of a network on n nodes
for a particular ERGM is important if we have any hope of ap-
plying model selection methods, such as the BIC, that depend
on sample size. But this is a question for the future; for now, the
science of likelihood-based methods for fitting ERGMs is still
in its early stages.

Although the most complete and best-fitting model presented
here appears to come close to capturing the higher-order net-
work statistics examined for school 10 and many of the smaller
schools, the same is not true for many of the larger schools. For
instance, consider Figure 5, based on the largest school in our
sample, with 2,209 nodes. This and other large schools depart
from the fitted model in a similar way; the model underpredicts
the number of long geodesics and overpredicts the number of
short ones. In effect, the real social networks are more “stringy”
than our best-fitting model predicts. Goodreau (2007) has pro-
vided a more detailed analysis of a large school.

As this empirical application has shown, both exogenous
nodal covariates and endogenous network effects can play an
important role in the generative processes that give rise to net-
work structure. There is no a priori reason to assume that all net-
works will have the same structure, and the methods proposed
here provide a systematic framework for evaluation of models
that can be adapted to test a wide range of hypotheses. In the
context of mutual friendships among high-school adolescents,
geometrically weighted degree, edgewise shared partner, and
dyadwise shared partner statistics—equivalent to the alternat-
ing k-star, k-triangle, and k-twopath statistics of Snijders et al.

(2006)—do a credible job of capturing the aggregate network
structures of interest.

[Received May 2005. Revised December 2006.]
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